1
|
Gansevoort M, Oostendorp C, Bouwman LF, Tiemessen DM, Geutjes PJ, Feitz WFJ, van Kuppevelt TH, Daamen WF. Collagen-Heparin-FGF2-VEGF Scaffolds Induce a Regenerative Gene Expression Profile in a Fetal Sheep Wound Model. Tissue Eng Regen Med 2024; 21:1173-1187. [PMID: 39215940 PMCID: PMC11589036 DOI: 10.1007/s13770-024-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The developmental abnormality spina bifida is hallmarked by missing tissues (e.g. skin) and exposure of the spinal cord to the amniotic fluid, which can negatively impact neurological development. Surgical closure of the skin in utero limits neurological damage, but in large defects this results in scarring and contractures. Stimulating skin regeneration in utero would greatly benefit treatment outcome. Previously, we demonstrated that a porous type I collagen (COL) scaffold, functionalized with heparin (HEP), fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) (COL-HEP/GF) improved pre- and postnatal skin regeneration in a fetal sheep full thickness wound model. In this study we uncover the early events associated with enhanced skin regeneration. METHODS We investigated the gene expression profiles of healing fetal skin wounds two weeks after implantation of the COL(-HEP/GF) scaffolds. Using laser dissection and microarrays, differentially expressed genes (DEG) were identified in the epidermis and dermis between untreated wounds, COL-treated wounds and wounds treated with COL-HEP/GF. Biological processes were identified using gene enrichment analysis and DEG were clustered using protein-protein-interaction networks. RESULTS COL-HEP/GF influences various interesting biological processes involved in wound healing. Although the changes were modest, using protein-protein-interaction networks we identified a variety of clustered genes that indicate COL-HEP/GF induces a tight but subtle control over cell signaling and extracellular matrix organization. CONCLUSION These data offer a novel perspective on the key processes involved in (fetal) wound healing, where a targeted and early interference during wound healing can result in long-term enhanced effects on skin regeneration.
Collapse
Affiliation(s)
- Merel Gansevoort
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corien Oostendorp
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Arnhem, The Netherlands
| | - Linde F Bouwman
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien M Tiemessen
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Gouletsou PG, Zacharopoulou T, Skampardonis V, Georgiou SG, Doukas D, Galatos AD, Flouraki E, Dermisiadou E, Margeti C, Barbagianni M, Sideri A, Tsioli V. First-Intention Incisional Wound Healing in Dogs and Cats: A Controlled Trial of Dermapliq and Manuka Honey. Vet Sci 2024; 11:64. [PMID: 38393082 PMCID: PMC10892332 DOI: 10.3390/vetsci11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to compare incisional wound healing in cats and dogs after the topical application of Μanuka honey and a new medical device, Dermapliq. Comparisons were made between each treatment and control, between the two treatments, and between dogs and cats. Twelve cats and twelve dogs were included in this study, and the impact of the two substances was examined through cosmetic, clinical, ultrasonographical, and histological evaluation. The use of Dermapliq in first-intention wound healing achieved a significantly better cosmetic evaluation score and better total clinical score at days 20-41, compared to the control, in both dogs and cats. The ultrasonographically estimated wound area was smaller with Dermapliq compared to the control. Wounds treated with Dermapliq showed histologically less inflammation compared to the control. The use of Manuka honey did not show a significantly better cosmetic score compared to the control. Skin thickening was significantly higher after using Manuka honey compared to the control and so was the total clinical score. However, the median wound area, as was evaluated ultrasonographically, was significantly smaller when wounds were treated with Manuka honey, the difference being more apparent in dogs. Dermapliq was proven to be a better choice in achieving favorable wound healing than Manuka honey in dogs and cats in first-intention healing. In our study, cats had a statistically better cosmetic score and less skin thickening and scar width compared to dogs. Histologically, cats showed significantly less edema, higher inflammation and angiogenesis scores, and lower fibroblast and epidermis thickening scores when compared to dogs.
