1
|
Rujimongkon K, Ampawong S, Isarangkul D, Reamtong O, Aramwit P. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. PHARMACEUTICAL BIOLOGY 2022; 60:708-721. [PMID: 35348427 PMCID: PMC8967205 DOI: 10.1080/13880209.2022.2055088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/30/2023]
Abstract
CONTEXT Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.
Collapse
Affiliation(s)
- Kitiya Rujimongkon
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- Proteomics Research Team, National Omics Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
2
|
Kim JA, Vetrivel P, Kim SM, Ha SE, Kim HH, Bhosale PB, Heo JD, Lee WS, Senthil K, Kim GS. Quantitative Proteomics Analysis for the Identification of Differential Protein Expression in Calf Muscles between Young and Old SD Rats Using Mass Spectrometry. ACS OMEGA 2021; 6:7422-7433. [PMID: 33778255 PMCID: PMC7992086 DOI: 10.1021/acsomega.0c05821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 05/04/2023]
Abstract
Aging is associated with loss of muscle mass and strength that leads to a condition termed sarcopenia. Impaired conditions, morbidity, and malnutrition are the factors of devaluation of muscle fibers in aged animals. Satellite cells play an important role in maintaining muscle homeostasis during tissue regeneration and repair. Proteomic profiling on the skeletal muscle tissues of different age group rats helps to determine the differentially expressed (DE) proteins, which may eventually lead to the development of biomarkers in treating the conditions of sarcopenia. In this study, nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS) analysis was implemented in the calf tissues of young and old groups of rats. The mass spectrometry (MS) analysis revealed the presence of 335 differentially expressed proteins between the two different age conditions, among which those based on log-fold change 25 proteins were upregulated and 77 were downregulated. The protein-protein interaction network analysis revealed 18 upregulated proteins with three distinct interconnected networks and 57 downregulated proteins with two networks. Further, gene ontology (GO) enrichment analysis showed the biological process, cellular component, and molecular function of the differential proteins. Pathway enrichment analysis of the DE proteins identified nine significantly enriched pathways with a list of eight significant genes (Cryab, Hspb2, Acat1, Ak1, Adssl1, Anxa5, Gys1, Ogdh, Gc, and Adssl1). Quantification of significant genes by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the downregulation at the mRNA level. Western blot analysis of their protein expression showed concordant results on two candidate proteins (Ogdh and annexin 5) confirming their differential regulation between the two age groups of rats. Thus, these proteomic approaches on young and aged rats provide insights into the development of protein targets in the treatment of sarcopenia (muscle loss).
Collapse
Affiliation(s)
- Jin A. Kim
- Department
of Physical Therapy, International University
of Korea, Jinju 52833, Republic of Korea
| | - Preethi Vetrivel
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Seong Min Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam
Department of Environment Toxicology and Chemistry, Toxicity Screening
Research Center, Korea Institute of Toxicology, Munsan-eup, Jinju, Gyeongnam 52834, Republic of Korea
| | - Won Sup Lee
- Department
of Internal Medicine, Institute of Health Sciences, Gyeongsang National
University Hospital, Gyeongsang National
University School of Medicine, Jinju 660-702, Republic
of Korea
| | - Kalaiselvi Senthil
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, India
| | - Gon Sup Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Xavier T, Ganesan TS, Menon KN. A simple and efficient method for processing of cell lysates for two-dimensional gel electrophoresis. Electrophoresis 2010; 31:2429-35. [PMID: 20564265 DOI: 10.1002/elps.200900644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sample preparation is one of the major issues in 2-DE for the separation of proteins. Although a 100% representation of cellular proteins onto a 2-DE is virtually impossible, maximum representation of cellular proteins compared with the original cell lysate is important in the subsequent analysis. We demonstrate that lysis of cells in urea/thiourea solution with subsequent sonication to disrupt the nucleic acids and concentration of the lysate using centri-con led to enrichment of proteins. The procedure resulted in minimal nucleic acid contamination with better resolution of spots. 2-DE spot patterns of proteins prepared using urea-thiourea solubilization/centri-con method to other protein enrichment methods such as phenol/chloroform/isoamyl alcohol extraction, methanol/ammonium acetate precipitation, acetone precipitation and ethanol precipitation were compared. Urea-thiourea solubilization combined with centri-con method of protein enrichment represented higher number/unique spots particularly in the 50-250 kDa M(r) compared with others. Lysis of cells in urea/thiourea from the beginning of lysate preparation preserves the proteins from protease activity due to denaturation of proteases. Thus, we demonstrate that the centri-con methodology is simple and effective for the preparation of high-quality sample that can be used for a qualitative representation of cellular proteins on a 2-DE for proteomic analysis.
