1
|
Cukiert A, Cukiert C, Guimaraes RB, Burattini JA, Vieira JV, de Oliveira JPS. Vagus Nerve Stimulation Electrode Impedance Over Time in Children With Lennox-Gastaut Syndrome. Neuromodulation 2024; 27:789-791. [PMID: 37486282 DOI: 10.1016/j.neurom.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE This manuscript describes the behavior of impedance of vagus nerve stimulation (VNS) electrode over time in a cohort of children with Lennox-Gastaut syndrome. MATERIALS AND METHODS Nineteen consecutive pediatric patients with Lennox-Gastaut syndrome submitted to VNS were studied. All patients had at least four years of follow-up. Serial impedance measurements were carried out during every out-patient visit. A baseline value was obtained one month after surgery, before generator activation and yearly values were recorded for the next four years. Outcome regarding seizures was obtained through analysis of standardized seizure diaries filled out by the patient, relatives, or caregivers. RESULTS There were 12 boys. Age ranged from four to 14 years (mean = 7.2). Mean impedance value was 2635 Ω at baseline, 2576 Ω after one year, 2418 Ω after two years, 2340 Ω after three years, and 2241 Ω after four years. There was a mean impedance decrease of 17% after four years. This decrease was statistically significant compared with baseline by the second year of follow-up: p = 0.342 after one year, p = 0.007 after two years, p = 0.001 after three years, and p = 0.001 after four years. There was no significant relationship between impedance values and seizure outcome at any time point. CONCLUSIONS VNS electrode impedance significantly decreased during long-term follow-up in children with Lennox-Gastaut syndrome. To our knowledge, this is the first report on such findings regarding VNS in the literature. These findings suggest that the electrode/nerve interface is stable during long-term follow-up of VNS therapy and that this preserved anatomical relationship might be related to our ability to safely stimulate and review/explant the system whenever needed.
Collapse
Affiliation(s)
- Arthur Cukiert
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil.
| | - Cristine Cukiert
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil
| | | | | | - Julia Vescovi Vieira
- Clinica de Epilepsia de São Paulo, Clinica Cukiert, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Kostov KH, Kostov H, Larsson PG, Henning O, Aaberg KM, Egge A, Peltola J, Lossius MI. Norwegian population-based study of effectiveness of vagus nerve stimulation in patients with developmental and epileptic encephalopathies. Epilepsia Open 2024; 9:704-716. [PMID: 38318727 PMCID: PMC10984305 DOI: 10.1002/epi4.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE Evaluate the long-term efficacy of vagus nerve stimulation (VNS) in patients with developmental and epileptic encephalopathies (DEE) compared with epilepsy patients without intellectual disability (ID). METHODS Long-term outcomes from a Norwegian VNS quality registry are reported in 105 patients with DEEs (Lennox-Gastaut syndrome [LGS] n = 62; Dravet n = 16; Rett n = 9; other syndromes n = 18) were compared with 212 epilepsy patients without ID, with median follow-up of 88 and 72 months, respectively. Total seizure reduction was evaluated at 6, 12, 24, 36, and 60 months. Effect on different seizure types was evaluated at baseline and last observation carried forward (LOCF). RESULTS Median monthly seizure frequency at LOCF was reduced by 42.2% (p < 0.001) in patients with DEE and by 55.8% (p < 0.001) in patients without ID. In DEE patients, ≥50% seizure reduction at 6 and 24 months were 17.1% and 37.1%, respectively, and 33.5% and 48.6% for patients without ID. Seizure reduction ≥75% at 60 months occurred in 14.3% of DEE patients and 23.1% of patients without ID. Highest median reduction was for atonic seizures, most notably 64.6% for LGS patients. A better effect was seen at 2 years among DEE patients with unchanged medication compared with those with changed medication (54.5% vs. 35.6% responders, p = 0.078). More DEE patients were reported to have greater improvement in ictal or postictal severity (43.8% vs. 28.3%, p = 0.006) and alertness (62.9% vs. 31.6%, p < 0.001) than patients without ID. For both groups, use of the magnet reduced seizure severity. Hoarseness was the most common adverse effect in both groups. In addition, DEE patients were frequently reported to have sleep disturbance, general discomfort, or abdominal problems. SIGNIFICANCE Our data indicate that VNS is very effective for atonic seizures. Patients without ID had best overall seizure reduction, however, patients with DEE had higher retention rates probably due to other positive effects. PLAIN LANGUAGE SUMMARY DEE refers to a group of patients with severe epilepsy and intellectual disability. Many of these patients have restricted lifestyles with frequent seizures. VNS is a treatment option for patients who do not respond well to medicines, either because of insufficient effect or serious adverse effects. Our study shows that VNS is well tolerated in this patient group and leads to a reduction in all seizure types, most notably for seizures leading to fall. Many patients experience other positive effects like shorter and milder seizures, as well as improvement in alertness.
Collapse
Affiliation(s)
- Konstantin H. Kostov
- Neurological Department, National Center for EpilepsyOslo University HospitalOsloNorway
| | - Hrisimir Kostov
- Neurophysiological Department, National Center for EpilepsyOslo University HospitalOsloNorway
| | | | - Oliver Henning
- Neurophysiological Department, National Center for EpilepsyOslo University HospitalOsloNorway
| | - Kari Modalsli Aaberg
- Pediatric Department, National Center for EpilepsyOslo University HospitalOsloNorway
| | - Arild Egge
- Neurosurgical DepartmentOslo University HospitalOsloNorway
| | - Jukka Peltola
- Department of NeurologyTampere University and Tampere University HospitalTampereFinland
| | - Morten Ingvar Lossius
- Neurological Department, National Center for EpilepsyOslo University HospitalOsloNorway
- Department for Clinical MedicineInstitute for Clinical Medicine, University of OsloOsloNorway
| |
Collapse
|
3
|
Cukiert A, Cukiert CM, Burattini JA, Guimaraes RB. Combined Neuromodulation (Vagus Nerve Stimulation and Deep Brain Stimulation) in Patients With Refractory Generalized Epilepsy: An Observational Study. Neuromodulation 2023; 26:1742-1746. [PMID: 36109334 DOI: 10.1016/j.neurom.2022.08.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION This article describes our findings while treating patients with refractory generalized epilepsy with combined vagus nerve stimulation (VNS) and centro-median deep brain stimulation (CMDBS). MATERIALS AND METHODS A total of 11 consecutive patients with refractory generalized epilepsy (ten with Lennox-Gastaut syndrome) previously submitted to VNS and who subsequently underwent CMDBS were retrospectively studied. The VNS final parameters were 2 to 2.5 mA, 30 Hz, and 500 μs, cycling mode, 30 seconds "on" and 5 minutes "off" for all patients. The CMDBS final parameters were 4 to 5 V, 130 Hz, and 300 μs, bipolar, continuous stimulation in all patients. RESULTS There were eight male participants, ranging in age from eight to 49 years (mean 19 years). Follow-up time after VNS ranged from 18 to 132 months (mean 52 months) and from an additional 18 to 164 months (mean 42 months) during combined VNS-CMDBS. All patients had daily seizures. Atypical absences were noted in eight patients, tonic seizures in seven, bilateral tonic-clonic seizures in four, atonic seizures in three, and myoclonic seizures in two patients. Four patients were initially considered responders to VNS. All these patients also had an additional >50% seizure frequency reduction during combined VNS-CMDBS. Seven patients were not responders to VNS, and of those, four had an additional >50% seizure frequency reduction during combined VNS-CMDBS. Eight patients had an additional >50% reduction in seizure frequency when moved from VNS alone to VNS-CMDBS therapy. There were two nonresponders during combined VNS-CMDBS therapy, and both were nonresponders to VNS alone. Nine patients were considered responders during VNS-CMDBS combined therapy compared with baseline. DISCUSSION This study showed that combined VNS-CMDBS therapy was able to double the number of responders compared with VNS alone in a cohort of patients with refractory generalized epilepsy. We believe these data represent the first evidence that combined neuromodulation may be useful in this quite homogeneous patient population.