Collapse
Affiliation(s)
- Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Theodora Zacharopoulou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Stefanos G. Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Apostolos D. Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eugenia Flouraki
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eleftheria Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Chryssoula Margeti
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Mariana Barbagianni
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Aikaterini Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassiliki Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| |
Collapse
|
3
|
Avila-Martinez N, Gansevoort M, Verbakel J, Jayaprakash H, Araujo IM, Vitorino M, Tiscornia G, van Kuppevelt TH, Daamen WF. Matrisomal components involved in regenerative wound healing in axolotl and Acomys: implications for biomaterial development. Biomater Sci 2023; 11:6060-6081. [PMID: 37525590 DOI: 10.1039/d3bm00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Achieving regeneration in humans has been a long-standing goal of many researchers. Whereas amphibians like the axolotl (Ambystoma mexicanum) are capable of regenerating whole organs and even limbs, most mammals heal their wounds via fibrotic scarring. Recently, the African spiny mouse (Acomys sp.) has been shown to be injury resistant and capable of regenerating several tissue types. A major focal point of research with Acomys has been the identification of drivers of regeneration. In this search, the matrisome components related to the extracellular matrix (ECM) are often overlooked. In this review, we compare Acomys and axolotl skin wound healing and blastema-mediated regeneration by examining their wound healing responses and comparing the expression pattern of matrisome genes, including glycosaminoglycan (GAG) related genes. The goal of this review is to identify matrisome genes that are upregulated during regeneration and could be potential candidates for inclusion in pro-regenerative biomaterials. Research papers describing transcriptomic or proteomic coverage of either skin regeneration or blastema formation in Acomys and axolotl were selected. Matrisome and GAG related genes were extracted from each dataset and the resulting lists of genes were compared. In our analysis, we found several genes that were consistently upregulated, suggesting possible involvement in regenerative processes. Most of the components have been implicated in regulation of cell behavior, extracellular matrix remodeling and wound healing. Incorporation of such pro-regenerative factors into biomaterials may help to shift pro-fibrotic processes to regenerative responses in treated wounds.
Collapse
Affiliation(s)
- Nancy Avila-Martinez
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Merel Gansevoort
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Juul Verbakel
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Haarshaadri Jayaprakash
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
| | - Ines Maria Araujo
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Marta Vitorino
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Gustavo Tiscornia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Eugin Barcelona, Balmes, 236, 08006 Barcelona, Spain
| | - Toin H van Kuppevelt
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Medical BioSciences, Radboud Research Institute, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Zakine G, Perruisseau-Carrier A, Becker C, Sedel F, Téot L, Barritault D. A Retrospective Self-Controlled Study Evaluating the Prophylactic Effects of CACIPLIQ20 on Postsurgical Scars. Aesthet Surg J Open Forum 2023; 5:ojad031. [PMID: 37051418 PMCID: PMC10084089 DOI: 10.1093/asjof/ojad031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Background CACIPLIQ20 (OTR3, Paris, France) is a medical device used for the treatment of chronic skin ulcers. It contains a heparan sulfate mimetic that accelerates tissue healing by stabilizing matrix proteins and protecting heparin-binding growth factors. In humans, an open self-controlled study suggested that the topical application of CACIPLIQ20 optimizes skin healing following surgery. Objectives To expand previous findings using a different CACIPLIQ20 administration regimen. Methods Twenty-four females were referred for breast-reduction surgery. Each patient had their own control with 1 CACIPLIQ20-treated and 1 saline-treated control breast. The treated side (right or left) was randomly assigned by the operating surgeon. Scar appearance was assessed by 6 independent raters using a global visual scar comparison scale based on scar photographs. All raters were blinded toward the CACIPLIQ20-treated side. Results The follow-up period following surgery ranged from 1 to 12 months with a median follow-up of 6 months. Overall, there was a mean improvement of 15.2% (SD = 26.7) in favor of CACIPLIQ20 (P = .016). On the CACIPLIQ20-treated side, the mean score per patient was above 20% in 11 patients and above 30% improvement in 8 cases. In contrast, only 3 patients were considered improved by at least 20% on the control side and only 1 above 30%. A comparison of different application regimens suggested that the best trend was obtained with a single administration of CACIPLIQ20 at Day 0. Conclusions In conclusion, CACIPLIQ20 could represent an interesting scar prophylactic therapy, based on a single administration at the time of surgery, and without any known adverse effects. Level of Evidence 3
Collapse
Affiliation(s)
- Gilbert Zakine
- Corresponding Author: Dr Gilbert Zakine, 107 Avenue Victor HUGO, 75016 Paris, France. E-mail:
| | | | | | | | | | | |
Collapse