Collapse
Affiliation(s)
- Tessy Xavier
- Division of Molecular Medicine, Amrita Research Institute, Amrita Institute for Medical Sciences, Ponekkara, Kochi, India
| | | | | | | |
Collapse
|
4
|
Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P, Meese E, Katus HA, Rottbauer W. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 2010; 106:13-23. [PMID: 20886220 DOI: 10.1007/s00395-010-0123-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of adaptive and maladaptive responses in cardiovascular diseases and hence are considered to be potential therapeutical targets. However, their role as novel biomarkers for the diagnosis of cardiovascular diseases still needs to be systematically evaluated. We assessed here for the first time whole-genome miRNA expression in peripheral total blood samples of patients with acute myocardial infarction (AMI). We identified 121 miRNAs, which are significantly dysregulated in AMI patients in comparison to healthy controls. Among these, miR-1291 and miR-663b show the highest sensitivity and specificity for the discrimination of cases from controls. Using a novel self-learning pattern recognition algorithm, we identified a unique signature of 20 miRNAs that predicts AMI with even higher power (specificity 96%, sensitivity 90%, and accuracy 93%). In addition, we show that miR-30c and miR-145 levels correlate with infarct sizes estimated by Troponin T release. The here presented study shows that single miRNAs and especially miRNA signatures derived from peripheral blood, could be valuable novel biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cillero-Pastor B, Ruiz-Romero C, Caramés B, López-Armada MJ, Blanco FJ. Proteomic analysis by two-dimensional electrophoresis to identify the normal human chondrocyte proteome stimulated by tumor necrosis factor alpha and interleukin-1beta. ACTA ACUST UNITED AC 2010; 62:802-14. [PMID: 20131227 DOI: 10.1002/art.27265] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the intracellular proteome of normal human chondrocytes stimulated with interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) and to ascertain differences in the protein expression patterns of these 2 cytokines. METHODS Normal human knee cartilage chondrocytes were incubated for 48 hours without stimulation or stimulated with IL-1beta (5 ng/ml) or with TNFalpha (10 ng/ml). For each culture condition, protein extracts from 4 normal subjects were pooled and resolved using 2-dimensional electrophoresis. Protein spots were visualized with Sypro stain, and qualitative and quantitative analyses were performed using PDQuest software. Protein spots were then identified by mass spectrometry, using matrix-assisted laser desorption ionization-time-of-flight/time-of-flight technology. RESULTS We identified 37 spots by mass spectrometry (MS) or by MS/MS, corresponding to 35 different proteins. In IL-1beta-stimulated chondrocytes, IL-1beta was found to modulate 22 proteins, as compared with unstimulated chondrocytes. All of these proteins except connective tissue growth factor (CCND2) were up-regulated. Proteins involved in cellular metabolism and energy (23%) that were up-regulated or induced by IL-1beta included nicotinamide phosphoribosyltransferase, long-chain fatty acid-coenzyme A ligase 4, delta-aminolevulinic acid dehydratase, triosephosphate isomerase, and an isoform of glyceraldehyde-3-phosphate dehydrogenase. In TNFalpha-stimulated chondrocytes, TNFalpha was found to modulate 20 proteins, as compared with unstimulated chondrocytes. All of these except chitinase 3-like 1 (cartilage glycoprotein 39), proteasome activator complex subunit 2, and G3PDH, were up-regulated. Eighteen proteins were differently modulated by IL-1beta and TNFalpha. Of these, 45% were related to metabolism. CONCLUSION IL-1beta and TNFalpha induce different profiles of intracellular protein expression in healthy human chondrocytes. Most of the proteins that are differently regulated are proteins that are implicated in the generation of cellular energy and in glycolysis.