Collapse
Affiliation(s)
- Arthur Cukiert
- Department of Neurosurgery, São Paulo Epilepsy Clinic, São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
4
|
Tamura K, Sasaki R, Sakakibara T, Dahal R, Takeshima Y, Matsuda R, Yamada S, Nishimura F, Nakagawa I, Park YS, Hirabayashi H, Nakase H. Additional Effect of High-output Current and/or High-duty Cycle in Vagus Nerve Stimulation for Adolescent/Adult Intractable Epilepsy. Neurol Med Chir (Tokyo) 2023; 63:273-282. [PMID: 37045770 PMCID: PMC10406457 DOI: 10.2176/jns-nmc.2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 04/14/2023] Open
Abstract
A vagus nerve stimulation (VNS) device delivers electrical pulses to the vagus nerve at a rhythm defined by the duty cycle. The standard therapeutic range is advocated for an output current of 1.5-2.25 mA and a duty cycle of 10%. As the optimal settings vary from patient to patient, some patients may benefit from additional seizure reduction when stimulated beyond the standard range. A total of 74 patients (15 children aged <12 years and 59 adolescents/adults) who underwent VNS implantation between 2011 and 2020 and who were followed up for at least 2 years were included in this retrospective study. Stimulation parameters exceeding 2.25 mA of output current, 25% of duty cycle, and 0.5625 (2.25 mA × 25%) of current × duty cycle were defined as high stimulation. The proportion achieved an additional seizure reduction of 20%, and the 50% seizure reduction rate at the last follow-up was compared between adolescents/adults and children. Approximately 40% of patients in adolescents/adults treated with high stimulation experienced an additional acute effect, resulting in a 50% or greater reduction in seizures in almost all patients. Moreover, in adolescents/adults, 22.2%-41.9% of the patients were treated with high stimulation, and the responder rate was 69.5%. Conversely, the responder rate in children was 26.7%, significantly worse than that in adolescents/adults, despite higher stimulation. VNS with high-stimulation settings is effective for adolescent and adult patients with intractable epilepsy. Even high stimulation may not be effective in extremely refractory pediatric epilepsy with a high seizure frequency.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Neurosurgery, Nara Medical University
- Epilepsy Center, National Hospital Organization Nara Medical Center
| | - Ryota Sasaki
- Department of Neurosurgery, Nara Medical University
- Epilepsy Center, National Hospital Organization Nara Medical Center
| | - Takafumi Sakakibara
- Epilepsy Center, National Hospital Organization Nara Medical Center
- Department of Pediatrics, Nara Medical University
| | - Riju Dahal
- Department of Neurosurgery, Nara Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Payne SC, Romas E, Hyakumura T, Muntz F, Fallon JB. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front Neurosci 2022; 16:1012133. [PMID: 36478876 PMCID: PMC9721112 DOI: 10.3389/fnins.2022.1012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
Collapse
Affiliation(s)
- Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Evange Romas
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Rheumatology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Fenella Muntz
- Experimental Sciences Medical Unit, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Ferreira Soares D, Pires de Aguiar PH. Callosotomy vs Vagus Nerve Stimulation in the Treatment of Lennox-Gastaut Syndrome: A Systematic Review With Meta-Analysis. Neuromodulation 2022; 26:518-528. [PMID: 35989160 DOI: 10.1016/j.neurom.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Lennox-Gastaut syndrome (LGS) is a severe drug-resistant epileptic syndrome. Palliative treatments such as corpus callosotomy (CC) and vagus nerve stimulation (VNS) have emerged as treatments to reduce the number of seizures in patients. The aim of this study is to compare the effectiveness of CC and VNS in patients with LGS studied in the last 30 years. MATERIALS AND METHODS We conducted a systematic review with meta-analysis and collected papers from PubMed (MEDLINE), Ovidsp, Web of Science, and Cochrane Library data bases. The articles analyzed were published between January 1990 and December 2020. Keywords were chosen based on internal and external validation in the PubMed data base (the analysis is available in the Supplementary Data Supplementary Appendix). Prospective or retrospective case reports (n ≥ 2), case series, cohort studies, or case-control studies involving patients with LGS were included in the analysis. We selected studies that had no age or sex restriction and that provided data on seizures before and after treatments. Studies not written in English, published without peer review, or not indexed in the data bases were excluded. Other exclusion criteria were the absence of seizure data and the impossibility of extracting this information from the studies. To analyze the results, we used the random-effects model based on the assessment of heterogeneity (I2 statistics) in two scenarios. In scenario 1, we assessed the incidence of patients with a seizure reduction ≥ 50%; in scenario 2, we assessed the incidence of patients with a seizure reduction > 0%. RESULTS Of the 7418 articles found using the keywords, 32 were considered eligible. Of these, 18 articles were on VNS (175 patients) and 14 on CC (107 patients). For scenario 1 (seizure reduction ≥ 50%), CC had an incidence of 65% (95% CI, 37%-94%), with an I2 value of 82.7%; VNS had an incidence of 34% (95% CI, 11%-57%), with an I2 value of 80.7%. For scenario 2 (seizure reduction > 0%), CC had an incidence of 80% (95% CI, 58%-100%), with an I2 value of 84.7%; VNS had an incidence of 64% (95% CI, 38%-89%), with an I2 value of 90.8%. There was an overlap of confidence intervals, with no statistical difference between the treatments in both scenarios. DISCUSSION Our analysis of LGS showed that the CC and VNS treatments are significantly beneficial to reducing seizures, without superiority between them.
Collapse
Affiliation(s)
- Davi Ferreira Soares
- Department of Neurosurgery IAMSPE-State Government Employee Medical Assistance Institute, São Paulo, Brazil; Department of Neurosurgery, FMABC - ABC Medical School, Santo André, Brazil.