|
5
|
Khelif Y, Toutain J, Quittet MS, Chantepie S, Laffray X, Valable S, Divoux D, Sineriz F, Pascolo-Rebouillat E, Papy-Garcia D, Barritault D, Touzani O, Bernaudin M. A heparan sulfate-based matrix therapy reduces brain damage and enhances functional recovery following stroke. Am J Cancer Res 2018; 8:5814-5827. [PMID: 30613264 PMCID: PMC6299437 DOI: 10.7150/thno.28252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Alteration of the extracellular matrix (ECM) is one of the major events in the pathogenesis of brain lesions following ischemic stroke. Heparan sulfate mimetics (HSm) are synthetic pharmacologically active polysaccharides that promote ECM remodeling and tissue regeneration in various types of lesions. HSm bind to growth factors, protect them from enzymatic degradation and increase their bioavailability, which promotes tissue repair. As the ECM is altered during stroke and HSm have been shown to restore the ECM, we investigated the potential of HSm4131 (also named RGTA-4131®) to protect brain tissue and promote regeneration and plasticity after a stroke. Methods: Ischemic stroke was induced in rats using transient (1 h) intraluminal middle cerebral artery occlusion (MCAo). Animals were assigned to the treatment (HSm4131; 0.1, 0.5, 1.5, or 5 mg/kg) or vehicle control (saline) groups at different times (1, 2.5 or 6 h) after MCAo. Brain damage was assessed by MRI for the acute (2 days) and chronic (14 days) phases post-occlusion. Functional deficits were evaluated with a battery of sensorimotor behavioral tests. HSm4131-99mTc biodistribution in the ischemic brain was analyzed between 5 min and 3 h following middle cerebral artery reperfusion. Heparan sulfate distribution and cellular reactions, including angiogenesis and neurogenesis, were evaluated by immunohistochemistry, and growth factor gene expression (VEGF-A, Ang-2) was quantified by RT-PCR. Results: HSm4131, administered intravenously after stroke induction, located and remained in the ischemic hemisphere. HSm4131 conferred long-lasting neuroprotection, and significantly reduced functional deficits with no alteration of physiological parameters. It also restored the ECM, and increased brain plasticity processes, i.e., angiogenesis and neurogenesis, in the affected brain hemisphere. Conclusion: HSm represent a promising ECM-based therapeutic strategy to protect and repair the brain after a stroke and favor functional recovery.
Collapse
|
6
|
The Effect of a Synthetic Heparan Sulfate on the Healing of Colonic Anastomoses. Gastroenterol Res Pract 2017; 2017:1078062. [PMID: 28620413 PMCID: PMC5460427 DOI: 10.1155/2017/1078062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/07/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022] Open
Abstract
Background The mimetic compound OTR4120 may replace endogenous-degraded heparan sulfates that normally maintain the bioactivity of growth factors that are important for tissue repair. Herein, we investigated the effect of OTR4120 on the healing of normal colonic anastomoses. Methods We evaluated the following two treatment groups of male Sprague Dawley rats (220–256 g): control-treated colonic anastomoses (n = 25) and OTR4120-treated colonic anastomoses (n = 25). We resected 10 mm of the left colon and then applied either saline alone (control) or OTR4120 (100 μg/mL) in saline to the colonic ends before an end-to-end single-layer anastomosis was constructed and again on the anastomosis before the abdomen and skin were closed. Results On postoperative day 3, the anastomotic breaking strengths were 1.47 ± 0.32 N (mean ± SD) in the control group and 1.52 ± 0.27 N in the OTR4120-treated animals (P = 0.622). We also found that the hydroxyproline concentration (indicator of collagen) in the anastomotic wounds did not differ (P = 0.571) between the two groups. Conclusions Our data demonstrate that a single local application of OTR4120 intraoperatively did not increase the biomechanical strength of colonic anastomoses at the critical postoperative day 3 when the anastomoses are the weakest.
Collapse
|
7
|
van Neck JW, Tuk B, Fijneman EMG, Redeker JJ, Talahatu EM, Tong M. Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol. PLoS One 2017; 12:e0177766. [PMID: 28545109 PMCID: PMC5435313 DOI: 10.1371/journal.pone.0177766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a clinical treatment in which a patient breathes pure oxygen for a limited period of time at an increased pressure. Although this therapy has been used for decades to assist wound healing, its efficacy for many conditions is unproven and its mechanism of action is not yet fully clarified. This study investigated the effects of HBOT on wound healing using a diabetes-impaired pressure ulcer rat model. Seven weeks after streptozotocin-induced diabetes in rats (n = 55), a pressure ulcer was created on dorsal skin. Subsequently, animals received HBOT during 6 weeks following a standard clinical protocol (HBOT group with varying endpoints up to 42 days post-wounding) versus controls without HBOT. Capillary venous oxygen saturation (SO2) showed a significant increase in the HBOT group on day 24; however, this increase was significant at this time point only. The quantity of hemoglobin in the micro-blood vessels (rHB) showed a significant decrease in the HBOT group on days 21 and 42, and showed a trend to decrease on day 31. Blood flow in the microcirculation showed a significant increase on days 17, 21 and 31 but a significant decrease on days 24 and 28. Inflammation scoring showed significantly decreased CD68 counts in the HBOT group on day 42, but not in the early stages of wound healing. Animals in the HBOT group showed a trend for an increase in mean wound breaking strength on day 42.
