1
|
Chen X, Wang Y, Li H, Deng Y, Giang C, Song A, Liu Y, Wang QA, Zhu Y. Hyaluronan Mediates Cold-Induced Adipose Tissue Beiging. Cells 2024; 13:1233. [PMID: 39120264 PMCID: PMC11311271 DOI: 10.3390/cells13151233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Adipose tissue beiging refers to the process by which beige adipocytes emerge in classical white adipose tissue depots. Beige adipocytes dissipate chemical energy and secrete adipokines, such as classical brown adipocytes, to improve systemic metabolism, which is beneficial for people with obesity and metabolic diseases. Cold exposure and β3-adrenergic receptor (AR) agonist treatment are two commonly used stimuli for increasing beige adipocytes in mice; however, their underlying biological processes are different. Transcriptional analysis of inguinal white adipose tissue (iWAT) has revealed that changes in extracellular matrix (ECM) pathway genes are specific to cold exposure. Hyaluronic acid (HA), a non-sulfated linear polysaccharide produced by nearly all cells, is one of the most common components of ECM. We found that cold exposure significantly increased iWAT HA levels, whereas the β3-AR agonist CL316,243 did not. Increasing HA levels in iWAT by Has2 overexpression significantly increases cold-induced adipose tissue beiging; in contrast, decreasing HA by Spam1 overexpression, which encodes a hyaluronidase that digests HA, significantly decreases cold-induced iWAT beiging. All these data implicate a role of HA in promoting adipose tissue beiging, which is unique to cold exposure. Given the failure of β3-AR agonists in clinical trials for obesity and metabolic diseases, increasing HA could serve as a new approach for recruiting more beige adipocytes to combat metabolic diseases.
Collapse
Affiliation(s)
- Xi Chen
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Huiqiao Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanru Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charlise Giang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anying Song
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yu’e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiong A. Wang
- Department of Molecular Endocrinology, Diabetes and Metabolism Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Yi Zhu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Huang L, Zhang Y, Fu H, Gu W, Mao J. A missense mutant of ocrl1 promotes apoptosis of tubular epithelial cells and disrupts endocytosis and the cell cycle of podocytes in Dent-2 Disease. Cell Commun Signal 2023; 21:256. [PMID: 38049819 PMCID: PMC10696739 DOI: 10.1186/s12964-023-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/13/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND This study aimed to identify an orcl1 mutation in a patient with Dent-2 Disease and investigate the underlying mechanisms. METHODS The ocrl1 mutation was identified through exome sequencing. Knockdown of orcl1 and overexpression of the orcl1 mutant were performed in HK-2 and MPC5 cells to study its function, while flow cytometry measured reactive oxygen species (ROS), phosphatidylserine levels, and cell apoptosis. Scanning electron microscopy observed crystal adhesion, while transmission electron microscopy examined kidney tissue pathology. Laser scanning confocal microscopy was used to examine endocytosis, and immunohistochemical and immunofluorescence assays detected protein expression. Additionally, podocyte-specific orcl1 knockout mice were generated to investigate the role of orcl1 in vivo. RESULTS We identified a mutation resulting in the replacement of Histidine with Arginine at position 318 (R318H) in ocrl1 in the proband. orcl1 was widely expressed in the kidney. In vitro experiments showed that knockdown of orcl1 and overexpression of ocrl1 mutant increased ROS, phosphatidylserine exocytosis, crystal adhesion, and cell apoptosis in HK-2 cells. Knockdown of orcl1 in podocytes reduced endocytosis and disrupted the cell cycle while increasing cell migration. In vivo studies in mice showed that conditional deletion of orcl1 in podocytes caused glomerular dysfunction, including proteinuria and fibrosis. CONCLUSION This study identified an R318H mutation in orcl1 in a patient with Dent-2 Disease. This mutation may contribute to renal injury by promoting ROS production and inducing cell apoptosis in tubular cells, while disrupting endocytosis and the cell cycle, and promoting cell migration of podocytes. Video Abstract.
Collapse
Affiliation(s)
- Limin Huang
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingying Zhang
- Department of Pediatrics, Clinical Center of Pediatric Nephrology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haidong Fu
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathologyology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine. National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Huijink TM, van 't Hof CJ, van Furth LA, de Haan NA, Maassen H, Venema LH, Lammerts RGM, van den Heuvel MC, Hillebrands JL, van den Born J, Berger SP, Leuvenink HGD. Loss of Endothelial Glycocalyx During Normothermic Machine Perfusion of Porcine Kidneys Irrespective of Pressure and Hematocrit. Transplant Direct 2023; 9:e1507. [PMID: 37456589 PMCID: PMC10348736 DOI: 10.1097/txd.0000000000001507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Normothermic machine perfusion (NMP) is a promising modality for marginal donor kidneys. However, little is known about the effects of NMP on causing endothelial glycocalyx (eGC) injury. This study aims to evaluate the effects of NMP on eGC injury in marginal donor kidneys and whether this is affected by perfusion pressures and hematocrits. Methods Porcine slaughterhouse kidneys (n = 6/group) underwent 35 min of warm ischemia. Thereafter, the kidneys were preserved with oxygenated hypothermic machine perfusion for 3 h. Subsequently, 4 h of NMP was applied using pressure-controlled perfusion with an autologous blood-based solution containing either 12%, 24%, or 36% hematocrit. Pressures of 55, 75, and 95 mm Hg were applied in the 24% group. Perfusate, urine, and biopsy samples were collected to determine both injury and functional parameters. Results During NMP, hyaluronan levels in the perfusate increased significantly (P < 0.0001). In addition, the positivity of glyco-stained glycocalyx decreased significantly over time, both in the glomeruli (P = 0.024) and peritubular capillaries (P = 0.003). The number of endothelial cells did not change during NMP (P = 0.157), whereas glomerular endothelial expression of vascular endothelial growth factor receptor-2 decreased significantly (P < 0.001). Microthrombi formation was significantly increased after NMP. The use of different pressures and hematocrits did not affect functional parameters during perfusion. Conclusions NMP is accompanied with eGC and vascular endothelial growth factor receptor-2 loss, without significant loss of endothelial cells. eGC loss was not affected by the different pressures and hematocrits used. It remains unclear whether endothelial injury during NMP has harmful consequences for the transplanted kidney.
Collapse
Affiliation(s)
- Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cor J van 't Hof
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Annick van Furth
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nora A de Haan
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rosa G M Lammerts
- Department of Transplantation Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Sun P, Liao SG, Yang RQ, Lu CL, Ji KL, Cao DH, Hu HB, Lu JM, Song XZ, Wu M, Jia HZ, Xiao CF, Ma ZW, Xu YK. Aspidopterys obcordata vine inulin fructan affects urolithiasis by modifying calcium oxalate crystallization. Carbohydr Polym 2022; 294:119777. [DOI: 10.1016/j.carbpol.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
5
|
Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol 2022; 37:735-744. [PMID: 34009465 PMCID: PMC8960635 DOI: 10.1007/s00467-021-05113-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Over the years, hyaluronic acid (HA) has emerged as an important molecule in nephrological and urological studies involving extracellular matrix (ECM) organization, inflammation, tissue regeneration, and viral sensing. During this time, many have noted the perplexing double-edged nature of the molecule, at times promoting pro-fibrotic events and at other times promoting anti-fibrotic events. Different molecular weights of HA can be attributed to these disparities, though most studies have yet to focus on this subtlety. With regard to the kidney, HA is induced in the initial response phase of injury and is subsequently decreased during disease progression of AKI, CKD, and diabetic nephropathy. These and other kidney diseases force patients, particularly pediatric patients, to face dialysis, surgical procedures, and ultimately, transplant. To summarize the current literature for researchers and pediatric nephrologists, this review aims to expound HA and elucidate its paradoxical effects in multiple kidney diseases using studies that emphasize HA molecular weight when available.