| | - Paulo Henrique Pires de Aguiar
- Department of Neurosurgery IAMSPE-State Government Employee Medical Assistance Institute, São Paulo, Brazil; Department of Neurosurgery, FMABC - ABC Medical School, Santo André, Brazil
| |
Collapse
|
7
|
Abstract
BACKGROUND This is an updated version of the Cochrane Review published in 2015. Epilepsy is a chronic neurological disorder, characterised by recurring, unprovoked seizures. Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with drug-resistant epilepsy. VNS consists of chronic, intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. OBJECTIVES To evaluate the efficacy and tolerability of VNS when used as add-on treatment for people with drug-resistant focal epilepsy. SEARCH METHODS For this update, we searched the Cochrane Register of Studies (CRS), and MEDLINE Ovid on 3 March 2022. We imposed no language restrictions. CRS Web includes randomised or quasi-randomised controlled trials from the Specialised Registers of Cochrane Review Groups, including Epilepsy, CENTRAL, PubMed, Embase, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform. SELECTION CRITERIA We considered parallel or cross-over, randomised, double-blind, controlled trials of VNS as add-on treatment, which compared high- and low-level stimulation (including three different stimulation paradigms: rapid, mild, and slow duty-cycle), and VNS stimulation versus no stimulation, or a different intervention. We considered adults or children with drug-resistant focal seizures who were either not eligible for surgery, or who had failed surgery. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods, assessing the following outcomes: 1. 50% or greater reduction in seizure frequency 2. Treatment withdrawal (any reason) 3. Adverse effects 4. Quality of life (QoL) 5. Cognition 6. Mood MAIN RESULTS We did not identify any new studies for this update, therefore, the conclusions are unchanged. We included the five randomised controlled trials (RCT) from the last update, with a total of 439 participants. The baseline phase ranged from 4 to 12 weeks, and double-blind treatment phases from 12 to 20 weeks. We rated two studies at an overall low risk of bias, and three at an overall unclear risk of bias, due to lack of reported information about study design. Effective blinding of studies of VNS is difficult, due to the frequency of stimulation-related side effects, such as voice alteration. The risk ratio (RR) for 50% or greater reduction in seizure frequency was 1.73 (95% confidence interval (CI) 1.13 to 2.64; 4 RCTs, 373 participants; moderate-certainty evidence), showing that high frequency VNS was over one and a half times more effective than low frequency VNS. The RR for treatment withdrawal was 2.56 (95% CI 0.51 to 12.71; 4 RCTs, 375 participants; low-certainty evidence). Results for the top five reported adverse events were: hoarseness RR 2.17 (99% CI 1.49 to 3.17; 3 RCTs, 330 participants; moderate-certainty evidence); cough RR 1.09 (99% CI 0.74 to 1.62; 3 RCTs, 334 participants; moderate-certainty evidence); dyspnoea RR 2.45 (99% CI 1.07 to 5.60; 3 RCTs, 312 participants; low-certainty evidence); pain RR 1.01 (99% CI 0.60 to 1.68; 2 RCTs; 312 participants; moderate-certainty evidence); paraesthesia 0.78 (99% CI 0.39 to 1.53; 2 RCTs, 312 participants; moderate-certainty evidence). Results from two studies (312 participants) showed that a small number of favourable QOL effects were associated with VNS stimulation, but results were inconclusive between high- and low-level stimulation groups. One study (198 participants) found inconclusive results between high- and low-level stimulation for cognition on all measures used. One study (114 participants) found the majority of participants showed an improvement in mood on the Montgomery-Åsberg Depression Rating Scale compared to baseline, but results between high- and low-level stimulation were inconclusive. We found no important heterogeneity between studies for any of the outcomes. AUTHORS' CONCLUSIONS VNS for focal seizures appears to be an effective and well-tolerated treatment. Results of the overall efficacy analysis show that high-level stimulation reduced the frequency of seizures better than low-level stimulation. There were very few withdrawals, which suggests that VNS is well tolerated. Adverse effects associated with implantation and stimulation were primarily hoarseness, cough, dyspnoea, pain, paraesthesia, nausea, and headache, with hoarseness and dyspnoea more likely to occur with high-level stimulation than low-level stimulation. However, the evidence for these outcomes is limited, and of moderate to low certainty. Further high-quality research is needed to fully evaluate the efficacy and tolerability of VNS for drug-resistant focal seizures.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Alexandra Rigby
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
8
|
Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R. Effect of Vagus Nerve Stimulation on Attention and Working Memory in Neuropsychiatric Disorders: A Systematic Review. Neuromodulation 2022; 25:343-355. [PMID: 35088719 DOI: 10.1016/j.neurom.2021.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND It has been suggested that vagus nerve stimulation (VNS) may enhance attention and working memory. The neuromodulator effects of VNS are thought to activate the release of neurotransmitters involving cognition and to promote neuronal plasticity. Therefore, VNS has been studied for its effects on attention and working memory impairment in neuropsychiatric disorders. OBJECTIVES This study aimed to assess the effects of VNS on attention and working memory among patients with neuropsychiatric disorders, examine stimulation parameters, provide mechanistic hypotheses, and propose future studies using VNS. MATERIALS AND METHODS We conducted a systematic review using electronic databases MEDLINE (Ovid), Embase (Ovid), Cochrane library, and PsycINFO (Ovid). Narrative analysis was used to describe the therapeutic effects of VNS on attention and working memory, describe stimulation parameters, and propose explanatory mechanisms. RESULTS We identified 20 studies reporting VNS effects on attention and working memory in patients with epilepsy or mood disorders. For epilepsy, there was one randomized controlled trial from all 18 studies. It demonstrated no statistically significant differences in the cognitive tasks between active and control VNS. From a within-subject experimental design, significant improvement of working memory after VNS was demonstrated. One of three nonrandomized controlled trials found significantly improved attentional performance after VNS. The cohort studies compared VNS and surgery and found attentional improvement in both groups. Nine of 12 pretest-posttest studies showed improvement of attention or working memory after VNS. For mood disorders, although one study showed significant improvement of attention following VNS, the other did not. CONCLUSIONS This review suggests that, although we identified some positive results from eligible studies, there is insufficient good-quality evidence to establish VNS as an effective intervention to enhance attention and working memory in persons with neuropsychiatric disorders. Further studies assessing the efficacy of such intervention are needed.
Collapse
Affiliation(s)
- Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Cognitive, Clinical & Computational Neuroscience Lab, Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Justine J List
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Nithya Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Gursimrat S Bhatti
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Complete callosotomy in children with drop attacks; A retrospective monocentric study of 50 patients. Seizure 2022; 96:34-42. [DOI: 10.1016/j.seizure.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
|
10
|
Management and outcome of vagus nerve stimulator implantation: experience of an otolaryngeal/neuropediatric cooperation. Eur Arch Otorhinolaryngol 2021; 278:3891-3899. [PMID: 34196736 PMCID: PMC8382619 DOI: 10.1007/s00405-021-06943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/12/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Vagus nerve stimulator (VNS) implantation is an established therapy for pharmacoresistant epilepsy that is not amenable to curative epilepsy surgery. Historically, VNS implantation has been performed by neurosurgeons, but otolaryngologist involvement is increasingly common. In this retrospective study, we aimed to evaluate the efficacy and safety of VNS implantation in children and adolescents from the otolaryngologists' perspective. METHODS This study included children and adolescents who had undergone VNS implantation at the study center between 2014 and 2018. Patient files were analyzed with regards to the durations of device implantation and hospitalization, postoperative complications, and clinical outcome, including seizure frequency, clinical global impression of improvement (CGI-I) score, and quality of life (QoL). RESULTS A total of 73 children underwent VNS surgery. The median age at implantation was 9.3 ± 4.6 years, and median epilepsy duration before VNS surgery was 6 ± 4 years. Lennox-Gastaut syndrome was the most common syndrome diagnosis (62.3%), and structural abnormalities (49.3%) the most frequent etiology. Operation times ranged from 30 to 200 min, and median postoperative hospitalization length was 2 ± 0.9 days. No complications occurred, except for four revisions and two explantations due to local infections (2.7%). Among our patients, 76.7% were responders (≥ 50% reduction in seizure frequency), 72.1% showed improved CGI-I scores, and 18.6-60.5% exhibited considerable improvements in the QoL categories energy, emotional health, and cognitive functions. CONCLUSION Our results indicate that VNS implantation is a highly effective and safe treatment option for children and adolescents with AED-refractory epilepsies who are not candidates for curative epilepsy surgery.
Collapse
|
11
|
Ye VC, Mansouri A, Warsi NM, Ibrahim GM. Atonic seizures in children: a meta-analysis comparing corpus callosotomy to vagus nerve stimulation. Childs Nerv Syst 2021; 37:259-267. [PMID: 32529546 DOI: 10.1007/s00381-020-04698-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Atonic seizures are associated with a particularly poor response to medical treatment. We performed a systematic review and meta-analysis to compare the efficacy of corpus callosotomy (CC) and vagus nerve stimulation (VNS) in the management of atonic seizures in the pediatric population. METHODS A literature search was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations, focusing on atonic seizures, CC, and VNS in pediatric populations. Pertinent clinical data were extracted and analyzed. Pooled effects between groups were calculated as standardized error (SE) with 95% confidence intervals (CIs). To assess for statistical significance, the Z-test was performed, using the pooled effect size (ES) and 95% CI for each intervention. RESULTS A total of 31 studies met the inclusion criteria, with 24 studies encompassing 425 children treated with CC and 7 studies encompassing 108 children treated with VNS. Twenty-four studies were included in a meta-analysis. There was a statistically significant difference in the primary outcome of atonic seizure control in favor of CC (overall effect size (ES) 0.73, 95% CI 0.69-0.77 for CC, ES 0.4, 95% CI 0.28-0.51 for VNS, p = 0.003). There was a higher rate of complications requiring reoperation in the CC cohort (6.6% vs. 3.8%) and a 14% rate of symptomatic disconnection syndrome. CONCLUSIONS While both techniques are safe, CC provides a much higher chance of effectively managing this morbid seizure type albeit with a higher risk of re-operation and disconnection syndrome.