Collapse
Affiliation(s)
- Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| | - Bastiaan Tuk
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
| | - Esther M. G. Fijneman
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
| | - Jonathan J. Redeker
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
| | - Edwin M. Talahatu
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
| | - Miao Tong
- Department of Plastic and Reconstructive Surgery, Erasmus MC—University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Fibrin improves skin wound perfusion in a diabetic rat model. Thromb Res 2017; 151:36-40. [DOI: 10.1016/j.thromres.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/23/2022]
|
9
|
Barritault D, Gilbert-Sirieix M, Rice KL, Siñeriz F, Papy-Garcia D, Baudouin C, Desgranges P, Zakine G, Saffar JL, van Neck J. RGTA ® or ReGeneraTing Agents mimic heparan sulfate in regenerative medicine: from concept to curing patients. Glycoconj J 2016; 34:325-338. [PMID: 27924424 PMCID: PMC5487810 DOI: 10.1007/s10719-016-9744-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023]
Abstract
The importance of extracellular matrix (ECM) integrity in maintaining normal tissue function is highlighted by numerous pathologies and situations of acute and chronic injury associated with dysregulation or destruction of ECM components. Heparan sulfate (HS) is a key component of the ECM, where it fulfils important functions associated with tissue homeostasis. Its degradation following tissue injury disrupts this delicate equilibrium and may impair the wound healing process. ReGeneraTing Agents (RGTA®s) are polysaccharides specifically designed to replace degraded HS in injured tissues. The unique properties of RGTA® (resistance to degradation, binding and protection of ECM structural and signaling proteins, like HS) permit the reconstruction of the ECM, restoring both structural and biochemical functions to this essential substrate, and facilitating the processes of tissue repair and regeneration. Here, we review 25 years of research surrounding this HS mimic, supporting the mode of action, pre-clinical studies and therapeutic efficacy of RGTA® in the clinic, and discuss the potential of RGTA® in new branches of regenerative medicine.
Collapse
Affiliation(s)
- Denis Barritault
- OTR3, 4 rue Française, 75001 Paris, France
- Laboratory Cell Growth and Tissue Repair (CRRET), UPEC 4397/ERL CNRS 9215, Université Paris Est Cretéil, Université Paris Est, F-94000 Créteil, France
| | | | | | | | - Dulce Papy-Garcia
- Laboratory Cell Growth and Tissue Repair (CRRET), UPEC 4397/ERL CNRS 9215, Université Paris Est Cretéil, Université Paris Est, F-94000 Créteil, France
| | - Christophe Baudouin
- Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Universite Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), 55 Avenue de Paris, 78000 Versailles, France
- Centre Hospitalier National d’Opthalmologie des Quinze Vingts, 28 rue de Charenton, 75012 Paris, France
| | - Pascal Desgranges
- Department of Vascular Surgery, Hopital Henri Mondor, Université Paris-Est Créteil, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Gilbert Zakine
- Service de Chirurgie Plastique et Reconstructrice, 33 rue de la Tour, Paris, 75016 France
| | - Jean-Louis Saffar
- EA2496 Laboratoire Pathologies, Imagerie et Biothérapies Oro-Faciales, Faculté de Chirurgie Dentaire, Université Paris Descartes, Sorbonne Paris Cité, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Johan van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Paluck S, Nguyen TH, Maynard HD. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules 2016; 17:3417-3440. [PMID: 27739666 PMCID: PMC5111123 DOI: 10.1021/acs.biomac.6b01147] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/26/2016] [Indexed: 12/13/2022]
Abstract
Heparin is a naturally occurring, highly sulfated polysaccharide that plays a critical role in a range of different biological processes. Therapeutically, it is mostly commonly used as an injectable solution as an anticoagulant for a variety of indications, although it has also been employed in other forms such as coatings on various biomedical devices. Due to the diverse functions of this polysaccharide in the body, including anticoagulation, tissue regeneration, anti-inflammation, and protein stabilization, and drawbacks of its use, analogous heparin-mimicking materials are also widely studied for therapeutic applications. This review focuses on one type of these materials, namely, synthetic heparin-mimicking polymers. Utilization of these polymers provides significant benefits compared to heparin, including enhancing therapeutic efficacy and reducing side effects as a result of fine-tuning heparin-binding motifs and other molecular characteristics. The major types of the various polymers are summarized, as well as their applications. Because development of a broader range of heparin-mimicking materials would further expand the impact of these polymers in the treatment of various diseases, future directions are also discussed.
