1
|
Schendel V, Hamilton BR, Robinson SD, Green K, Sayre ME, Brown D, Stow JL, Øyen JP, Voje KL, Millard SS, Vetter I, Rash LD, Undheim EAB. Exaptation of an evolutionary constraint enables behavioural control over the composition of secreted venom in a giant centipede. Nat Ecol Evol 2025; 9:73-86. [PMID: 39496866 DOI: 10.1038/s41559-024-02556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2024] [Indexed: 11/06/2024]
Abstract
Venoms are biochemical arsenals that have emerged in numerous animal lineages, where they have co-evolved with morphological and behavioural traits for venom production and delivery. In centipedes, venom evolution is thought to be constrained by the morphological complexity of their venom glands due to physiological limitations on the number of toxins produced by their secretory cells. Here we show that the uneven toxin expression that results from these limitations have enabled Scolopendra morsitans to regulate the composition of their secreted venom despite the lack of gross morphologically complex venom glands. We show that this control is probably achieved by a combination of this heterogenous toxin distribution with a dual mechanism of venom secretion that involves neuromuscular innervation as well as stimulation via neurotransmitters. Our results suggest that behavioural control over venom composition may be an overlooked aspect of venom biology and provide an example of how exaptation can facilitate evolutionary innovation and novelty.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
| | - Samuel D Robinson
- Centre for Advanced Imaging, University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Kathryn Green
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
| | - Marcel E Sayre
- Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Darren Brown
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Jan Philip Øyen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetil L Voje
- Natural History Museum, University of Oslo, Oslo, Norway
| | - S Sean Millard
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, Queensland, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Karve S. Evolutionary Novelties in Bacteria and the Missing Backdrop of the Environment. Environ Microbiol 2025; 27:e70044. [PMID: 39868647 DOI: 10.1111/1462-2920.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Evolutionary novelty has been one of the central themes in the field of evolutionary biology for many years. Structural and functional innovations such as scales in the reptiles, fins in the fishes and mammary glands in the mammals have been the focus of the studies. Insights obtained from these studies have shaped the criterion for the identification of novelty as well as provide the framework for studying novelty. In this article, I argue that unicellular organisms present an excellent opportunity for the investigation of evolutionary novelty. Even though bacteria share some fundamental aspects of novelty with higher organisms, there are definite departures. Here, I outline these departures in four different contexts: criterion for the identification of novelty, types of evolutionary novelties, level of biological complexity that bacteria embody and, most importantly, the role of the environment. Identifying the role of the environment allows the categorisation of novelty as probable or improbable and adaptive or latent. This categorisation of novel traits, based on the role of the environment, can facilitate the study of novelty in bacteria. Insights obtained from such studies are crucial for understanding the fundamental aspects of evolutionary novelty.