Collapse
Affiliation(s)
- Vincent C Ye
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Alireza Mansouri
- Department of Neurosurgery, Pennsylvania State University, Hershey, PA, USA
| | - Nebras M Warsi
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
- Program in Neurosciences and Mental Health Research Institute, Department of Surgery, Institute of Biomaterials and Biomedical Engineering, The University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Cukiert A, Cukiert CM, Burattini JA, Mariani PP. Long-term seizure outcome during continuous bipolar hippocampal deep brain stimulation in patients with temporal lobe epilepsy with or without mesial temporal sclerosis: An observational, open-label study. Epilepsia 2020; 62:190-197. [PMID: 33258105 DOI: 10.1111/epi.16776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We present the findings related to seizure outcome during hippocampal deep brain stimulation (Hip-DBS) in patients with refractory temporal lobe epilepsy. METHODS Twenty-five patients submitted to Hip-DBS were studied. All patients were evaluated with interictal and ictal electroencephalography (EEG) and high-resolution 1.5 T magnetic resonance imaging (MRI). The hippocampus was targeted directly on MRI using a posterior occipital burr hole approach. Bipolar continuous stimulation was ramped up until 3.0 V (300 µs, 130 Hz). Patients were considered responders if at least 50% seizure frequency reduction was obtained. RESULTS Median age was 39 years; median follow-up time was 57 months (16 women). All patients had focal with impaired awareness seizure (FIAS) and 23 patients had focal aware seizure (FAS). Baseline median FAS and FIAS frequency was 8. Ictal EEG showed unilateral (n = 10) or bilateral (n = 15) seizure onset. MRI showed unilateral (n = 11) or bilateral (n = 8) mesial temporal sclerosis (MTS) and was normal in six6 patients. Fifteen patients were submitted to bilateral and 10 patients to unilateral Hip-DBS. Median reduction in FAS frequency was 66%. Eighteen patients with FAS were considered responders and five (21%) were free of FAS. Median FIAS frequency (n = 25) reduction was 91%. Twenty-two patients were considered responders and eight (32%) were free of FIAS. FIAS were significantly more reduced then FAS (P = .017). There was no relation between any contact's position within the hippocampus and outcome for either FAS (P = .727) or FIAS (P = .410). There was no difference in outcome in patients submitted to either unilateral or bilateral Hip-DBS regarding FAS (P = .978) or FIAS (P = .693). SIGNIFICANCE Hip-DBS significantly reduced the frequency of both FAS and FIAS in this cohort of patients with refractory temporal lobe epilepsy. Hip-DBS might represent a good therapeutic option in such patients not amenable to resective surgery.
Collapse
|
13
|
Cukiert A, Cukiert CM, Mariani PP, Burattini JA. Impact of Cardiac-Based Vagus Nerve Stimulation Closed-Loop Stimulation on the Seizure Outcome of Patients With Generalized Epilepsy: A Prospective, Individual-Control Study. Neuromodulation 2020; 24:1018-1023. [PMID: 33047437 DOI: 10.1111/ner.13290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We designed a prospective, individual-controlled study to evaluate the effect of cardiac-based VNS (cbVNS) in a cohort of patients with generalized epilepsy (GE). MATERIALS AND METHODS Twenty patients were included. They were followed up for six months under regular VNS (rVNS) and subsequently for six months during cbVNS. Stimulation parameters were 500 μsec, 30 Hz, and up to 2.5 mA. Seizure frequency was documented after two, four, and six months during the rVNS and cbVNS phases. Patients with at least 50% seizure frequency reduction were considered responders. The total and relative amount of stimulation cycles generated by both rVNS and cbVNS activation were documented. Findings during rVNS were compared to baseline and cbVNS data were compared to those during rVNS. RESULTS There was a significant decrease in mean seizure frequency (61% [95% CI, 48-74]; p < 0.001) during the rVNS phase compared to baseline. There was no additional significant (16% [95% CI, 4-35]; p = 0.097) mean seizure frequency reduction during cbVNS compared to the rVNS phase. Fifteen patients (75%) were considered responders after rVNS. Four patients (20%) were considered responders after six months of cbVNS. During the cbVNS phase, the mean total number of cycles/day was 346, 354, and 333 for months two, four, and six, respectively; the cycles generated by rVNS were 142, 138, and 146 for months two, four, and six, respectively; and cycles generated by cbVNS were 204, 215, and 186 for months two, four, and six, respectively. There was no relationship between the mean total number of cycles (-6[95% CI, -85 to 72]; p = 0.431), the mean number of auto-stimulation cycles (27[95% CI,-112 to 166]; p = 0.139), the mean number of regular cycles (-33[95% CI,-123 to 57]; p = 0.122), or the mean percentage of auto-stimulation cycles (13[95% CI,19- 45]; p = 0.109) and outcome during the cbVNS phase. Eight patients showed some decrease in seizure frequency during cbVNS. CONCLUSIONS rVNS was effective in reducing seizure frequency in patients with generalized epilepsy, but activation of the cbVNS feature did not add significantly to rVNS efficacy. On the other hand, although not statistically significant, 40% of the patients showed some reduction in seizure frequency, which might prove useful at an individual level.
Collapse
Affiliation(s)
- Arthur Cukiert
- Department of Neurosurgery, São Paulo Epilepsy Clinic, São Paulo, SP, Brazil
| | | | - Pedro Paulo Mariani
- Department of Neurosurgery, São Paulo Epilepsy Clinic, São Paulo, SP, Brazil
| | | |
Collapse
|
14
|
Cukiert A, Cukiert CM, Burattini JA, Mariani PP. Seizure outcome during bilateral, continuous, thalamic centromedian nuclei deep brain stimulation in patients with generalized epilepsy: a prospective, open-label study. Seizure 2020; 81:304-309. [PMID: 32947179 DOI: 10.1016/j.seizure.2020.08.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE We report on the seizure frequency and attention outcome during thalamic centromedian stimulation (CM-DBS) in patients with refractory generalized epilepsy (GE). METHODS Twenty consecutive patients with GE who were submitted to CM-DBS and had at least one year of follow-up were prospectively studied. The CM was targeted bilaterally. Stimulation intensity was ramped up (bipolar, continuous, 130 Hz; 300μsec) until 4.5 V or until side effects developed. Contacts` position was determined on postoperative volumetric MRI scans. Attention was qualitatively evaluated using the SNAP-IV (Swanson, Nolan, and Pelham) questionnaire. Patients were considered responders during CM-DBS if an at least 50% seizure frequency reduction was obtained compared to baseline. RESULTS Median age was 15.5 years (13 males). Median follow-up time was 2.55 years. EEG disclosed generalized spike-and wave discharges in all patients. MRI was normal in 10 patients, showed diffuse atrophy in 6 patients, and showed abnormalities in 4 patients (3 patients had bilateral cortical development abnormalities and one had unilateral hemispheric atrophy). Patients presented with daily multiple seizure types (8 to 66 per day; median: 37), including tonic, atonic, myoclonic, atypical absence and generalized tonic-clonic seizures. Mean DBS intensity was 4.3 V. An insertional effect was noted in 14 patients. CM-DBS was able to significantly reduce the frequency of tonic (p < 0.001), atypical absence seizures (p < 0.001), atonic seizures (p = 0.001) and bilateral generalized tonic-clonic seizures (p = 0.004). One patient became seizure-free. Ninety percent of the patients were considered responders (>50% seizure frequency reduction). All patients showed some improvement in attention. The mean number of items in which improvement was noted in the SNAP-IV questionnaire was 4.8. There was a significant relationship between overall seizure frequency reduction and improvement of attention (p = 0.033). DISCUSSION This prospective, open label study included a large, homogeneous cohort and provided evidence on the efficacy of CM-DBS in reducing the seizure burden and increasing attention in patients with refractory generalized epilepsy.