Collapse
Affiliation(s)
- Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, 77030, TX, USA
- Department of Bioengineering, Rice University, Houston, 77030, TX, USA
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ling Yu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Chanthick C, Thongboonkerd V. Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicol In Vitro 2022; 80:105320. [DOI: 10.1016/j.tiv.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
7
|
Rocky road-an uncommon reason for kidney allograft dysfunction: Answers. Pediatr Nephrol 2021; 36:1461-1463. [PMID: 33025203 DOI: 10.1007/s00467-020-04688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
|
8
|
Al-Nedawi K, Haas-Neill S, Gangji A, Ribic CM, Kapoor A, Margetts P. Circulating microvesicle protein is associated with renal transplant outcome. Transpl Immunol 2019; 55:101210. [PMID: 31226423 DOI: 10.1016/j.trim.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
Renal transplantation is an effective therapy with improved long-term outcomes compared with other therapies for end stage renal disease. Present methods for evaluating kidney allograft function, such as serum creatinine or allograft biopsy, are not sensitive and identify pathological changes only after any potential intervention would be effective. Thus, there is a necessity for biomarkers that would provide early prognostic information about kidney transplant outcomes. Circulating microvesicles represent an attractive source of biomarkers for different diseases including renal failure. We have studied the proteins of the circulating microvesicles from two populations of kidney transplant recipients (n = 20) with poor transplant outcomes (n = 10) or good transplant outcome (n = 10), according to their estimated glomerular filtration rate (eGFR). Microvesicles from age-matched healthy subjects (n = 10) were used as a control. Also, we performed a pilot study to assess the microvesicle protein in kidney transplant recipients before and six months after kidney transplant (n = 6), compared to healthy subjects. Proteomic analysis of microvesicles could discriminate between transplant recipients and healthy subjects, and between transplant patients based on eGFR. Our results shed light on the potential of blood microvesicles to provide a novel tool for the prediction of the outcome of kidney transplants.
Collapse
Affiliation(s)
- Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada.
| | - Sandor Haas-Neill
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Azim Gangji
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Christine M Ribic
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| | - Anil Kapoor
- St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Peter Margetts
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; St. Joseph's Healthcare Research Institute & Hamilton Center for Kidney Research, Canada
| |
Collapse
|
9
|
Zhao YW, Guo D, Li CY, Ouyang JM. Comparison of the adhesion of calcium oxalate monohydrate to HK-2 cells before and after repair using tea polysaccharides. Int J Nanomedicine 2019; 14:4277-4292. [PMID: 31239679 PMCID: PMC6559723 DOI: 10.2147/ijn.s198644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Kidney stone formation is closely related to renal epithelial cell damage and the adhesion of calcium oxalate crystals to cells. Methods: In this research, the adhesion of human kidney proximal tubular epithelial cells (HK-2) to calcium oxalate monohydrate crystals with a size of approximately 100 nm was studied. In addition, the inhibition of crystal adhesion by four tea polysaccharides (TPS0, TPS1, TPS2, and TPS3) with the molecular weights of 10.88, 8.16, 4.82, and 2.31 kDa, respectively were compared. Results: When oxalic acid-damaged HK-2 cells were repaired, cell viability increased. By contrast, reactive oxygen species level, phosphatidylserine eversion, and osteopontin expression decreased, thus indicating that tea polysaccharides have a repairing effect on damaged HK-2 cells. Moreover, after repairing the damaged cells, the amount of adherent crystals was reduced. The repair effect of tea polysaccharides is closely related to molecular weight, and TPS2 with the moderate molecular weight displayed the best repair effect. Conclusion: These results suggest that tea polysaccharides, especially TPS2, may inhibit the formation and recurrence of calcium oxalate kidney stones.
Collapse
Affiliation(s)
- Yao-Wang Zhao
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang-Ye Li
- Department of Urology, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
10
|
Iwamoto T, Niewold TB. Genetics of human lupus nephritis. Clin Immunol 2016; 185:32-39. [PMID: 27693588 DOI: 10.1016/j.clim.2016.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by immune complex formation with multi-organ manifestations. Lupus nephritis (LN) is one of the most severe types of organ damage in SLE, and it clearly contributes to increased morbidity and mortality due to SLE. LN occurs more frequently and is more severe in non-European ancestral backgrounds, although the cause of this disparity remains largely unknown. Genetic factors play an important role in the pathogenesis of SLE. Although many SLE susceptibility genes have been identified, the genetic basis of LN is not as well understood. While some of the established general SLE susceptibility genes are associated with LN, recent discoveries highlight a number of genes with renal functions that are specifically associated with LN. Some of these genes associated with LN help to explain the disparity in the prevalence of nephritis between individuals with SLE, and also partially explain differences in LN between ancestral backgrounds. Moreover, not only the gene mutations, but also post-translational modifications seem to play important roles in the pathogenesis of LN. Overall it seems likely that a combination of general SLE susceptibility genes cooperate with LN specific risk genes to result in the genetic propensity for LN. In this review, we will outline the genetic contribution to LN and describe possible roles of LN susceptibility genes.
Collapse
Affiliation(s)
- Taro Iwamoto
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy B Niewold
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Gan QZ, Sun XY, Bhadja P, Yao XQ, Ouyang JM. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation. Int J Nanomedicine 2016; 11:2839-54. [PMID: 27382277 PMCID: PMC4918896 DOI: 10.2147/ijn.s104505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. METHODS African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin-eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. RESULTS The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. CONCLUSION Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation.
Collapse
Affiliation(s)
- Qiong-Zhi Gan
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China
| | - Xin-Yuan Sun
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China
| | - Poonam Bhadja
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China
| | - Xiu-Qiong Yao
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou, People’s Republic of China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Mittal A, Tandon S, Singla SK, Tandon C. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna. Urolithiasis 2015; 44:117-25. [DOI: 10.1007/s00240-015-0822-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022]
|
13
|
What is nephrocalcinosis? Kidney Int 2015; 88:35-43. [PMID: 25807034 DOI: 10.1038/ki.2015.76] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/18/2015] [Accepted: 01/22/2015] [Indexed: 12/24/2022]
Abstract
The available publications on nephrocalcinosis are wide-ranging and have documented multiple causes and associations of macroscopic or radiological nephrocalcinosis, most often located in the renal medulla, with various metabolic and genetic disorders; in fact, so many and various are these that it is difficult to define a common underlying mechanism. We have reviewed nephrocalcinosis in relation to its definition, genetic associations, animal models, and putative mechanisms. We have concluded, and hypothesized, that nephrocalcinosis is primarily a renal interstitial process, resembling metastatic calcification, and that it may have some features in common with, and pathogenic links to, vascular calcification.
Collapse
|
14
|
Endocytotic uptake of zoledronic acid by tubular cells may explain its renal effects in cancer patients receiving high doses of the compound. PLoS One 2015; 10:e0121861. [PMID: 25756736 PMCID: PMC4355483 DOI: 10.1371/journal.pone.0121861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022] Open
Abstract
Zoledronic acid, a highly potent nitrogen-containing bisphosphonate used for the treatment of pathological bone loss, is excreted unmetabolized via the kidney if not bound to the bone. In cancer patients receiving high doses of the compound renal excretion may be associated with acute tubular necrosis. The question of how zoledronic acid is internalized by renal tubular cells has not been answered until now. In the current work, using a primary human tubular cell culture system, the pathway of cellular uptake of zoledronic acid (fluorescently/radiolabeled) and its cytotoxicity were investigated. Previous studies in our laboratory have shown that this primary cell culture model consistently mimics the physiological characteristics of molecular uptake/transport of the epithelium in vivo. Zoledronic acid was found to be taken up by tubular cells via fluid-phase-endocytosis (from apical and basolateral side) as evidenced by its co-localization with dextran. Cellular uptake and the resulting intracellular level was twice as high from the apical side compared to the basolateral side. Furthermore, the intracellular zoledronic acid level was found to be dependent on the administered concentration and not saturable. Cytotoxic effects however, were only seen at higher administration doses and/or after longer incubation times. Although zoledronic acid is taken up by tubular cells, no net tubular transport could be measured. It is concluded that fluid-phase-endocytosis of zoledronic acid and cellular accumulation at high doses may be responsible for the acute tubular necrosis observed in some cancer patients receiving high doses of the compound.