Collapse
|
6
|
Dursun E, Ozben B, Monari E, Cuoghi A, Tomasi A, Ozben T. Proteomic profiling in apolipoprotein E-deficient mice during atherosclerosis progression. Acta Histochem 2010; 112:178-88. [PMID: 19230958 DOI: 10.1016/j.acthis.2008.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Atherosclerosis and related complications are a major worldwide cause of human morbidity and mortality. It is advantageous to perform atherosclerosis studies in the apolipoprotein E-deficient (Apo E(-/-)) mouse model, which develops atherosclerosis very fast in comparison to humans. The aim of this study was to compare serum protein profiles in Apo E(-/-) mice during atherosclerosis progression with the data of control C57BL/6 mice. Serum proteomic analyses were performed using surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF-MS). The protein profiles obtained using three different chips, CM-10 (weak cation exchange), H50 (reversed-phase) and IMAC-30 (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At 20 weeks of age, all Apo E(-/-) mice developed early atherosclerotic lesions. The peak intensities of 742 serum protein/peptide clusters were found to be different between the atherosclerotic and control mice groups, and the differences reached statistical significance for 107 serum protein/peptide clusters (p<0.05). This study contributes to understanding the changes in serum protein/peptide profiles during atherosclerosis development and may inform discovery of new protein biomarkers for early diagnosis of atherosclerosis.
Collapse
|
7
|
Proteomic profiling during atherosclerosis progression: Effect of nebivolol treatment. Mol Cell Biochem 2009; 331:9-17. [PMID: 19421716 DOI: 10.1007/s11010-009-0139-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
There is a great need for the identification of biomarkers for the early diagnosis of atherosclerosis and the agents to prevent its progression. The aim of this study was to explore the effect of 24 week of nebivolol (a third-generation vasodilatory beta-blocker) treatment on serum protein profiles in Apo E(-/-) mice during atherosclerosis progression. Nebivolol treated and non-treated (the control group) groups consisted of 10 genetically modified homozygous Apo E(-/-) mice. Proteomic analyses were performed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the serum samples from the nebivolol treated and non-treated Apo E(-/-) mice. The protein profiles obtained using three different chips, CM10 (weak cation-exchange), H50 (reverse phase), and IMAC30-Cu(2+) (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At the end of 24 week of nebivolol-treatment period, a total of 662 protein/peptide clustering peaks were detected using 12 different conditions and reading with high and low intensity laser energy. The highest total number of protein/peptide clusters was found on H50 chip array. The peak intensities of 95 of the 662 protein/peptide clusters were significantly different in the nebivolol-treated atherosclerotic group in comparison to the non-treated control mice groups (P < 0.05). Forty-three protein/peptides were up-regulated (high signal intensity) while 52 protein/peptides had lower signal intensity (down-regulated) in the nebivolol-treated atherosclerotic group. The proteomic profiles of nebivolol-treated Apo E(-/-) mice were different than the control group indicating a potential role of nebivolol in atherosclerosis. Our study contributes to understand the efficacy of nebivolol on serum protein/peptide profiles during atherosclerosis development.
Collapse
|
8
|
Vivanco F, Mas S, Darde VM, De la Cuesta F, Alvarez-Llamas G, Barderas MG. Vascular proteomics. Proteomics Clin Appl 2007; 1:1102-22. [DOI: 10.1002/prca.200700190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Bermúdez-Crespo J, López JL. A better understanding of molecular mechanisms underlying human disease. Proteomics Clin Appl 2007; 1:983-1003. [PMID: 21136752 DOI: 10.1002/prca.200700086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 01/06/2023]
Abstract
This review summarises and discusses the degree to which proteomics is contributing to medical care, providing examples and signspots for future directions. Why do genomic approaches provide a limited view of gene expression? Because of the multifactorial nature of many diseases, proteomics enables us to understand the molecular basis of disease, not only at the organism, whole-cell or tissue levels, but also in subcellular structures, protein complexes and biological fluids. The application of proteomics in medicine is expected to have a major impact by providing an integrated view of individual disease processes. This review describes several proteomic platforms and examines the role of proteomics as a tool for clinical biomarker discovery, the identification of prognostic and earlier diagnostic markers, their use in monitoring the effects of drug treatments and eventually find more efficient and safer therapeutics for a wide range of pathologies.