Collapse
|
15
|
Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, Gerrard J, Nilsson D, Roessler K, Rutka J, Sharan A, Spencer D, Cukiert A. How technology is driving the landscape of epilepsy surgery. Epilepsia 2020; 61:841-855. [PMID: 32227349 PMCID: PMC7317716 DOI: 10.1111/epi.16489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022]
Abstract
This article emphasizes the role of the technological progress in changing the landscape of epilepsy surgery and provides a critical appraisal of robotic applications, laser interstitial thermal therapy, intraoperative imaging, wireless recording, new neuromodulation techniques, and high-intensity focused ultrasound. Specifically, (a) it relativizes the current hype in using robots for stereo-electroencephalography (SEEG) to increase the accuracy of depth electrode placement and save operating time; (b) discusses the drawback of laser interstitial thermal therapy (LITT) when it comes to the need for adequate histopathologic specimen and the fact that the concept of stereotactic disconnection is not new; (c) addresses the ratio between the benefits and expenditure of using intraoperative magnetic resonance imaging (MRI), that is, the high technical and personnel expertise needed that might restrict its use to centers with a high case load, including those unrelated to epilepsy; (d) soberly reviews the advantages, disadvantages, and future potentials of neuromodulation techniques with special emphasis on the differences between closed and open-loop systems; and (e) provides a critical outlook on the clinical implications of focused ultrasound, wireless recording, and multipurpose electrodes that are already on the horizon. This outlook shows that although current ultrasonic systems do have some limitations in delivering the acoustic energy, further advance of this technique may lead to novel treatment paradigms. Furthermore, it highlights that new data streams from multipurpose electrodes and wireless transmission of intracranial recordings will become available soon once some critical developments will be achieved such as electrode fidelity, data processing and storage, heat conduction as well as rechargeable technology. A better understanding of modern epilepsy surgery will help to demystify epilepsy surgery for the patients and the treating physicians and thereby reduce the surgical treatment gap.
Collapse
Affiliation(s)
- Christian Dorfer
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Bertil Rydenhag
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Gordon Baltuch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vivek Buch
- Center for Functional and Restorative NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jeffrey Blount
- Division of NeurosurgeryUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Robert Bollo
- Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUTUSA
| | - Jason Gerrard
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Daniel Nilsson
- Department of Clinical NeuroscienceInstitute of Neuroscience and PhysiologyThe Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of NeurosurgerySahlgrenska University HospitalGothenburgSweden
| | - Karl Roessler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- Department of NeurosurgeryUniversity of ErlangenErlangenGermany
| | - James Rutka
- Division of Pediatric NeurosurgeryThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Ashwini Sharan
- Department of Neurosurgery and NeurologyThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dennis Spencer
- Department of NeurosurgeryYale University School of MedicineNew HavenCTUSA
| | - Arthur Cukiert
- Neurology and Neurosurgery Clinic Sao PauloClinica Neurologica CukiertSao PauloBrazil
| |
Collapse
|
16
|
Borrelli S, El Tahry R. Therapeutic approach to Lennox-Gastaut syndrome: a systematic review. Acta Neurol Belg 2019; 119:315-324. [PMID: 31286465 DOI: 10.1007/s13760-019-01185-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 01/18/2023]
Abstract
Lennox-Gastaut syndrome (LGS) is a rare, age-related syndrome, characterized by multiple seizure types, mental regression, and specific EEG abnormalities. It is one of the most challenging epilepsy: treatment is rarely effective and the final prognosis remains poor, despite the availability of several antiepileptic drugs, validated through well-designed, randomized, controlled trials. However, it is reasonable to consider non-medical treatments, such as surgery, after failure of two-to-three drugs. This review has as goal to describe systematically the different therapeutic options for LGS, including, not only recognized antiepileptic drugs, but also new oral drugs, immune therapy, diet, surgery, and neurostimulation techniques.
Collapse
Affiliation(s)
- Serena Borrelli
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium.
| | - Riem El Tahry
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Av. Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
17
|
Payne SC, Furness JB, Burns O, Sedo A, Hyakumura T, Shepherd RK, Fallon JB. Anti-inflammatory Effects of Abdominal Vagus Nerve Stimulation on Experimental Intestinal Inflammation. Front Neurosci 2019; 13:418. [PMID: 31133776 PMCID: PMC6517481 DOI: 10.3389/fnins.2019.00418] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Electrical stimulation of the cervical vagus nerve is an emerging treatment for inflammatory bowel disease (IBD). However, side effects from cervical vagal nerve stimulation (VNS) are often reported by patients. Here we hypothesized that stimulating the vagus nerve closer to the end organ will have fewer off-target effects and will effectively reduce intestinal inflammation. Specifically, we aimed to: (i) compare off-target effects during abdominal and cervical VNS; (ii) verify that VNS levels were suprathreshold; and (iii) determine whether abdominal VNS reduces chemically-induced intestinal inflammation in rats. An electrode array was developed in-house to stimulate and record vagal neural responses. In a non-recovery experiment, stimulation-induced off-target effects were measured by implanting the cervical and abdominal vagus nerves of anaesthetized rats (n = 5) and recording changes to heart rate, respiration and blood pressure during stimulation (10 Hz; symmetric biphasic current pulse; 320 nC per phase). In a chronic experiment, the efficacy of VNS treatment was assessed by implanting an electrode array onto the abdominal vagus nerve and recording in vivo electrically-evoked neural responses during the implantation period. After 14 days, the intestine was inflamed with TNBS (2.5% 2,4,6-trinitrobenzene sulphonic acid) and rats received therapeutic VNS (n = 7; 10 Hz; 320 nC per phase; 3 h/day) or no stimulation (n = 8) for 4.5 days. Stool quality, plasma C-reactive protein and histology of the inflamed intestine were assessed. Data show that abdominal VNS had no effect (two-way RM-ANOVA: P ≥ 0.05) on cardiac, respiratory and blood pressure parameters. However, during cervical VNS heart rate decreased by 31 ± 9 beats/minute (P ≥ 0.05), respiration was inhibited and blood pressure decreased. Data addressing efficacy of VNS treatment show that electrically-evoked neural response thresholds remained stable (one-way RM ANOVA: P ≥ 0.05) and therapeutic stimulation remained above threshold. Chronically stimulated rats, compared to unstimulated rats, had improved stool quality (two-way RM ANOVA: P < 0.0001), no blood in feces (P < 0.0001), reduced plasma C-reactive protein (two-way RM ANOVA: P < 0.05) and a reduction in resident inflammatory cell populations within the intestine (Kruskal–Wallis: P < 0.05). In conclusion, abdominal VNS did not evoke off-target effects, is an effective treatment of TNBS-induced inflammation, and may be an effective treatment of IBD in humans.