Collapse
Affiliation(s)
- Shraddha Karve
- Trivedi School of BioSciences and Koita Centre for Digital Health, Ashoka University, Sonipat, India
| |
Collapse
|
3
|
Züger S, Krings W, Gorb SN, Büscher TH, Sombke A. Material composition and mechanical properties of the venom-injecting forcipules in centipedes. Front Zool 2024; 21:21. [PMID: 39180121 PMCID: PMC11342574 DOI: 10.1186/s12983-024-00543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Centipedes are terrestrial and predatory arthropods that possess an evolutionary transformed pair of appendages used for venom injection-the forcipules. Many arthropods incorporate reinforcing elements into the cuticle of their piercing or biting structures to enhance hardness, elasticity or resistance to wear and structural failure. Given their frequent exposure to high mechanical stress, we hypothesise that the cuticle of the centipede forcipule might be mechanically reinforced. With a combination of imaging, analytical techniques and mechanical testing, we explore the centipede forcipule in detail to shed light on its morphology and performance. Additionally, we compare these data to characteristics of the locomotory leg to infer evolutionary processes. RESULTS We examined sclerotization patterns using confocal laser-scanning microscopy based on autofluorescence properties of the cuticle (forcipule and leg) and elemental composition by energy-dispersive X-ray spectroscopy in representative species from all five centipede lineages. These experiments revealed gradually increasing sclerotization towards the forcipular tarsungulum and a stronger sclerotization of joints in taxa with condensed podomeres. Depending on the species, calcium, zinc or chlorine are present with a higher concentration towards the distal tarsungulum. Interestingly, these characteristics are more or less mirrored in the locomotory leg's pretarsal claw in Epimorpha. To understand how incorporated elements affect mechanical properties, we tested resistance to structural failure, hardness (H) and Young's modulus (E) in two representative species, one with high zinc and one with high calcium content. Both species, however, exhibit similar properties and no differences in mechanical stress the forcipule can withstand. CONCLUSIONS Our study reveals similarities in the material composition and properties of the forcipules in centipedes. The forcipules transformed from an elongated leg-like appearance into rigid piercing structures. Our data supports their serial homology to the locomotory leg and that the forcipule's tarsungulum is a fusion of tarsus and pretarsal claw. Calcium or zinc incorporation leads to comparable mechanical properties like in piercing structures of chelicerates and insects, but the elemental incorporation does not increase H and E in centipedes, suggesting that centipedes followed their own pathways in the evolutionary transformation of piercing tools.
Collapse
Affiliation(s)
- Simon Züger
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstrasse 12, 04103, Leipzig, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Andy Sombke
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| |
Collapse
|
4
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
5
|
Phenotypic description of Egyptian endemic centipedes, genus Scolopendra Linnaeus, 1758 with a histological study of its venom glands. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractCentipedes are widely distributed over all continents. They have significant medicinal value and high toxicity, making them an intriguing subject for evolutionary research. The current study aims to provide the first comprehensive analysis of the morphology, description, and distribution preferences of the Egyptian Scolopendromorpha centipede fauna. According to surveillance research in Egypt, two Scolopendra species have been re-described. Scolopendra canidensNewport.1844 were discovered in only one location, whereas Scolopendra morsitans s Linnaeus,1758 was more abundant. Both venomous glands were histochemically investigated. This study is the first comparative report on the histology and histochemistry of the venom glands of the Egyptian centipede species. Both species’ glands are primarily composed of columnar secretory cells radially arranged side by side and open through pores in a central chitinous duct. Each secretory cell is enclosed in striated muscle fibers. The secretion of both glands takes the shape of small PAS-positive granules, suggesting the presence of neutral polysaccharides. According to this surveillance study, the most abundant species was Scolopendra morsitans s Linnaeus,1758. Scolopendra canidens canidensNewport.1844 were found only on the Northwest coast of Egypt. The findings also revealed that the analyzed species are comparable in terms of their venom morphology and fundamental chemical composition.
Collapse
|
6
|
Wang Y, Yin C, Zhang H, Kamau PM, Dong W, Luo A, Chai L, Yang S, Lai R. Venom resistance mechanisms in centipede show tissue specificity. Curr Biol 2022; 32:3556-3563.e3. [PMID: 35863353 DOI: 10.1016/j.cub.2022.06.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Venomous animals utilize venom glands to secrete and store powerful toxins for intraspecific and/or interspecific antagonistic interactions, implying that tissue-specific resistance is essential for venom glands to anatomically separate toxins from other tissues. Here, we show the mechanism of tissue-specific resistance in centipedes (Scolopendra subspinipes mutilans), where the splice variant of the receptor repels its own toxin. Unlike the well-known resistance mechanism by mutation in a given exon, we found that the KCNQ1 channel is highly expressed in the venom gland as a unique splice variant in which the pore domain and transmembrane domain six, partially encoded by exon 6 (rather than 7 as found in other tissues), contain eleven mutated residues. Such a splice variant is sufficient to gain resistance to SsTx (a lethal toxin for giant prey capture) in the venom gland due to a partially buried binding site. Therefore, the tissue-specific KCNQ1 modification confers resistance to the toxins, establishing a safe zone in the venom-storing/secreting environment.
