1
|
Cunningham JA, Vargas K, Pengju L, Belivanova V, Marone F, Martínez-Pérez C, Guizar-Sicairos M, Holler M, Bengtson S, Donoghue PCJ. Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng'an Doushantuo biota. Proc Biol Sci 2016; 282:20151169. [PMID: 26180072 PMCID: PMC4528530 DOI: 10.1098/rspb.2015.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molecular clock analyses estimate that crown-group animals began diversifying hundreds of millions of years before the start of the Cambrian period. However, the fossil record has not yielded unequivocal evidence for animals during this interval. Some of the most promising candidates for Precambrian animals occur in the Weng'an biota of South China, including a suite of tubular fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, that have been interpreted as soft-bodied eumetazoans comparable to tabulate corals. Here, we present new insights into the anatomy, original composition and phylogenetic affinities of these taxa based on data from synchrotron radiation X-ray tomographic microscopy, ptychographic nanotomography, scanning electron microscopy and electron probe microanalysis. The patterns of deformation observed suggest that the cross walls of Sinocyclocyclicus and Quadratitubus were more rigid than those of Ramitubus and Crassitubus. Ramitubus and Crassitubus specimens preserve enigmatic cellular clusters at terminal positions in the tubes. Specimens of Sinocyclocyclicus and Ramitubus have biological features that might be cellular tissue or subcellular structures filling the spaces between the cross walls. These observations are incompatible with a cnidarian interpretation, in which the spaces between cross walls are abandoned parts of the former living positions of the polyp. The affinity of the Weng'an tubular fossils may lie within the algae.
Collapse
Affiliation(s)
- John A Cunningham
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Kelly Vargas
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Liu Pengju
- Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, People's Republic of China
| | - Veneta Belivanova
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Carlos Martínez-Pérez
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK Department of Geology, University of Valencia, C/Dr. Moliner 50, Burjassot, Valencia 46100, Spain
| | | | - Mirko Holler
- Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Stefan Bengtson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
2
|
Sánchez-Villagra MR. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives. Proc Biol Sci 2010; 277:1139-47. [PMID: 20071389 DOI: 10.1098/rspb.2009.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals.
Collapse
|