Collapse
Affiliation(s)
- Sophie C Payne
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Owen Burns
- Bionics Institute, Fitzroy, VIC, Australia
| | - Alicia Sedo
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - James B Fallon
- Bionics Institute, Fitzroy, VIC, Australia.,Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia.,Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Schulze-Bonhage A. Long-term outcome in neurostimulation of epilepsy. Epilepsy Behav 2019; 91:25-29. [PMID: 30929666 DOI: 10.1016/j.yebeh.2018.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
For patients with pharmacoresistant focal epilepsy, neurostimulation offers nonpharmacological strategies to improve seizure control. Vagus nerve stimulation (VNS), deep brain stimulation of the anterior thalamic nuclei, and responsive neurostimulation (RNS) are approved therapies which have shown efficacy in randomized short-term trials. Controlled data from prospective studies are needed to confirm reports on stable or even increasing evidence from studies with longer follow-up and to confirm that neurostimulation may offer advantages also regarding cognitive tolerability and sudden unexpected death in epilepsy (SUDEP)-risk. Here, a review of long-term outcomes is given, highlighting both achievements in terms of efficacy and tolerability and limitations of conclusions thereon related to an uncontrolled data basis and decreasing cohort sizes. This article is part of the Special Issue? "Individualized Epilepsy Management: Medicines, Surgery and Beyond".
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
19
|
Berg AT, Coryell J, Saneto RP, Grinspan ZM, Alexander JJ, Kekis M, Sullivan JE, Wirrell EC, Shellhaas RA, Mytinger JR, Gaillard WD, Kossoff EH, Valencia I, Knupp KG, Wusthoff C, Keator C, Dobyns WB, Ryan N, Loddenkemper T, Chu CJ, Novotny EJ, Koh S. Early-Life Epilepsies and the Emerging Role of Genetic Testing. JAMA Pediatr 2017; 171:863-871. [PMID: 28759667 PMCID: PMC5710404 DOI: 10.1001/jamapediatrics.2017.1743] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Early-life epilepsies are often a consequence of numerous neurodevelopmental disorders, most of which are proving to have genetic origins. The role of genetic testing in the initial evaluation of these epilepsies is not established. OBJECTIVE To provide a contemporary account of the patterns of use and diagnostic yield of genetic testing for early-life epilepsies. DESIGN, SETTING, AND PARTICIPANTS In this prospective cohort, children with newly diagnosed epilepsy with an onset at less than 3 years of age were recruited from March 1, 2012, to April 30, 2015, from 17 US pediatric hospitals and followed up for 1 year. Of 795 families approached, 775 agreed to participate. Clinical diagnosis of the etiology of epilepsy were characterized based on information available before genetic testing was performed. Added contributions of cytogenetic and gene sequencing investigations were determined. EXPOSURES Genetic diagnostic testing. MAIN OUTCOMES AND MEASURES Laboratory-confirmed pathogenic variant. RESULTS Of the 775 patients in the study (367 girls and 408 boys; median age of onset, 7.5 months [interquartile range, 4.2-16.5 months]), 95 (12.3%) had acquired brain injuries. Of the remaining 680 patients, 327 (48.1%) underwent various forms of genetic testing, which identified pathogenic variants in 132 of 327 children (40.4%; 95% CI, 37%-44%): 26 of 59 (44.1%) with karyotyping, 32 of 188 (17.0%) with microarrays, 31 of 114 (27.2%) with epilepsy panels, 11 of 33 (33.3%) with whole exomes, 4 of 20 (20.0%) with mitochondrial panels, and 28 of 94 (29.8%) with other tests. Forty-four variants were identified before initial epilepsy presentation. Apart from dysmorphic syndromes, pathogenic yields were highest for children with tuberous sclerosis complex (9 of 11 [81.8%]), metabolic diseases (11 of 14 [78.6%]), and brain malformations (20 of 61 [32.8%]). A total of 180 of 446 children (40.4%), whose etiology would have remained unknown without genetic testing, underwent some testing. Pathogenic variants were identified in 48 of 180 children (26.7%; 95% CI, 18%-34%). Diagnostic yields were greater than 15% regardless of delay, spasms, and young age. Yields were greater for epilepsy panels (28 of 96 [29.2%]; P < .001) and whole exomes (5 of 18 [27.8%]; P = .02) than for chromosomal microarray (8 of 101 [7.9%]). CONCLUSIONS AND RELEVANCE Genetic investigations, particularly broad sequencing methods, have high diagnostic yields in newly diagnosed early-life epilepsies regardless of key clinical features. Thorough genetic investigation emphasizing sequencing tests should be incorporated into the initial evaluation of newly presenting early-life epilepsies and not just reserved for those with severe presentations and poor outcomes.
Collapse
Affiliation(s)
- Anne T. Berg
- Epilepsy Center, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason Coryell
- Department of Pediatrics, Oregon Health & Science University, Portland,Department of Neurology, Oregon Health & Science University, Portland
| | - Russell P. Saneto
- Division of Pediatric Neurology, Seattle Children’s Hospital, Seattle, Washington,Department of Neurology, University of Washington, Seattle
| | - Zachary M. Grinspan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York,Department of Pediatrics, New York Presbyterian Hospital, New York, New York,Health Information Technology Evaluation Collaborative, New York, New York
| | | | - Mariana Kekis
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | | | | | | | - John R. Mytinger
- Department of Pediatrics, The Ohio State University, Columbus,Department of Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - William D. Gaillard
- Department of Neurology, Children’s National Health System, George Washington University School of Medicine, Washington, DC
| | - Eric H. Kossoff
- Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland,Department of Pediatrics, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ignacio Valencia
- Section of Neurology, St. Christopher’s Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kelly G. Knupp
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora
| | - Courtney Wusthoff
- Division of Child Neurology, Stanford University, Palo Alto, California
| | - Cynthia Keator
- Cook Children’s Health Care System, Jane and John Justin Neurosciences Center, Fort Worth, Texas
| | - William B. Dobyns
- Division of Pediatric Neurology, Seattle Children’s Hospital, Seattle, Washington,Division of Pediatric Neurology, Seattle Children’s Hospital, Seattle, Washington,Department of Pediatrics, University of Washington, Seattle
| | - Nicole Ryan
- Department of Neurology, The Children’s Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia,Department of Pediatrics, The Children’s Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Edward J. Novotny
- Division of Pediatric Neurology, Seattle Children’s Hospital, Seattle, Washington,Department of Neurology, University of Washington, Seattle,Department of Pediatrics, University of Washington, Seattle,Center for Integrative Brain Research, University of Washington, Seattle,Seattle Children’s Research Institute, Seattle, Washington,Department of Pediatrics, University of Washington, Seattle
| | - Sookyong Koh
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Meng FG, Jia FM, Ren XH, Ge Y, Wang KL, Ma YS, Ge M, Zhang K, Hu WH, Zhang X, Hu W, Zhang JG. Vagus Nerve Stimulation for Pediatric and Adult Patients with Pharmaco-resistant Epilepsy. Chin Med J (Engl) 2016; 128:2599-604. [PMID: 26415797 PMCID: PMC4736866 DOI: 10.4103/0366-6999.166023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Over past two decades, vagus nerve stimulation (VNS) has been widely used and reported to alleviate seizure frequency worldwide, however, so far, only hundreds of patients with pharmaco-resistant epilepsy (PRE) have been treated with VNS in mainland China. The study aimed to evaluate the effectiveness of VNS for Chinese patients with PRE and compare its relationship with age cohort and gender. Methods: We retrospectively assessed the clinical outcome of 94 patients with PRE, who were treated with VNS at Beijing Fengtai Hospital and Beijing Tiantan Hospital between November 2008 and April 2014 from our database of 106 consecutive patients. The clinical data analysis was retrospectively examined. Results: Seizure frequency significantly decreased with VNS therapy after intermittent stimulation of the vagus nerve. At last follow-up, we found McHugh classifications of Class I in 33 patients (35.1%), Class II in 27 patients (28.7%), Class III in 20 patients (21.3%), Class IV in 3 patients (3.2%), and Class V in 11 patients (11.7%). Notably, 8 (8.5%) patients were seizure-free while ≥50% seizure frequency reduction occurred in as many as 60 patients (63.8%). Furthermore, with regard to the modified Engel classification, 12 patients (12.8%) were classified as Class I, 11 patients (11.7%) were classified as Class II, 37 patients (39.4%) were classified as Class III, 34 patients (36.2%) were classified as Class IV. We also found that the factors of gender or age are not associated with clinical outcome. Conclusions: This comparative study confirmed that VNS is a safe, well-tolerated, and effective treatment for Chinese PRE patients. VNS reduced the seizure frequency regardless of age or gender of studied patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian-Guo Zhang