Collapse
|
15
|
Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int 2015; 88:61-71. [PMID: 25715119 DOI: 10.1038/ki.2015.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/09/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is a pathological process that may lead to acute renal failure and chronic dysfunction in renal allografts. During IRI, hyaluronan (HA) accumulates in the kidney, but suppression of HA accumulation during IRI protects the kidney from ischemic insults. Here we tested whether Hyal1-/- and Hyal2-/- mice display exacerbated renal damage following unilateral IRI due to a higher HA accumulation in the post-ischemic kidney compared with that in the kidney of wild-type mice. Two days after IRI in male mice there was accumulation of HA and CD44 in the kidney, marked tubular damage, infiltration, and increase creatininemia in wild-type mice. Knockout mice exhibited higher amounts of HA and higher creatininemia. Seven days after injury, wild-type mice had a significant decrease in renal damage, but knockout mice still displayed exacerbated inflammation. HA and CD44 together with α-smooth muscle actin and collagen types I and III expression were increased in knockout compared with wild-type mice 30 days after IRI. Thus, both HA-degrading enzymes seem to be protective against IRI most likely by reducing HA accumulation in the post-ischemic kidney and decreasing the inflammatory processes. Deficiency in either HYAL1 or HYAL2 leads to enhanced HA accumulation in the post-ischemic kidney and consequently worsened inflammatory response, increased tubular damage, and fibrosis.
Collapse
|
16
|
Colombaro V, Declèves AE, Jadot I, Voisin V, Giordano L, Habsch I, Nonclercq D, Flamion B, Caron N. Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury. Nephrol Dial Transplant 2014; 28:2484-93. [PMID: 24078641 DOI: 10.1093/ndt/gft314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Ischaemia-reperfusion injury (IRI) to the kidney is a complex pathophysiological process that leads to acute renal failure and chronic dysfunction in renal allografts. It was previously demonstrated that during IRI, hyaluronan (HA) accumulates in the cortical and external medullary interstitium along with an increased expression of its main receptor, CD44, on inflammatory and tubular cells. The HA-CD44 pair may be involved in persistent post-ischaemic inflammation. Thus, we sought to determine the role of HA in the pathophysiology of ischaemia-reperfusion (IR) by preventing its accumulation in post-ischaemic kidney. METHODS C57BL/6 mice received a diet containing 4-methylumbelliferone (4-MU), a potent HA synthesis inhibitor. At the end of the treatment, unilateral renal IR was induced and mice were euthanized 48 h or 30 days post-IR. RESULTS 4-MU treatment for 14 weeks reduced the plasma HA level and intra-renal HA content at 48 h post-IR, as well as CD44 expression, creatininemia and histopathological lesions. Moreover, inflammation was significantly attenuated and proliferation was reduced in animals treated with 4-MU. In addition, 4-MU-treated mice had a significantly reduced expression of α-SMA and collagen types I and III, i.e. less renal fibrosis, 30 days after IR compared with untreated mice. CONCLUSION Our results demonstrate that HA plays a significant role in the pathogenesis of IRI, perhaps in part through reduced expression of CD44. The suppression of HA accumulation during IR may protect renal function against ischaemic insults.
Collapse
Affiliation(s)
- Vanessa Colombaro
- Molecular Physiology Research Unit (URPHYM)-NARILIS, University of Namur, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khan SR, Joshi S, Wang W, Peck AB. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am J Physiol Renal Physiol 2014; 306:F1285-95. [PMID: 24598804 DOI: 10.1152/ajprenal.00057.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used an unbiased approach of gene expression profiling to determine differential gene expression of all the macromolecular modulators (MMs) considered to be involved in stone formation, in hyperoxaluric rats, with and without treatment with the NADPH oxidase inhibitor apocynin. Male rats were fed rat chow or chow supplemented with 5% wt/wt hydroxy-l-proline (HLP) with or without apocynin-supplemented water. After 28 days, rats were euthanized and their kidneys explanted. Total RNA was isolated and microarray analysis was conducted using the Illumina bead array reader. Gene ontology analysis and the pathway analyses of the genes were done using Database for Annotation, Visualization of Integrated Discovery enrichment analysis tool. Quantitative RT-PCR of selected genes was carried out to verify the microarray results. Expression of selected gene products was confirmed using immunohistochemistry. Administration of HLP led to crystal deposition. Genes encoding for fibronectin, CD 44, fetuin B, osteopontin, and matrix-gla protein were upregulated while those encoding for heavy chains of inter-alpha-inhibitor 1, 3, and 4, calgranulin B, prothrombin, and Tamm-Horsfall protein were downregulated. HLP-fed rats receiving apocynin had a significant reversal in gene expression profiles: those that were upregulated came down while those that were downregulated stepped up. Apocynin treatment resulted in near complete absence of crystals. Clearly, there are two types of MMs; one is downregulated while the other is upregulated during hyperoxaluria and crystal deposition. Apparently gene and protein expressions of known macromolecular modulators of CaOx crystallization are likely regulated by ROS produced in part through the activation of NADPH oxidase.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida; Department of Urology, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Sunil Joshi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Wei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Ammon B Peck
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Adembri C, Selmi V, Vitali L, Nosi D, Tani A, Thyrion GDZ, Santoro G, Bonaccini L, Avveduto G, Caldini AL, Sgambati E. Expression and characterization of anionic components in the tubulointerstitial compartment of rat kidney during polymicrobial sepsis. Acta Histochem 2014; 116:94-105. [PMID: 23810033 DOI: 10.1016/j.acthis.2013.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
The aim of the study was to evaluate sialic acids and hyaluronan expression, anionic components important for the structure and function of the renal tubulointerstitial compartment, in the early stages of sepsis. Two groups of rats were used: (1) sham-operated controls; (2) cecal ligation and puncture (CLP) (polymicrobial sepsis model). A search for microbial growth was made in the peritoneal fluid to document infection. Tubular function was evaluated by means of urinary protein loss, urinary Na(+) and urea excretion. Kidney samples were processed to analyze histology, sialic acids (lectin histochemistry) and hyaluronan (immunohistochemistry) expression. Results showed increased urinary protein loss and fractional excretion of Na(+) and urea reduction in the CLP group. Histological changes, particularly in the cortex and in proximal tubules of the CLP group, were observed. In septic rats, compared to controls, sialic acids decreased in amount and their acetylation increased in the tubules, although to a lesser extent in the proximal portion. Hyaluronan was expressed in the medullary interstitium and in a few areas of cortex in controls. In septic rats it increased in the cortical interstitium and appeared in proximal tubules. These results suggest correlation between expression changes of anionic components and tubulointerstitium morphofunctional alterations during sepsis. A role of these molecules in protection/defense and repair processes may be suggested.