Collapse
Affiliation(s)
- Samantha
J. Paluck
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Thi H. Nguyen
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and
Biochemistry and the California NanoSystems Institute, University of California−Los Angeles, 607 Charles E. Young Dr East, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549417. [PMID: 26236728 PMCID: PMC4508384 DOI: 10.1155/2015/549417] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/19/2015] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1→4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Tuk B, Tong M, Fijneman EMG, van Neck JW. Hyperbaric oxygen therapy to treat diabetes impaired wound healing in rats. PLoS One 2014; 9:e108533. [PMID: 25329176 PMCID: PMC4198078 DOI: 10.1371/journal.pone.0108533] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023] Open
Abstract
Wound healing in diabetes is frequently impaired and its treatment remains a challenge. Hyperbaric oxygen therapy (HBOT) receives a wide attendance and is often used as a last resort treatment option, however, its effectiveness for many conditions is unproven. We tested the effect of HBOT on healing of diabetic ulcers in an animal experimental setting. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Four weeks after diabetes induction, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, the animals received HBOT, daily on weekdays, for 4 weeks. To examine the effect of HBOT on diabetes impaired wound healing, the degree of wound tissue perfusion, inflammation, angiogenesis, and tissue breaking strength were evaluated. HBOT effects on the degree of inflammation and number of blood vessels could not be observed. HBOT improved the tissue breaking strength of the wound, however, this did not reach statistical significance. Twenty hours after ending the HBOT, a significantly improved oxygen saturation of the hemoglobin at the venous end of the capillaries and the quantity of hemoglobin in the micro-blood vessels was measured.
Collapse
Affiliation(s)
- Bastiaan Tuk
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Miao Tong
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Esther M. G. Fijneman
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Johan W. van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
13
|
Cheung EYL, Weijers EM, Tuk B, Scheffer R, Leebeek FW, van Neck JW, Koolwijk P, de Maat MPM. Specific effects of fibrinogen and the γA and γ'-chain fibrinogen variants on angiogenesis and wound healing. Tissue Eng Part A 2014; 21:106-14. [PMID: 24974891 DOI: 10.1089/ten.tea.2014.0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a newly formed wound, the natural fibrin network provides the first temporary matrix for tissue repair. Topical application of fibrin to a new wound may improve wound healing. A matrix of the common natural γ' fibrin variant may further improve wound healing because it is expected to have a different architecture and this will influence angiogenesis, because it possesses increased thrombin and factor XIII binding and decreased platelet binding, when compared with the common γA fibrin matrix. Our objective was to determine the effect of fibrinogen and its γA and γ' variants on angiogenesis and wound healing. We used in vitro angiogenesis models and an in vivo rat full-thickness excisional wound healing model. When comparing γA and γ' fibrin in vitro, more tube-like structures were formed on day 7 in γA fibrin than in γ' fibrin (13.83±6.12 AU vs. 6.1±1.46 AU). Wounds treated with fibrin demonstrated improved healing in vivo with more perfusion (47%±3% vs. 26%±4%, p<0.01 in placebo) and higher CD34 density score (2.0±0.4 vs. 2.8±0.1, p<0.01) on day 21 with fibrin matrices when compared with placebo-treated wounds. Increased perfusion was observed in γA fibrin-treated wounds on day 21 (53%±10% vs. 41%±7% for γ' fibrin). The other parameters showed slightly improved (not significant) wound healing with γA fibrin compared with γ' fibrin matrices. In conclusion, the use of fibrin and fibrin variant matrices offers an interesting methodology to stimulate the wound healing process.
Collapse
Affiliation(s)
- Elim Y L Cheung
- 1 Department of Hematology, Erasmus University Medical Center , Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hayek S, Dibo S, Baroud J, Ibrahim A, Barritault D. Refractory sickle cell leg ulcer: is heparan sulphate a new hope? Int Wound J 2014; 13:35-8. [PMID: 24618185 DOI: 10.1111/iwj.12217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022] Open
Abstract
Patients with sickle cell disease are known to have recurrent lower extremity ulcers that have a high pain score and are resistant to conventional means of wound therapy. This study reports the successful use of synthetic heparan sulphate (Cacipliq20(®) , OTR3, Paris, France) in the treatment of a sickle cell ulcer that had failed to respond to several other means of treatment. Therapeutic success was assessed by complete wound coverage and vast improvement in pain score. This is the first study to report use of heparan sulphate in sickle cell ulcers.