- Beijing Key Laboratory of Neuromodulation, Beijing Municipal Science and Technology Commission; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
21
|
Serdaroglu A, Arhan E, Kurt G, Erdem A, Hirfanoglu T, Aydin K, Bilir E. Long term effect of vagus nerve stimulation in pediatric intractable epilepsy: an extended follow-up. Childs Nerv Syst 2016; 32:641-6. [PMID: 26767841 DOI: 10.1007/s00381-015-3004-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Over the past two decades, vagus nerve stimulation (VNS) has become an accepted and viable treatment modality for intractable epilepsy both in children and adults. Earlier studies have demonstrated short-term seizure outcomes, usually for up to 5 years; so far, none have reported an extended outcome in children. We aimed to assess long term seizure outcome in children with intractable epilepsy for more than 5 years. METHODS We identified patients who had VNS implantation for treatment of intractable epilepsy from March 2000 to March 2015 at our Epilepsy Center and collected data including demographic, age at epilepsy onset and VNS implantation, duration of epilepsy, seizure type, number of antiepilepsy drugs (AEDs), and monthly seizure frequency before VNS implantation and at the last clinic visit. Phone surveys were conducted with patients without recent clinic follow-up. RESULTS Fifty-six patients (aged 4-17 at the time of implant) are the subjects of the study. Seizure reduction of >50 % was achieved in 9.8 % (6th month), 24 % (2nd year), 46.4 % (3rd year), and 54 %(5th year), and overall 35 (62.5 %) of the 56 subjects had a greater than 50 % reduction in seizure frequency at the last follow-up. Eleven patients became seizure free. The results, once obtained, were maintained steadily or even improved over time without any loss of efficacy during the follow-up. The only parameter, significantly related with clinical response, was age at seizure onset. The most frequent adverse events were hoarseness, cough, sore throat, and anorexia, experienced by 13 patients. Two patients had local wound infections and lead to the removal of the stimulator. An improvement in alertness, attention, and psychomotor activity, independent of the efficacy of vagal nerve stimulation, was observed in 8 patients. CONCLUSION To our knowledge, this is the first pediatric study evaluating seizure outcome over more than 5 years of follow-up, and demonstrates a favorable seizure outcome of >50 % seizure frequency in 62.5 % of patients and seizure freedom in 11 patients. It is well tolerated over an extended period of time.
Collapse
Affiliation(s)
- Ayse Serdaroglu
- Pediatric Neurology Department, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey
| | - Ebru Arhan
- Pediatric Neurology Department, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey.
| | - Gökhan Kurt
- Department of Neurosurgery, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey
| | - Atilla Erdem
- Department of Neurosurgery, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Tugba Hirfanoglu
- Department of Neurosurgery, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey
| | - Kursad Aydin
- Pediatric Neurology Department, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey
| | - Erhan Bilir
- Department of Neurology, Gazi University Faculty of Medicine, 10th Floor Besevler, Ankara, Turkey
| |
Collapse
|
22
|
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a neuromodulatory treatment that is used as an adjunctive therapy for treating people with medically refractory epilepsy. VNS consists of chronic intermittent electrical stimulation of the vagus nerve, delivered by a programmable pulse generator. The majority of people given a diagnosis of epilepsy have a good prognosis, and their seizures will be controlled by treatment with a single antiepileptic drug (AED), but up to 20%-30% of patients will develop drug-resistant epilepsy, often requiring treatment with combinations of AEDs. The aim of this systematic review was to overview the current evidence for the efficacy and tolerability of vagus nerve stimulation when used as an adjunctive treatment for people with drug-resistant partial epilepsy. This is an updated version of a Cochrane review published in Issue 7, 2010. OBJECTIVES To determine:(1) The effects on seizures of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation (presumed sub-therapeutic dose); and(2) The adverse effect profile of VNS compared to controls e.g. high-level stimulation compared to low-level stimulation. SEARCH METHODS We searched the Cochrane Epilepsy Group's Specialised Register (23 February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 23 February 2015), MEDLINE (1946 to 23 February 2015), SCOPUS (1823 to 23 February 2015), ClinicalTrials.gov (23 February 2015) and ICTRP (23 February 2015). No language restrictions were imposed. SELECTION CRITERIA The following study designs were eligible for inclusion: randomised, double-blind, parallel or crossover studies, controlled trials of VNS as add-on treatment comparing high and low stimulation paradigms (including three different stimulation paradigms - duty cycle: rapid, mid and slow) and VNS stimulation versus no stimulation or a different intervention. Eligible participants were adults or children with drug-resistant partial seizures not eligible for surgery or who failed surgery. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion and extracted data. The following outcomes were assessed: (a) 50% or greater reduction in total seizure frequency; (b) treatment withdrawal (any reason); (c) adverse effects; (d) quality of life; (e) cognition; (f) mood. Primary analyses were intention-to-treat. Sensitivity best and worst case analyses were also undertaken to account for missing outcome data. Pooled Risk Ratios (RR) with 95% confidence intervals (95% Cl) were estimated for the primary outcomes of seizure frequency and treatment withdrawal. For adverse effects, pooled RRs and 99% CI's were calculated. MAIN RESULTS Five trials recruited a total of 439 participants and between them compared different types of VNS stimulation therapy. Baseline phase ranged from 4 to 12 weeks and double-blind treatment phases from 12 to 20 weeks in the five trials. Overall, two studies were rated as having a low risk of bias and three had an unclear risk of bias due to lack of reported information around study design. Effective blinding of studies of VNS is difficult due to the frequency of stimulation-related side effects such as voice alteration; this may limit the validity of the observed treatment effects. Four trials compared high frequency stimulation to low frequency stimulation and were included in quantitative syntheses (meta-analyses).The overall risk ratio (95% CI) for 50% or greater reduction in seizure frequency across all studies was 1.73 (1.13 to 2.64) showing that high frequency VNS was over one and a half times more effective than low frequency VNS. For this outcome, we rated the evidence as being moderate in quality due to incomplete outcome data in one included study; however results did not vary substantially and remained statistically significant for both the best and worst case scenarios. The risk ratio (RR) for treatment withdrawal was 2.56 (0.51 to 12.71), however evidence for this outcome was rated as low quality due to imprecision of the result and incomplete outcome data in one included study. The RR of adverse effects were as follows: (a) voice alteration and hoarseness 2.17 (99% CI 1.49 to 3.17); (b) cough 1.09 (99% CI 0.74 to 1.62); (c) dyspnea 2.45 (99% CI 1.07 to 5.60); (d) pain 1.01 (99% CI 0.60 to 1.68); (e) paresthesia 0.78 (99% CI 0.39 to 1.53); (f) nausea 0.89 (99% CI 0.42 to 1.90); (g) headache 0.90 (99% CI 0.48 to 1.69); evidence of adverse effects was rated as moderate to low quality due to imprecision of the result and/or incomplete outcome data in one included study. No important heterogeneity between studies was found for any of the outcomes. AUTHORS' CONCLUSIONS VNS for partial seizures appears to be an effective and well tolerated treatment in 439 included participants from five trials. Results of the overall efficacy analysis show that VNS stimulation using the high stimulation paradigm was significantly better than low stimulation in reducing frequency of seizures. Results for the outcome "withdrawal of allocated treatment" suggest that VNS is well tolerated as withdrawals were rare. No significant difference was found in withdrawal rates between the high and low stimulation groups, however limited information was available from the evidence included in this review so important differences between high and low stimulation cannot be excluded . Adverse effects associated with implantation and stimulation were primarily hoarseness, cough, dyspnea, pain, paresthesia, nausea and headache, with hoarseness and dyspnea more likely to occur on high stimulation than low stimulation. However, the evidence on these outcomes is limited and of moderate to low quality. Further high quality research is needed to fully evaluate the efficacy and tolerability of VNS for drug resistant partial seizures.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| | - Alexandra Rigby