Collapse
|
19
|
Worcester EM, Evan AP, Coe FL, Lingeman JE, Krambeck A, Sommers A, Phillips CL, Milliner D. A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I. Am J Physiol Renal Physiol 2013; 305:F1574-84. [PMID: 24089413 DOI: 10.1152/ajprenal.00382.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sequence of events by which primary hyperoxaluria type 1 (PH1) causes renal failure is unclear. We hypothesize that proximal tubule (PT) is vulnerable because oxalate secretion raises calcium oxalate (CaOx) supersaturation (SS) there, leading to crystal formation and cellular injury. We studied cortical and papillary biopsies from two PH1 patients with preserved renal function, and seven native kidneys removed from four patients at the time of transplant, after short-term (2) or longer term (2) dialysis. In these patients, and another five PH1 patients without renal failure, we calculated oxalate secretion, and estimated PT CaOx SS. Plasma oxalate was elevated in all PH1 patients and inverse to creatinine clearance. Renal secretion of oxalate was present in all PH1 but rare in controls. PT CaOx SS was >1 in all nonpyridoxine-responsive PH1 before transplant and most marked in patients who developed end stage renal disease (ESRD). PT from PH1 with preserved renal function had birefringent crystals, confirming the presence of CaOx SS, but had no evidence of cortical inflammation or scarring by histopathology or hyaluronan staining. PH1 with short ESRD showed CaOx deposition and hyaluronan staining particularly at the corticomedullary junction in distal PT while cortical collecting ducts were spared. Longer ESRD showed widespread cortical CaOx, and in both groups papillary tissue had marked intratubular CaOx deposits and fibrosis. CaOx SS in PT causes CaOx crystal formation, and CaOx deposition in distal PT appears to be associated with ESRD. Minimizing PT CaOx SS may be important for preserving renal function in PH1.
Collapse
Affiliation(s)
- Elaine M Worcester
- Nephrology Section, MC5100, Univ. of Chicago, School of Medicine, 5841 South Maryland Ave., Chicago, IL 60637.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wada T, Ishimoto T, Seishima R, Tsuchihashi K, Yoshikawa M, Oshima H, Oshima M, Masuko T, Wright NA, Furuhashi S, Hirashima K, Baba H, Kitagawa Y, Saya H, Nagano O. Functional role of CD44v-xCT system in the development of spasmolytic polypeptide-expressing metaplasia. Cancer Sci 2013; 104:1323-9. [PMID: 23848514 PMCID: PMC7656553 DOI: 10.1111/cas.12236] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
Cancer development is often preceded by the appearance of preneoplastic lesions. In gastric carcinogenesis, chronic inflammation and histopathologic progression of the stomach epithelium lead to the development of metaplasia and eventually adenocarcinoma. The cell surface protein CD44, especially its variant isoforms (CD44v), has been implicated in metaplasia-carcinoma sequence progression in the stomach. We recently found that CD44v interacts with and stabilizes xCT, a subunit of the cystine transporter system xc(-), in cancer cells and thereby increases cystine uptake and confers resistance to various types of cellular stress in vivo. The functional relevance of CD44v and xCT in the development of preneoplastic lesions, however, has remained unknown. We have now examined the role of the CD44v-xCT system in the development of spasmolytic polypeptide-expressing metaplasia (SPEM) in mouse models of gastric carcinogenesis. CD44v was found to be expressed de novo in SPEM, and CD44v(+) metaplastic cells manifested upregulation of xCT expression compared with CD44v(-) cells. Genetic ablation of CD44 or treatment with sulfasalazine, an inhibitor of xCT-dependent cystine transport, suppressed the development of SPEM and subsequent gastric tumor growth. Therapy targeted to CD44v-xCT could thus prove effective for prevention or attenuation of the CD44v-dependent development of preneoplastic lesions and cancer.
Collapse
Affiliation(s)
- Takeyuki Wada
- Division of Gene Regulation, Institute for Advanced Medical Research, Tokyo, Japan; Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rampanelli E, Rouschop K, Teske GJD, Claessen N, Leemans JC, Florquin S. CD44v3-v10 reduces the profibrotic effects of TGF-β1 and attenuates tubular injury in the early stage of chronic obstructive nephropathy. Am J Physiol Renal Physiol 2013; 305:F1445-54. [PMID: 24026183 DOI: 10.1152/ajprenal.00340.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD44 family members are cell surface glycoproteins, which are expressed on tubular epithelial cells (TEC) solely upon kidney injury and are involved in renal fibrosis development. Renal interstitial fibrosis is the final manifestation of chronic kidney diseases and is regulated by a complex network of cytokines, including the profibrotic factor transforming growth factor-β1 (TGF-β1) and the two antifibrotic cytokines bone morphogenic protein-7 (BMP-7) and hepatocyte growth factor (HGF). The present study investigates the potential role of CD44 standard (CD44s) and CD44v3-v10 (CD44v3) isoforms as modulators of the balance between TGF-β1 and HGF/BMP-7. CD44s is the shortest and most common isoform. CD44v3-v10 (CD44v3) has heparan sulfate moieties, which enable the binding to HGF/BMP-7, and hence, might exert renoprotective effects. Using transgenic mice overexpressing either CD44s or CD44v3 specifically on proximal TEC, we found that in vitro the overexpression of CD44v3 on primary TEC renders cells less susceptible to TGF-β1 profibrotic actions and more sensitive to BMP-7 and HGF compared with TEC overexpressing CD44s. One day after unilateral ureteric obstruction, obstructed kidneys from CD44v3 transgenic mice showed less tubular damage and myofibroblasts accumulation, which was associated with decreased TGF-β1 signaling and increased BMP-7 synthesis and signaling compared with kidneys from wild-type and CD44s transgenic mice. These data suggest that CD44v3 plays a renoprotective role in early stage of chronic obstructive nephropathy.
Collapse
Affiliation(s)
- Elena Rampanelli
- Dept. of Pathology, Rm. L2-112, Academic Medical Center, P.O. Box 22660, 1100 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney. Urolithiasis 2013; 41:279-94. [PMID: 23754513 DOI: 10.1007/s00240-013-0576-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/25/2013] [Indexed: 01/05/2023]
Abstract
Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones.
Collapse
|
23
|
Cai JL, Li M, Na YQ. Correlation between hyaluronic acid,hyaluronic Acid synthase and human renal clear cell carcinoma. Chin J Cancer Res 2013; 23:59-63. [PMID: 23467480 DOI: 10.1007/s11670-011-0059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To study the correlation between hyaluronic acid (HA), hyaluronic acid synthase (HAS) and human renal clear cell carcinoma (RCCC). METHODS The expression of three HAS isoforms' gene and HA in 93 RCCC tissues, 27 nephridial tissues by the side of RCCC from two hospitals were measured with Real-Time RT-PCR、Western Blot and immunohistochemical methods and analyzed. RESULTS All RCCC and adjacent normal tissues expressed three HASs' mRNA & protein; at the mRNA level, both RCCC and adjacent normal tissues, expressed more HAS3 than HAS1 or HAS2, their differences were statistically significant (all P values <0.05); but, at the protein level, all HAS isoforms presented the equivalent expression. Compared with the adjacent non-neoplastic kidney tissues, the expression of all HAS isoforms' mRNA in RCCC tissues were increased evidently and their differences were significant (all P values <0.0001); but at the protein level, only the expression of HAS3 increased evidently (P=0.022). In all adjacent normal tissues, more than 80% renal tubular cells strongly expressed HA, however, only the minority RCCC cases (16/93) presented weakly positive HA staining in few cancer nests (5%-30%), the difference were significant (P<0.0001). In RCCC tissues subgrouped according to clinical stage, pathological grade, lymphatic metastasis or not and distant metastasis or not, the HASs' mRNA & protein differential expression all had no statistical significance (all P values >0.05). CONCLUSION Different from other malignancy, HA and HASs (except for HAS3) may not play important roles in the biological progress of human RCCC.