Collapse
Affiliation(s)
- Shady Hayek
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Saad Dibo
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Joe Baroud
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Amir Ibrahim
- Plastic and Reconstructive Surgery, Private Practice, American University of Beirut - Medical Center, Beirut, Lebanon
| | - Denis Barritault
- Laboratoire CRRET CNRS, University Paris Est Creteil, Paris, France
| |
Collapse
|
15
|
Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Koźma EM, Wisowski G, Stojko J, Klimek K, Olczyk K. Propolis modulates vitronectin, laminin, and heparan sulfate/heparin expression during experimental burn healing. J Zhejiang Univ Sci B 2013; 13:932-41. [PMID: 23125086 DOI: 10.1631/jzus.b1100310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was aimed at assessing the dynamics of vitronectin (VN), laminin (LN), and heparan sulfate/heparin (HS/HP) content changes during experimental burn healing. METHODS VN, LN, and HS/HP were isolated and purified from normal and injured skin of domestic pigs, on the 3rd, 5th, 10th, 15th, and 21st days following thermal damage. The wounds were treated with apitherapeutic agent (propolis), silver sulfadiazine (SSD), physiological salt solution, and propolis vehicle. VN and LN were quantified using an immunoenzymatic assay and HS/HP was estimated by densitometric analysis. RESULTS Propolis treatment stimulated significant increases in VN, LN, and HS/HP contents during the initial phase of study, followed by a reduction in the estimated extracellular matrix molecules. Similar patterns, although less extreme, were observed after treatment with SSD. CONCLUSIONS The beneficial effects of propolis on experimental wounds make it a potential apitherapeutic agent in topical burn management.
Collapse
Affiliation(s)
- Paweł Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 2013; 110:E3138-47. [PMID: 23898162 DOI: 10.1073/pnas.1301440110] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent experimental evidence suggests that transcellular propagation of fibrillar protein aggregates drives the progression of neurodegenerative diseases in a prion-like manner. This phenomenon is now well described in cell and animal models and involves the release of protein aggregates into the extracellular space. Free aggregates then enter neighboring cells to seed further fibrillization. The mechanism by which aggregated extracellular proteins such as tau and α-synuclein bind and enter cells to trigger intracellular fibril formation is unknown. Prior work indicates that prion protein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface to transmit pathologic processes. Here, we find that tau fibril uptake also occurs via HSPG binding. This is blocked in cultured cells and primary neurons by heparin, chlorate, heparinase, and genetic knockdown of a key HSPG synthetic enzyme, Ext1. Interference with tau binding to HSPGs prevents recombinant tau fibrils from inducing intracellular aggregation and blocks transcellular aggregate propagation. In vivo, a heparin mimetic, F6, blocks neuronal uptake of stereotactically injected tau fibrils. Finally, uptake and seeding by α-synuclein fibrils, but not huntingtin fibrils, occurs by the same mechanism as tau. This work suggests a unifying mechanism of cell uptake and propagation for tauopathy and synucleinopathy.
Collapse
|
17
|
Ximenes RM, de Morais Nogueira L, Cassundé NMR, Jorge RJB, dos Santos SM, Magalhães LPM, Silva MR, de Barros Viana GS, Araújo RM, de Sena KXDFR, de Albuquerque JFC, Martins RD. Antinociceptive and wound healing activities of Croton adamantinus Müll. Arg. essential oil. J Nat Med 2013; 67:758-64. [PMID: 23339025 DOI: 10.1007/s11418-012-0740-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/25/2012] [Indexed: 11/24/2022]
Abstract
Leaves of Croton adamantinus have been used to treat inflammation and skin wounds in the semi-arid area of the Northeast of Brazil. In order to evaluate if the essential oil (EO) was responsible for the claimed activities; antinociceptive, wound healing and antimicrobial tests were carried out. Twenty constituents were identified in C. adamantinus EO by GC-MS, ¹H-NMR and ¹³C-NMR, the major compounds being methyl-eugenol (14.81%) and 1,8-cineol (13.74%). Antinociceptive activity was evaluated by the formalin test and the abdominal contortion assay in mice. The EO (50 and 100 mg/kg) decreased the licking time of both phases of the formalin test when compared to the vehicle, but not to morphine (7.5 mg/kg). In the abdominal contortion assay, the EO (50 and 100 mg/kg) reduced the number of contortions compared to the vehicle and to indometacin (10 mg/kg). The wound healing activity was verified also using two experimental models: excisional wound and dead space. Topical treatment with the EO (1%) increased the wound contraction from the third day of treatment (compared with nitrofurazone 0.2%), while systemic treatment (50 mg/kg/day) increased granulation tissue formation and reduced the water content. C. adamantinus EO also showed antimicrobial activity against Staphylococcus aureus in disk diffusion method. These results corroborate the ethnobotanical use of this specie by Brazilian population.