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| | - Jennifer Weston
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| | - Anthony G Marson
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| | | |
Collapse
|
23
|
Al-Said Y, Baeesa S, Khalid M, Abdeen M, Kayyali HR. Vagus nerve stimulation for refractory epilepsy: experience from Saudi Arabia. Ann Saudi Med 2015; 35:41-5. [PMID: 26142937 PMCID: PMC6152542 DOI: 10.5144/0256-4947.2015.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) has been approved for the treatment of refractory partial epilepsy in adults and children over 12 years of age. Later on, its application expanded to include younger children and other types of epilepsy. We report our experience with this treatment modality for refractory epilepsy in Saudi Arabia. DESIGN AND SETTINGS Open-label, uncontrolled, retrospective study of patients with refractory epilepsy, who were treated with VNS in a tertiary care hospital from January 2010 to June 2013. PATIENTS AND METHODS Collected data included 26 patients' demographics, epilepsy characteristics, seizure frequency, and treatment history. Patients with a follow-up duration of minimum 12 months were included in the analysis. The examined outcome measures were seizure reduction rates, antiepileptic drugs (AEDs) burden, and impact on patients' quality of life (QOL). RESULTS Onset of seizures was from birth to 30 years. Patients' ages at VNS implantation ranged from 4 to 38 years (18.9 [8.7] years). Epilepsy was classified as focal in 8 patients (30%), multifocal in 9 patients (35%), and generalized in 9 patients (35%). The average number of AEDs failed before VNS was 4.2 (1.4). Greater than 50% seizure reduction was achieved in 50% of patients at 3 months, 67% at 6 months, 73% at 12 months, and 78% at 24 months. There was no significant reduction in AEDs burden during the same period. Subjective QOL improvement was reported by 72% of patients at 3 months, 83% at 6 months, 78% at 12 months, and 73% at 24 months after VNS. Minor adverse effects were reported in 27% of patients. One patient had the device replaced due to malfunction. CONCLUSION The experience with VNS in a single center in Saudi Arabia confirms that it is a safe and effective adjunctive therapy for refractory epilepsy in adult and pediatric patients.
Collapse
Affiliation(s)
| | | | | | | | - Husam R Kayyali
- Husam R. Kayyali, MD, Department of Neuroscience, King Faisal Specialist Hospital and Research Center, PO Box 40047 Jeddah, 21499 Saudi Arabia, T: +966 50 538 2029, F: +966 2 667 7777 Ext. 65813,
| |
Collapse
|
24
|
Orosz I, McCormick D, Zamponi N, Varadkar S, Feucht M, Parain D, Griens R, Vallée L, Boon P, Rittey C, Jayewardene AK, Bunker M, Arzimanoglou A, Lagae L. Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children. Epilepsia 2014; 55:1576-84. [PMID: 25231724 DOI: 10.1111/epi.12762] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To gain insight into the long-term impact of vagus nerve stimulation (with VNS Therapy) in children with drug-resistant epilepsy, we conducted the largest retrospective multicenter study to date over an extended follow-up period of up to 24 months. METHODS The primary objective was to assess change in seizure frequency of the predominant seizure type (defined as the most disabling seizure) following VNS device implantation. Treating physicians collected data from patient records from baseline to 6, 12, and 24 months of follow-up. RESULTS The analysis population included 347 children (aged 6 months to 17.9 years at the time of implant). At 6, 12, and 24 months after implantation, 32.5%, 37.6%, and 43.8%, respectively, of patients had ≥ 50% reduction in baseline seizure frequency of the predominant seizure type. The responder rate was higher in a subgroup of patients who had no change in antiepileptic drugs (AEDs) during the study. Favorable results were also evident for all secondary outcome measures including changes in seizure duration, ictal severity, postictal severity, quality of life, clinical global impression of improvement, and safety. Post hoc analyses demonstrated a statistically significant correlation between VNS total charge delivered per day and an increase in response rate. VNS Therapy is indicated as adjunctive therapy in children with focal, structural epilepsies, who for any reason are not good candidates for surgical treatment following the trial of two or more AEDs. Children with predominantly generalized seizures from genetic, structural epilepsies, like Dravet syndrome or Lennox-Gastaut syndrome, could also benefit from VNS Therapy. SIGNIFICANCE The results demonstrate that adjunctive VNS Therapy in children with drug-resistant epilepsy reduces seizure frequency and is well tolerated over a 2-year follow-up period. No new safety issues were identified. A post hoc analysis revealed a dose-response correlation for VNS in patients with epilepsy.
Collapse
Affiliation(s)
- Iren Orosz
- Department of Neuropediatrics, Children's Hospital, University of Leubeck, Leubeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cox JH, Seri S, Cavanna AE. Clinical utility of implantable neurostimulation devices as adjunctive treatment of uncontrolled seizures. Neuropsychiatr Dis Treat 2014; 10:2191-200. [PMID: 25484587 PMCID: PMC4238748 DOI: 10.2147/ndt.s60854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About one third of patients with epilepsy are refractory to medical treatment. For these patients, alternative treatment options include implantable neurostimulation devices such as vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation systems (RNS). We conducted a systematic literature review to assess the available evidence on the clinical efficacy of these devices in patients with refractory epilepsy across their lifespan. VNS has the largest evidence base, and numerous randomized controlled trials and open-label studies support its use in the treatment of refractory epilepsy. It was approved by the US Food and Drug Administration in 1997 for treatment of partial seizures, but has also shown significant benefit in the treatment of generalized seizures. Results in adult populations have been more encouraging than in pediatric populations, where more studies are required. VNS is considered a safe and well-tolerated treatment, and serious side effects are rare. DBS is a well-established treatment for several movement disorders, and has a small evidence base for treatment of refractory epilepsy. Stimulation of the anterior nucleus of the thalamus has shown the most encouraging results, where significant decreases in seizure frequency were reported. Other potential targets include the centromedian thalamic nucleus, hippocampus, cerebellum, and basal ganglia structures. Preliminary results on RNS, new-generation implantable neurostimulation devices which stimulate brain structures only when epileptic activity is detected, are encouraging. Overall, implantable neurostimulation devices appear to be a safe and beneficial treatment option for patients in whom medical treatment has failed to adequately control their epilepsy. Further large-scale randomized controlled trials are required to provide a sufficient evidence base for the inclusion of DBS and RNS in clinical guidelines.
Collapse
Affiliation(s)
- Joanna H Cox
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK ; Children's Epilepsy Surgery Programme, The Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Andrea E Cavanna
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK ; School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK ; Department of Neuropsychiatry, Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, UK ; Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology and UCL, London, UK
| |
Collapse
|