Collapse
Affiliation(s)
- Jian-Liang Cai
- Peking University Wu Jieping Urological Center, Peking University Shougang Hospital, Beijing 100144, China
| | | | | |
Collapse
|
24
|
|
25
|
Miyazawa K, Takahashi Y, Morita N, Moriyama MT, Kosaka T, Nishio M, Yoshimoto T, Suzuki K. Cyclooxygenase 2 and prostaglandin E2 regulate the attachment of calcium oxalate crystals to renal epithelial cells. Int J Urol 2012; 19:936-43. [PMID: 22640700 DOI: 10.1111/j.1442-2042.2012.03060.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the roles of endogenous cyclooxygenase 2 and prostaglandin E(2) in crystal-cell binding, which is considered to be an important step in the development of intratubular nephrocalcinosis. METHODS An expression plasmid for human cyclooxygenase 2 was introduced into Madin-Darby canine kidney cells using the lipofection method. Cyclooxygenase activity was measured using thin-layer chromatography, and the prostaglandin E(2) concentration was determined with an enzyme immunoassay. In addition, crystal attachment was evaluated with a liquid scintillation counter using [(14)C] calcium oxalate monohydrate crystals, and immunohistochemistry and an enzyme immunoassay were used to analyze and quantify the expression of hyaluronan, a crystal-binding molecule. RESULTS Cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells produced about 10-fold more prostaglandin E(2) than wild-type Madin-Darby canine kidney cells, and their hyaluronan production was also upregulated. The attachment of calcium oxalate monohydrate crystals to cyclooxygenase 2-overexpressing Madin-Darby canine kidney cells was significantly reduced compared with their attachment to wild-type and mock-transfected Madin-Darby canine kidney cells. Pre-incubation of the cyclooxygenase 2-overexpressing cells, as well as the mock-transfected and wild-type cells with the cyclooxygenase 2 selective inhibitor etodolac, increased the cellular attachment of calcium oxalate monohydrate crystals in a dose-dependent manner. CONCLUSIONS These findings suggest that cyclooxygenase 2 expression and the resultant increase in endogenous prostaglandin E(2), leading to increased hyaluronan production, help to prevent nephrocalcinosis by inhibiting the attachment of calcium oxalate monohydrate crystals to the surface of renal epithelial cells.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Stridh S, Palm F, Hansell P. Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1235-49. [PMID: 22513743 DOI: 10.1152/ajpregu.00332.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The glycosaminoglycan (GAG) hyaluronan (HA) is recognized as an important structural component of the extracellular matrix, but it also interacts with cells during embryonic development, wound healing, inflammation, and cancer; i.e., important features in normal and pathological conditions. The specific physicochemical properties of HA enable a unique hydration capacity, and in the last decade it was revealed that in the interstitium of the renal medulla, where the HA content is very high, it changes rapidly depending on the body hydration status while the HA content of the cortex remains unchanged at very low amounts. The kidney, which regulates fluid balance, uses HA dynamically for the regulation of whole body fluid homeostasis. Renomedullary HA elevation occurs in response to hydration and during dehydration the opposite occurs. The HA-induced alterations in the physicochemical characteristics of the interstitial space affects fluid flux; i.e., reabsorption. Antidiuretic hormone, nitric oxide, angiotensin II, and prostaglandins are classical hormones/compounds involved in renal fluid handling and are important regulators of HA turnover during variations in hydration status. One major producer of HA in the kidney is the renomedullary interstitial cell, which displays receptors and/or synthesis enzymes for the hormones mentioned above. During several kidney disease states, such as ischemia-reperfusion injury, tubulointerstitial inflammation, renal transplant rejection, diabetes, and kidney stone formation, HA is upregulated, which contributes to an abnormal phenotype. In these situations, cytokines and other growth factors are important stimulators. The immunosuppressant agent cyclosporine A is nephrotoxic and induces HA accumulation, which could be involved in graft rejection and edema formation. The use of hyaluronidase to reduce pathologically overexpressed levels of tissue HA is a potential therapeutic tool since diuretics are less efficient in removing water bound to HA in the interstitium. Although the majority of data describing the role of HA originate from animal and cell studies, the available data from humans demonstrate that an upregulation of HA also occurs in diabetic kidneys, in transplant-rejected kidneys, and during acute tubular necrosis. This review summarizes the current knowledge regarding interstitial HA in the role of regulating kidney function during normal and pathological conditions. It encompasses mechanistic insights into the background of the heterogeneous intrarenal distribution of HA; i.e., late nephrogenesis, its regulation during variations in hydration status, and its involvement during several pathological conditions. Changes in hyaluronan synthases, hyaluronidases, and binding receptor expression are discussed in parallel.
Collapse
Affiliation(s)
- Sara Stridh
- Dept. of Medical Cell Biology, Uppsala Univ., Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
27
|
Rilla K, Pasonen-Seppänen S, Kärnä R, Karjalainen HM, Törrönen K, Koistinen V, Tammi MI, Tammi RH, Teräväinen T, Manninen A. HAS3-induced accumulation of hyaluronan in 3D MDCK cultures results in mitotic spindle misorientation and disturbed organization of epithelium. Histochem Cell Biol 2011; 137:153-64. [PMID: 22159845 DOI: 10.1007/s00418-011-0896-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 12/31/2022]
Abstract
The amount of hyaluronan (HA) is low in simple epithelia under normal conditions, but during tumorigenesis, trauma or inflammation HA is increased on the epithelial cells and surrounding stroma. Excessive HA in epithelia is suggested to interfere with cell-cell adhesions, resulting in disruption of the epithelial barrier function. In addition, stimulated HA synthesis has been correlated with epithelial-to-mesenchymal transition and invasion of cancer cells. However, the effects of HA overload on normal epithelial morphogenesis have not been characterized in detail. Madin-Darby canine kidney (MDCK) cells form polarized epithelial cysts, when grown in a 3-dimensional (3D) matrix. These cells were used to investigate whether stimulated HA synthesis, induced by stable overexpression of GFP-HAS3, influences cell polarization and epithelial morphogenesis. GFP-HAS3 expression in polarized MDCK cells resulted in active HA secretion at apical and basolateral membrane domains. HA-deposits interfered with the formation of cell-cell junctions, resulting in impaired barrier function. In 3D cyst cultures, HA accumulated into apical lumina and was also secreted from the basal side. The HAS3-expressing cysts failed to form a single lumen and instead displayed multiple small lumina. This phenotype was correlated with aberrant mitotic spindle orientation in dividing cells. The results of this study indicate that excess pericellular HA disturbs the normal cell-cell and cell-ECM interactions in simple epithelia, leading to aberrant epithelial morphogenesis. The morphological abnormalities observed in 3D epithelial cultures upon stimulated HAS3 expression may be related to premalignant changes, including intraluminal invasion and deregulated epithelialization, probably mediated by the mitotic spindle orientation defects.
Collapse
Affiliation(s)
- Kirsi Rilla
- Department of Anatomy, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Evan AP, Unwin RJ, Williams JC. Renal stone disease: a commentary on the nature and significance of Randall's plaque. Nephron Clin Pract 2011; 119:p49-53. [PMID: 21952643 DOI: 10.1159/000330255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
Affiliation(s)
- A P Evan
- Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
29
|
Lamontagne CA, Plante GE, Grandbois M. Characterization of hyaluronic acid interaction with calcium oxalate crystals: implication of crystals faces, pH and citrate. J Mol Recognit 2011; 24:733-40. [DOI: 10.1002/jmr.1110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
1,2,3,4,6-Penta-O-galloyl-beta-D-glucose reduces renal crystallization and oxidative stress in a hyperoxaluric rat model. Kidney Int 2010; 79:538-45. [PMID: 21085110 DOI: 10.1038/ki.2010.458] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adhesion of calcium oxalate (CaOx) crystals to kidney cells may be a key event in the pathogenesis of kidney stones associated with marked hyperoxaluria. Previously, we found that 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), isolated from a traditional medicinal herb, reduced CaOx crystal adhesion to renal epithelial cells by acting on the cells as well as on the crystal surface. Here we used the ethylene glycol (EG)-mediated hyperoxaluric rat model and found evidence of oxidant stress as indicated by decreases in the activities of the renal antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, with increased kidney cell apoptosis and serum malondialdehyde levels, all evident by 21 days of EG treatment. These effects of hyperoxaluria were reversed by concurrent PGG treatment along with decreased urinary oxalate levels and CaOx supersaturation. Renal epithelial cell expression of the crystal binding molecule hyaluronan increased diffusely within 7 days of EG initiation, suggesting it is not a result of but precedes crystal deposition. Renal cell osteopontin (OPN) was also upregulated in EG-treated animals, and PGG significantly attenuated overexpression of both OPN and hyaluronan. Thus, our findings demonstrate that PGG reduces renal crystallization and oxidative renal cell injury, and may be a candidate chemopreventive agent for nephrolithiasis.