Collapse
Affiliation(s)
- Rafael Matos Ximenes
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 1315, Fortaleza, CE, 60.430-270, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tong M, Tuk B, Shang P, Hekking IM, Fijneman EMG, Guijt M, Hovius SER, van Neck JW. Diabetes-impaired wound healing is improved by matrix therapy with heparan sulfate glycosaminoglycan mimetic OTR4120 in rats. Diabetes 2012; 61:2633-41. [PMID: 22721969 PMCID: PMC3447910 DOI: 10.2337/db11-1329] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Wound healing in diabetes is frequently impaired, and its treatment remains a challenge. We tested a therapeutic strategy of potentiating intrinsic tissue regeneration by restoring the wound cellular environment using a heparan sulfate glycosaminoglycan mimetic, OTR4120. The effect of OTR4120 on healing of diabetic ulcers was investigated. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Seven weeks after induction of diabetes, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, OTR4120 was administered via an intramuscular injection weekly for up to 4 weeks. To examine the effect of OTR4120 treatment on wound heal-ing, the degree of ulceration, inflammation, angiogenesis, and collagen synthesis were evaluated. We found that OTR4120 treatment significantly reduced the degree of ulceration and the time of healing. These effects were associated with reduced neutrophil infiltration and macrophage accumulation and enhanced angiogenesis. OTR4120 treatment also increased the collagen content with an increase of collagen type I biosynthesis and reduction of collagen type III biosynthesis. Moreover, restoration of the ulcer biomechanical strength was significantly enhanced after OTR4120 treatment. This study shows that matrix therapy with OTR4120 improves diabetes-impaired wound healing.
Collapse
Affiliation(s)
- Miao Tong
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Spiegelberg L, Djasim UM, van Neck JW, Wolvius EB, van der Wal KG. The effects of heparan sulphate mimetic RGTA-OTR4120 on irradiated murine salivary glands. J Oral Pathol Med 2012; 41:477-83. [DOI: 10.1111/j.1600-0714.2011.01124.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Thompson SM, Connell MG, van Kuppevelt TH, Xu R, Turnbull JE, Losty PD, Fernig DG, Jesudason EC. Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation? BMC DEVELOPMENTAL BIOLOGY 2011; 11:38. [PMID: 21672206 PMCID: PMC3127989 DOI: 10.1186/1471-213x-11-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 06/14/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures. RESULTS The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme.We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2. CONCLUSIONS The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.
Collapse
Affiliation(s)
- Sophie M Thompson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tong M, Tuk B, Hekking IM, Pleumeekers MM, Boldewijn MB, Hovius SER, van Neck JW. Heparan sulfate glycosaminoglycan mimetic improves pressure ulcer healing in a rat model of cutaneous ischemia-reperfusion injury. Wound Repair Regen 2011; 19:505-14. [PMID: 21649786 DOI: 10.1111/j.1524-475x.2011.00704.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pressure ulcers are a major clinical problem, with a large burden on healthcare resources. This study evaluated the effects of the heparan sulfate glycosaminoglycan mimetic, OTR4120, on pressure ulceration and healing. Ischemia-reperfusion (I-R) was evoked to induce pressure ulcers by external clamping and then removal of a pair of magnet disks on rat dorsal skin for a single ischemic period of 16 hours. Immediately after magnet removal, rats received an intramuscular injection of OTR4120 weekly for up to 1 month. During the ischemic period, normal skin perfusion was reduced by at least 60% and at least 20-45% reperfused into the ischemic region after compression release. This model caused sustained skin incomplete necrosis for up to 14 days and led to grade 2-3 ulcers. OTR4120 treatment decreased the area of skin incomplete necrosis and degree of ulceration. OTR4120 treatment also reduced inflammation and increased angiogenesis. In OTR4120-treated ulcers, the contents of vascular endothelial growth factor, platelet-derived growth factor, and transforming growth factor beta-1 were increased. Moreover, OTR4120 treatment promoted early expression of alpha-smooth muscle actin and increased collagen biosynthesis. Long-term restoration of wounded tissue biomechanical strength was significantly enhanced after OTR4120 treatment. Taken together, we conclude that OTR4120 treatment reduces pressure ulcer formation and potentiates the internal healing bioavailability.
Collapse
Affiliation(s)
- Miao Tong
- Department of Plastic & Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Matrix Therapy with RGTA OTR4120 Improves Healing Time and Quality in Hairless Rats with Deep Second-Degree Burns. Plast Reconstr Surg 2011; 127:541-550. [DOI: 10.1097/prs.0b013e318200a910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Groah SL, Libin A, Spungen M, Nguyen KL, Woods E, Nabili M, Ramella-Roman J, Barritault D. Regenerating matrix-based therapy for chronic wound healing: a prospective within-subject pilot study. Int Wound J 2011; 8:85-95. [PMID: 21078132 PMCID: PMC7950993 DOI: 10.1111/j.1742-481x.2010.00748.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to determine whether a skin-specific bioengineered regenerating agent (RGTA) heparan sulphate mimetic (CACIPLIQ20) improves chronic wound healing. The design of this article is a prospective within-subject study. The setting was an urban hospital. Patients were 16 African-American individuals (mean age 42 years) with 22 wounds (mean duration 2.5 years) because of either pressure, diabetic, vascular or burn wounds. Two participants each were lost to follow-up or removed because of poor compliance, resulting in 18 wounds analysed. Sterile gauze was soaked with CACIPLIQ20 saline solution, placed on the wound for 5 min, then removed twice weekly for 4 weeks. Wounds were otherwise treated according to the standard of care. Twenty-two percent of wounds fully healed during the treatment period. Wounds showed a 15.2-18.1% decrease in wound size as measured by the vision engineering research group (VERG) digital wound measurement system and total PUSH scores, respectively, at 4 weeks (P = 0.014 and P = 0.003). At 8 weeks there was an 18-26% reduction in wound size (P = 0.04) in the remaining patients. Wound-related pain measured by the visual analogue pain scale and the wound pain scale declined 60% (P = 0.024) and 70% (P = 0.001), respectively. Patient and clinician satisfaction remained positive throughout the treatment period. It is concluded that treatment with CACIPLIQ20 significantly improved wound-related pain and may facilitate wound healing. Patient and clinician satisfaction remained high throughout the trial.