Collapse
Affiliation(s)
- José Bermúdez-Crespo
- Department of Genetics, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
10
|
Sinha A, Singh C, Parmar D, Singh MP. Proteomics in clinical interventions: achievements and limitations in biomarker development. Life Sci 2006; 80:1345-54. [PMID: 17210164 DOI: 10.1016/j.lfs.2006.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/06/2006] [Accepted: 12/12/2006] [Indexed: 02/01/2023]
Abstract
Development of toxicological and clinical biomarkers for disease diagnosis, quantification of toxicant/drug responses and rapid patient care are major concerns in modern biology. Even after human genome sequencing, identification of specific molecular signatures for unambiguous correlation with toxicity and clinical interventions is a challenging task. Differential protein expression patterns and protein-protein interaction studies have started unraveling rigorous molecular explanation of multi-factorial and toxicant borne diseases. Proteome profiling is extensively used to investigate etiology of diseases, develop predictive biomarkers for toxicity and therapeutic interventions and potential strategies for treatment of complex and toxicant mediated diseases. In this review, achievements and limitations of proteomics in developing predictive biomarkers for toxicological and clinical interventions have been discussed.
Collapse
Affiliation(s)
- Ashima Sinha
- Industrial Toxicology Research Centre, Lucknow-226 001, India
| | | | | | | |
Collapse
|
11
|
Kunes J, Zicha J. Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist's view. Clin Sci (Lond) 2006; 111:295-305. [PMID: 17034366 DOI: 10.1042/cs20050271] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic studies in humans and rodent models should help to identify altered genes important in the development of cardiovascular diseases, such as hypertension. Despite the considerable research effort, it is still difficult to identify all of the genes involved in altered blood pressure regulation thereby leading to essential hypertension. We should keep in mind that genetic hypertension and other cardiovascular diseases might develop as a consequence of early errors in well-co-ordinated systems regulating cardiovascular homoeostasis. If these early abnormalities in the ontogenetic cascade of expression of genetic information occur in critical periods of development (developmental windows), they can adversely modify subsequent development of the cardiovascular system. The consideration that hypertension and/or other cardiovascular diseases are late consequences of abnormal ontogeny of the cardiovascular system could explain why so many complex interactions among genes and environmental factors play such a significant role in the pathogenesis of these diseases. The detailed description and precise time resolution of major developmental events occurring during particular stages of ontogeny in healthy individuals (including advanced knowledge of gene expression) could facilitate the detection of abnormalities crucial for the development of cardiovascular alterations characteristic of the respective diseases. Transient gene switch-on or switch-off in specific developmental windows might be a useful approach for in vivo modelling of pathological processes. This should help to elucidate the mechanisms underlying cardiovascular diseases (including hypertension) and to develop strategies to prevent the development of such diseases.
Collapse
Affiliation(s)
- Jaroslav Kunes
- Cardiovascular Research Centre and Institute of Physiology, AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
12
|
Abstract
Heart disease and stroke, the main cardiovascular diseases (CVD), have become global epidemics in our days. High levels of cholesterol and other abnormal lipids are among the main risk factors of atherosclerosis, the number one killer in the world. However, recent advances in CVD treatment together with improvements in surgical techniques have increased the quality of life and reduced premature death rates and disabilities. Nevertheless, they still add a heavy burden to the rising global costs of health care. The medical priorities highlight not only the need for early recognition of the warning signs of a heart attack, but also the need for early biomarkers for prevention. Two active partners in the development and progression of atherosclerotic plaques are the macrophages and endothelial cells that influence each other and modify the microenvironment composition of the plaque leading to either rapid progression or regression of individual lesions in patients. In this review we address two specific aspects related to atherosclerosis: i) the way in which folic acid and folic acid conjugates may be helpful to identify activated macrophages and ii) the high potential of proteomic analysis to evidence and identify the multiple changes induced in activated vascular cells.
Collapse
Affiliation(s)
- Felicia Antohe
- Institute of Cellular Biology and Pathology N. Simionescu, Bucharest, Romania.
| |
Collapse
|