Collapse
|
31
|
Vervaet BA, Verhulst A, De Broe ME, D'Haese PC. The tubular epithelium in the initiation and course of intratubular nephrocalcinosis. ACTA ACUST UNITED AC 2010; 38:249-56. [PMID: 20680256 DOI: 10.1007/s00240-010-0290-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/05/2023]
Abstract
Intratubular nephrocalcinosis is defined as the histological observation of calcium oxalate and/or calcium phosphate deposits retained within the lumen of the renal tubules. As the tubular epithelium is the primary interaction partner of crystals formed in the tubular fluid, the role of the epithelial cells in nephrocalcinosis has been investigated intensively. This review summarizes our current understanding on how the tubular epithelium mechanistically appears to be involved both in the initiation and in the course of nephrocalcinosis, with emphasis on in vivo observations.
Collapse
Affiliation(s)
- Benjamin A Vervaet
- Laboratory of Pathophysiology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | | | |
Collapse
|
32
|
Yuen JWM, Gohel MDI, Poon NW, Shum DKY, Tam PC, Au DWT. The initial and subsequent inflammatory events during calcium oxalate lithiasis. Clin Chim Acta 2010; 411:1018-26. [PMID: 20347754 DOI: 10.1016/j.cca.2010.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Crystallization is believed to be the initiation step of urolithiasis, even though it is unknown where inside the nephron the first crystal nucleation occurs. METHODS Direct nucleation of calcium oxalate and subsequent events including crystal retention, cellular damage, endocytosis, and hyaluronan (HA) expression, were tested in a two-compartment culture system with intact human proximal tubular HK-2 cell monolayer. RESULTS Calcium oxalate dihydrate (COD) was nucleated and bound onto the apical surface of the HK-2 cells under hypercalciuric and hyperoxaluric conditions. These cells displayed mild cellular damage and internalized some of the adhered crystals within 18h post-COD-exposure, as revealed by electron microscopy. Prolonged incubation in complete medium caused significant damage to disrupt the monolayer integrity. Furthermore, hyaluronan disaccharides were detected in the harvested media, and were associated with HAS-3 mRNA expression. CONCLUSION Human proximal cells were able to internalize COD crystals which nucleated directly onto the apical surface, subsequently triggering cellular damage and HAS-3 specific hyaluronan synthesis as an inflammatory response. The proximal tubule cells here demonstrate that it plays an important role in facilitating urolithiasis via endocytosis and creating an inflammatory environment whereby free hyaluronan in tubular fluid can act as crystal-binding molecule at the later segments of distal and collecting tubules.
Collapse
Affiliation(s)
- John W M Yuen
- Department of Health Technology & Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
33
|
Chen J, Chen Y, Capizzi S, Yang M, Deng L, Bledsoe SB, Evan AP, Tischfield JA, Sahota A. 2,8-dihydroxyadenine nephrolithiasis induces developmental stage-specific alterations in gene expression in mouse kidney. Urology 2009; 75:914-22. [PMID: 20035974 DOI: 10.1016/j.urology.2009.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/06/2009] [Accepted: 10/15/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney by a prospective observational study using microarray analysis. Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. METHODS Mice with adenine phosphoribosyltransferase deficiency develop 2,8-dihydroxyadenine (DHA) nephrolithiasis. The gene expression changes between Aprt(-/-) and Aprt(+/+) kidneys from newborn and adult mice were compared using Affymetrix gene chips. Targets of interest were further analyzed by quantitative real-time polymerase chain reaction and immunohistochemistry. RESULTS We identified a set of genes that were differentially expressed in the developing kidney in response to DHA-induced injury. In 1-week-old Aprt(-/-) mice, the expression of Sprr2f and Clu was highly augmented and that of Egf was significantly decreased. We also observed that maturation-related gene expression changes were delayed in developing Aprt(-/-) kidneys, and immature Aprt(-/-) kidneys contained large numbers of intercalated cells that were blocked from terminal differentiation. CONCLUSIONS This study presents a comprehensive picture of the transcriptional changes induced by DHA stone injury in the developing mouse kidney. Our findings help explain growth impairment in kidneys subject to injury during the early stages of development.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hammerschmidt E, Loeffler I, Wolf G. Morg1 heterozygous mice are protected from acute renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F1273-87. [PMID: 19726548 DOI: 10.1152/ajprenal.00204.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Renal ischemia and reperfusion injury leads to acute renal failure when proinflammatory and apoptotic processes in the kidney are activated. The increase in hypoxia-inducible transcription factor-alpha (HIF-alpha), an important transcription factor for several genes, can attenuate ischemic renal injury. We recently identified a novel WD-repeat protein designated Morg1 (MAPK organizer 1) that interacts with prolyl hydroxylase 3 (PHD3), an important enzyme involved in the regulation of HIF-1alpha and HIF-2alpha expression. While homozygous Morg1 -/- mice are embryonic lethal, heterozygous Morg1 +/- mice have a normal phenotype. We show here that Morg1 +/- were partially protected from renal ischemia-reperfusion injury compared with wild-type Morg1 +/+ animals. Morg1 +/- mice compared with wild-type animals revealed a stronger increase in HIF-1alpha and HIF-2alpha expression in the ischemic-reperfused kidney associated with enhanced serum erythropoietin levels. However, no significant expression of HIF-1alpha and HIF-2alpha was found in nonischemic kidneys without any difference between Morg1 +/- and Morg1 +/+ mice. Ischemic kidneys of Morg1 +/- mice expressed more erythropoietin mRNA than ischemic kidneys from wild-type animals. Renal ischemia in Morg1 +/- mice resulted in a decrease in renal inflammation and reduction of proinflammatory cytokines (MCP-1, IP-10, MIP-2) compared with wild-type mice. Furthermore, there was significantly less apoptosis and tubular damage in Morg1 +/- kidneys after ischemia-reperfusion, and this was also reflected in significantly improved renal function compared with wild-type. Thus Morg1 may be a novel therapeutic target to limit renal injury after ischemia-reperfusion.