Collapse
Affiliation(s)
- Suzanne L Groah
- SCI Research Center, National Rehabilitation Hospital, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Barritault D, Garcia-Filipe S, Zakine G. Les bases de la thérapie matricielle en médecine régénérative par les RGTA® : du fondamental à la chirurgie plastique. ANN CHIR PLAST ESTH 2010; 55:413-20. [DOI: 10.1016/j.anplas.2010.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
25
|
Tong M, Tuk B, Hekking IM, Vermeij M, Barritault D, van Neck JW. Stimulated neovascularization, inflammation resolution and collagen maturation in healing rat cutaneous wounds by a heparan sulfate glycosaminoglycan mimetic, OTR4120. Wound Repair Regen 2010; 17:840-52. [PMID: 19903305 DOI: 10.1111/j.1524-475x.2009.00548.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heparan sulfate glycosaminoglycans (HS-GAGs) are not only the structural elements of tissue architecture but also regulate the bioavailability and transduction pathways of heparan sulfate-bound polypeptides released by cells or the extracellular matrix. Heparan sulfate-bound polypeptides include inflammatory mediators, chemokines, angiogenic factors, morphogens, and growth-promoting factors that induce cell migration, proliferation, and differentiation in wound healing. OTR4120, a polymer engineered to mimic the properties of HS-GAGs, is used to replace the natural HS-GAGs that are degraded during wound repair, and enhance the tissue regeneration by preserving the cellular microenvironment and the endogenous signals needed for tissue regeneration. We previously demonstrated that OTR4120 treatment had a long-term effect on increasing breaking strength and vasodilation in healing rat full-thickness excisional wounds. The present study investigates the underlying mechanisms of the effects of OTR4120 treatment in improving the quality of cutaneous wound repair. We found that OTR4120 treatment stimulated inflammation resolution and increased neovascularization. OTR4120 treatment also promoted epidermal migration and proliferation during reepithelialization. Moreover, the granulation tissue formation and collagen maturation were improved in OTR4120-treated wounds. Three months after wounding, the effects of OTR4120 treatment on vascularization and inflammation resolution were normalized, except for an improved neodermis. We conclude that OTR4120 is a potential matrix therapeutic agent that ensures the quality of normal cutaneous wound repair and may restore impaired wound healing characterized by deficient angiogenesis and prolonged inflammation.
Collapse
Affiliation(s)
- Miao Tong
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Corr DT, Gallant-Behm CL, Shrive NG, Hart DA. Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound Repair Regen 2009; 17:250-9. [PMID: 19320894 DOI: 10.1111/j.1524-475x.2009.00463.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new method to test axial and transverse tensile properties of skin was developed to improve our understanding of skin mechanical behavior, and how it changes following injury and formation of a scar. Skin tissue was evaluated at 70 days following full-thickness wounding in juvenile female pigs (N=14). Samples were taken in the axial (cranial-caudal) and transverse (dorsal-ventral) directions, for both scar tissue and uninjured skin, and were evaluated mechanically in vitro using a protocol of stress relaxation followed by tensile failure. Uninjured skin was more compliant, with a larger toe-in region, and faster load relaxation, in the axial direction than the transverse. Such directional differences were not present in high-load responses, such as linear stiffness or failure properties. When compared with uninjured skin, scars displayed a similar linear stiffness, with considerably reduced failure properties, and reduced low-load compliance. Scars showed no directional differences in low-load behavior, viscous response, or failure properties. These findings suggest morphological changes that may occur with injury that are consistent with the viscoelastic and directional changes observed experimentally. This improved understanding of how injury affects skin biomechanical function provides valuable information necessary for the design of successful grafting procedures and tissue-engineered skin replacements.
Collapse
Affiliation(s)
- David T Corr
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA.
| | | | | | | |
Collapse
|