Collapse
Affiliation(s)
- Elke Hammerschmidt
- Klinik für Innere Medizin III, Friedrich-Schiller-University, Jena, Germany
| | | | | |
Collapse
|
35
|
Vervaet BA, D'Haese PC, De Broe ME, Verhulst A. Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the 'fixed particle' theory in vivo. Nephrol Dial Transplant 2009; 24:3659-68. [PMID: 19717825 DOI: 10.1093/ndt/gfp418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The 'fixed particle' theory states that, besides crystal formation in the tubular fluid, crystal adhesion to the tubular epithelium is a prerequisite for the development of intratubular nephrocalcinosis. It has been hypothesized that the tubular epithelium, in order to bind crystals, needs to be phenotypically altered. Whereas most evidence hereto is provided by in vitro experiments, we set out to illustrate this theory in vivo. METHODS We simultaneously investigated the temporal changes of nephrocalcinosis-associated parameters during and shortly after a 4-day ethylene glycol (EG)-administration period in rats. We measured oxaluria, crystal formation, crystalluria, apoptosis, epithelial injury/ regeneration and luminal membrane expression of several crystal-binding molecules [hyaluronan (HA), osteopontin (OPN) and for the first time in vivo, annexin-2 (ANX2) and nucleolin-related-protein (NRP) and one of their receptors (CD44, HA/OPN-receptor]. Clinically, renal biopsies of preterm infants, transplant patients and acute phosphate nephropathy patients were stained for ANX2, NRP, HA and OPN. RESULTS In the presence of a rather constant and persistent intratubular crystal formation, crystal retention gradually increased during EG-administration and markedly increased after arrest thereof, indicating that the development of crystal adhesion requires more than just the presence of crystals in the tubular fluid. All luminal membrane markers and a regenerating/dedifferentiated epithelium, unlike apoptosis, to various extents were upregulated concurrently and in association with crystal adhesion. However, both in humans and rats, expression of luminal molecules was not confined to crystal-containing tubules. CONCLUSIONS Altogether, these findings allow better insight into the mechanisms underlying the 'fixed particle' theory in vivo and indicate that an altered epithelial phenotype with crystal-binding properties precedes crystal adhesion, thereby corroborating the requirement of tubular epithelial phenotypical changes in the development of intratubular nephrocalcinosis.
Collapse
Affiliation(s)
- Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Medicine, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
36
|
Vervaet BA, Verhulst A, D'Haese PC, De Broe ME. Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transplant 2009; 24:2030-5. [PMID: 19297353 DOI: 10.1093/ndt/gfp115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin A Vervaet
- Department of Medicine, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
37
|
Abstract
Over the past 10 years, major progress has been made in the pathogenesis of uric acid and calcium stones. These advances have led to our further understanding of a pathogenetic link between uric acid nephrolithiasis and the metabolic syndrome, the role of Oxalobacter formigenes in calcium oxalate stone formation, oxalate transport in Slc26a6-null mice, the potential pathogenetic role of Randall's plaque as a precursor for calcium oxalate nephrolithiasis, and the role of renal tubular crystal retention. With these advances, we may target the development of novel drugs including (1) insulin sensitizers; (2) probiotic therapy with O. formigenes, recombinant enzymes, or engineered bacteria; (3) treatments that involve the upregulation of intestinal luminal oxalate secretion by increasing anion transporter activity (Slc26a6), luminally active nonabsorbed agents, or oxalate binders; and (4) drugs that prevent the formation of Randall's plaque and/or renal tubular crystal adhesions.
Collapse
Affiliation(s)
- Khashayar Sakhaee
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8885, USA.
| |
Collapse
|
38
|
Fujiwara T, Kawakatsu T, Tayama S, Kobayashi Y, Sugiura N, Kimata K, Takai Y. Hyaluronan-CD44 pathway regulates orientation of mitotic spindle in normal epithelial cells. Genes Cells 2008; 13:759-70. [PMID: 18513329 DOI: 10.1111/j.1365-2443.2008.01203.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Orientation of mitotic spindle and cell division axis can impact normal physiological processes, including epithelial tissue branching and neuron generation by asymmetric cell division. Microtubule dynamics and its interaction with cortical proteins regulate the orientation of mitotic spindle axis. However, the nature of extracellular signals that control proper orientation of mitotic spindle axis is largely unclear. Here, we show that signals from two distinct surface contact, "bi-surface-contact," sites are required for the orientation of mitotic spindle axis in normal epithelial cells. We identified apical and basal surface-membrane as required bi-surface-contact sites. We showed that high molecular weight (HMW) hyaluronan (HA)-CD44 signaling from the apical surface-membrane regulated the orientation of mitotic spindle axis to align parallel to the basal extracellular matrix (ECM). The same effect was achieved by fibronectin-integrin alphavbeta6 signaling from the basal surface-membrane or by inhibition of ROCK activity. On the contrary, HMW HA-CD44 signaling from the basal surface-membrane regulated the orientation of mitotic spindle axis to align oblique-perpendicular to the basal ECM. We also found that microtubule dynamics is required for HMW HA-CD44 mediated regulation of mitotic spindle orientation. Our findings thus provide a novel mechanism for the regulation of mitotic spindle orientation.
Collapse
Affiliation(s)
- Takeshi Fujiwara
- KAN Research Institute, Inc., 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM. Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec (Hoboken) 2008; 291:325-34. [PMID: 18286613 DOI: 10.1002/ar.20656] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whether idiopathic calcium oxalate (CaOx) stone formers form inner medullary collecting duct (IMCD) crystal deposits bears on pathogenetic mechanisms of stone formation. In prior work, using light and transmission electron microscopy, we have found no IMCD crystal deposits. Here, we searched serial sections of papillary biopsies from a prior study of 15 idiopathic calcium oxalate stone formers, 4 intestinal bypass patients with CaOx stones, and 4 non-stone-forming subjects, and biopsies from an additional hitherto unreported 15 idiopathic calcium oxalate stone formers and 1 bypass patient using polarized light oil immersion optics, for deposits overlooked in our original study. We found no IMCD deposits in any of 1,500 serial sections from the 30 idiopathic calcium oxalate stone formers, nor in 87 additional sections from a frozen idiopathic calcium oxalate stone former biopsy sample processed without exposure to aqueous solutions. Among 4 of the 5 bypass patients but in none of the 30 idiopathic calcium oxalate stone formers or 4 normal stone formers, we found tiny birefringent thin crystalline overlays on scattered IMCD cell membranes. We also found IMCD lumen deposits in two bypass patients that contained mixed birefringent and nonbirefringent crystals, presumably CaOx and apatite. In the bypass patients, we observed focal apical IMCD cell hyaluronan staining, which was absent in idiopathic calcium oxalate stone formers. The absence of any IMCD deposits in 1,500 serial sections of biopsies from 30 idiopathic calcium oxalate stone formers allows us to place the upper limit on the probability of their occurrence at approximately 0.002 and place the lower limit of their size at the resolution of the optics (<0.2 mu). The tiny deposits in bypass patients may be the initial crystal lesion.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46223, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK, Puré E. Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 2008; 121:1393-402. [PMID: 18397995 DOI: 10.1242/jcs.021683] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD44 contributes to inflammation and fibrosis in response to injury. As fibroblast recruitment is critical to wound healing, we compared cytoskeletal architecture and migration of wild-type (CD44WT) and CD44-deficient (CD44KO) fibroblasts. CD44KO fibroblasts exhibited fewer stress fibers and focal adhesion complexes, and their migration was characterized by increased velocity but loss of directionality, compared with CD44WT fibroblasts. Mechanistically, we demonstrate that CD44WT cells generated more active TGFbeta than CD44KO cells and that CD44 promotes the activation of TGFbeta via an MMP-dependent mechanism. Reconstitution of CD44 expression completely rescued the phenotype of CD44KO cells whereas exposure of CD44KO cells to exogenous active TGFbeta rescued the defect in stress fibers and migrational velocity, but was not sufficient to restore directionality of migration. These results resolve the TGFbeta-mediated and TGFbeta-independent effects of CD44 on fibroblast migration and suggest that CD44 may be critical for the recruitment of fibroblasts to sites of injury and the function of fibroblasts in tissue remodeling and fibrosis.
Collapse
Affiliation(s)
- Pinak S Acharya
- Department of Pulmonary and Critical Care Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Recent reports suggest that kidney stone disease prevalence is increasing. Despite significant treatment advances, the inciting factor and sequence of events leading to kidney stone formation remain elusive; however, recent efforts to understand the pathogenesis of nephrolithiasis have led to a delineation of the human surgical anatomy, histopathology, and metabolic factors in a variety of kidney stone formers. This article reviews the fundamental concepts of calculus formation, and the leading theories of stone pathogenesis, focusing on recent data from human papillary and renal cortical biopsies in stone formers that provide evidence for the role of Randall's plaque in kidney stone disease pathogenesis. These data suggest there are individual stone-forming phenotypes with unique surgical anatomy, histology, and metabolic profiles.
Collapse
|
42
|
Kummeling MTM, de Jong BWD, Laffeber C, Kok DJ, Verhagen PCMS, van Leenders GJLH, van Schaik RHN, van Woerden CS, Verhulst A, Verkoelen CF. Tubular and interstitial nephrocalcinosis. J Urol 2007; 178:1097-103. [PMID: 17644134 DOI: 10.1016/j.juro.2007.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Indexed: 11/22/2022]
Abstract
PURPOSE We determined whether nephrocalcinosis is common and whether its detection is influenced by renal tissue processing. MATERIALS AND METHODS Renal cortical and papillary tissue was obtained from the unaffected parts of 15 kidneys removed due to an oncological indication. The effect of tissue processing on the loss of crystals was studied in a kidney with nephrocalcinosis due to chronic pyelonephritis. Immediately frozen and formaldehyde fixed sections were analyzed by polarized light and Raman spectroscopy, and stained for calcium (Yasue) and hyaluronan. RESULTS Although 13 of 15 snap-frozen sections from tumor kidneys contained birefringent particles (mean +/- SD 3.2 +/- 2.9 particles per cm(2)) in the renal tubules, this was not considered nephrocalcinosis because the crystals were not attached to the epithelial lining. Interstitial nephrocalcinosis was found on Yasue stain in 3 of 15 kidneys with tumor (20%). Calcium deposits were found in the papillary interstitium only, always together with hyaluronan. Formaldehyde fixed sections from the pyelonephritis kidney contained fewer renal tubular cell associated birefringent particles than immediately frozen sections (9.4 +/- 1.9 vs 41.6 +/- 1.2 per cm(2)). Particles were composed of calcium oxalate monohydrate (Yasue and Raman). CONCLUSIONS There are 2 distinct forms of nephrocalcinosis, including tubular nephrocalcinosis, which seems to be reserved for specific conditions such as chronic pyelonephritis, and interstitial nephrocalcinosis. The incidence of tubular calcium oxalate nephrocalcinosis could be underestimated due to the loss of crystals during tissue processing for routine histology. The crystal binding molecule hyaluronan may have a role in the 2 forms of nephrocalcinosis.
Collapse
Affiliation(s)
- Maxime T M Kummeling
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Grover PK, Thurgood LA, Ryall RL. Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 2007; 292:F1396-403. [PMID: 17267387 DOI: 10.1152/ajprenal.00456.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our aim was to determine whether fractionation of human urine affects the attachment of calcium oxalate monohydrate (COM) crystals to renal cells. Urine collected from six healthy subjects was fractionated into sieved (S), centrifuged (C), centrifuged and filtered (CF), or ultrafiltered (UF). Attachment of [(14)C]COM crystals to Madin-Darby canine kidney (MDCK) cells was studied after precoating the crystals or the cells with the urine fractions and by using the same fractions as the binding medium. Protein content of the fractions and precoated crystals was analyzed with SDS-PAGE and Western blotting. All urine fractions inhibited crystal attachment. When fractions from the six urine samples were used to precoat the cells, the median inhibitions of crystal adhesion ( approximately 40%) were not significantly different. Median inhibition after preincubation of crystals was the same for the S, C, and CF fractions ( approximately 40%) but significantly greater than for the UF fraction ( approximately 28%). When fractions were used as the binding medium, median inhibitions decreased from 64% in the S fraction to 47 (C), 42 (CF), and to 29% (UF). SDS-PAGE analysis showed that centrifugation and filtration reduced the amount of Tamm-Horsfall glycoprotein (THG), which was confirmed by Western blotting. Human serum albumin, urinary prothrombin fragment 1, and osteopontin, but not THG, were present in demineralized extracts of the precoated crystals. Fractionation of human urine affects the attachment of COM crystals to MDCK cells. Hence future studies investigating regulation of crystal-cell interactions should be carried out in untreated urine as the binding medium.
Collapse
Affiliation(s)
- Phulwinder K Grover
- Urology Unit, Department of Surgery, Flinders Medical Centre, and Flinders University, South Australia, Australia.
| | | | | |
Collapse
|
44
|
Electrophoretic separation and characterization of urinary glycosaminoglycans and their roles in urolithiasis. Carbohydr Res 2007; 342:79-86. [DOI: 10.1016/j.carres.2006.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/25/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
|
45
|
Durkan AM, Alexander RT, Liu GY, Rui M, Femia G, Robinson LA. Expression and targeting of CX3CL1 (fractalkine) in renal tubular epithelial cells. J Am Soc Nephrol 2006; 18:74-83. [PMID: 17151328 DOI: 10.1681/asn.2006080862] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chemokine CX3CL1 plays a key role in glomerulonephritis and can act as both chemoattractant and adhesion molecule. CX3CL1 also is upregulated in tubulointerstitial injury, but little is known about the subcellular distribution and function of CX3CL1 in renal tubular epithelial cells (RTEC). Unexpectedly, it was found that CX3CL1 is expressed predominantly on the apical surface of tubular epithelium in human renal transplant biopsy specimens with acute rejection or acute tubular necrosis. For studying the targeting of CX3CL1 in polarized RTEC, MDCK cells that expressed untagged or green fluorescent protein-tagged CX3CL1 were generated. The chemokine was present on the apical membrane and in subapical vesicles. Apical targeting of CX3CL1 was not due to signals that were conferred by its intracellular domain, to associations with lipid rafts, or to O-glycosylation but, rather, depended on N-linked glycosylation of the protein. With the use of fluorescence recovery after photobleaching, it was found that CX3CL1 is immobile in the apical membrane. However, CX3CL1 partitioned with the triton-soluble rather than -insoluble cellular fraction, indicating that it is not associated directly with the actin cytoskeleton or with lipid rafts. Accordingly, disruption of rafts through cholesterol depletion did not render CX3CL1 mobile. For exploration of potential functions of apical CX3CL1, binding of CX3CR1-expressing leukocytes to polarized RTEC was examined. Leukocyte adhesion to the luminal surface was enhanced significantly when CX3CL1 was present. These data demonstrate that CX3CL1 is expressed preferentially on the apical membrane of RTEC and suggest a novel function for the chemokine in recruitment and retention of leukocytes in tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Anne M Durkan
- Division of Nephrology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Verkoelen CF. Crystal Retention in Renal Stone Disease: A Crucial Role for the Glycosaminoglycan Hyaluronan? J Am Soc Nephrol 2006; 17:1673-87. [PMID: 16707562 DOI: 10.1681/asn.2006010088] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mechanisms that are involved in renal stone disease are not entirely clear. In this article, the various concepts that have been proposed during the past century are reviewed briefly and integrated into current insights. Much attention is dedicated to hyaluronan (HA), an extremely large glycosaminoglycan that may play a central role in renal stone disease. The precipitation of poorly soluble calcium salts (crystal formation) in the kidney is the inevitable consequence of producing concentrated urine. HA is a major constituent of the extracellular matrix in the renal medullary interstitium and the pericellular matrix of mitogen/stress-activated renal tubular cells. HA is an excellent crystal-binding molecule because of its size, negative ionic charge, and ability to form hydrated gel-like matrices. Crystal binding to HA leads to crystal retention in the renal tubules (nephrocalcinosis) and to the formation of calcified plaques in the renal interstitium (Randall's plaques). It remains to be determined whether one or both forms of renal crystal retention are involved in the development of kidney stones (nephrolithiasis).
Collapse
|