Collapse
Affiliation(s)
- Yunfei Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107 Yunnan, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Chuanlin Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107 Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107 Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107 Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, The National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107 Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
7
|
Liu J, Yuan X, Liu J, Yuan G, Sun Y, Zhang D, Qi X, Li H, Zhang J, Wen B, Guo X. Risk Factors for Diabetic Peripheral Neuropathy, Peripheral Artery Disease, and Foot Deformity Among the Population With Diabetes in Beijing, China: A Multicenter, Cross-Sectional Study. Front Endocrinol (Lausanne) 2022; 13:824215. [PMID: 35733764 PMCID: PMC9207340 DOI: 10.3389/fendo.2022.824215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN), peripheral artery disease (PAD), and foot deformity are the most common causes of diabetic foot, which can considerably worsen the patient's quality of life. In this study, we aimed to investigate the prevalence and risk factors associated with DPN, PAD, and foot deformity among patients with diabetes living in Beijing, China. In total, 3,898 diabetes patients from 11 hospitals in Beijing were evaluated using questionnaires and physical examinations, and 3,758 patients were included in the analysis. We compared the demographic, clinical, biological characteristics, and comorbidities of patients with and without DPN, PAD, or foot deformity, and used binary logistic regression analysis to identify potential factors associated with these outcomes. Overall, 882 patients (23.5%) had DPN, 437 patients (11.6%) had PAD, and 1,117 patients (29.7%) had foot deformities, including callus. The risk factors for DPN included: age ≥40 years, a ≥10+year duration of diabetes, a body mass index of <18.5 kg/m2 or ≥24 kg/m2, a systolic blood pressure (SBP) of ≥140 mm Hg, a hemoglobin A1c (HbA1c) level of ≥7%, chronic kidney disease, and cerebrovascular disease. The risk factors for PAD included: a 15+ year diabetes duration, a body mass index of <18.5 kg/m2, a SBP of ≥140 mm Hg, a HbA1c level of ≥7%, chronic kidney disease, coronary heart disease, and cerebrovascular disease. The risk factors for skeletal foot deformities included: women, age ≥40 years, a SBP ≥140 mm Hg, and hyperlipidemia. The risk factors for callus formation included: women, a SBP ≥140 mm Hg, and hyperlipidemia. In conclusion, the prevalence of foot deformities was higher than DPN and PAD in patients with diabetes. Managing the risk factors for DPN, PAD, and foot deformity is important for reducing the risk of diabetic foot.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaoyong Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jin Liu
- Plastic and Burn Surgery Department, Peking University First Hospital, Beijing, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yalan Sun
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Donghui Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xin Qi
- Plastic and Burn Surgery Department, Peking University First Hospital, Beijing, China
| | - Huijuan Li
- Plastic and Burn Surgery Department, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Bing Wen
- Plastic and Burn Surgery Department, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Correspondence: Xiaohui Guo,
| |
Collapse
|
8
|
The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2021; 48:1353-1365. [PMID: 32756910 DOI: 10.1042/bst20190820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Animal venoms are recognised as unique biological systems in which to study molecular evolution. Venom use has evolved numerous times among the insects, and insects today use venom to capture prey, defend themselves from predators, or to subdue and modulate host responses during parasitism. However, little is known about most insect venom toxins or the mode and tempo by which they evolve. Here, I review the evolutionary dynamics of insect venom toxins, and argue that insects offer many opportunities to examine novel aspects of toxin evolution. The key questions addressed are: How do venomous animals evolve from non-venomous animals, and how does this path effect the composition and pharmacology of the venom? What genetic processes (gene duplication, co-option, neofunctionalisation) are most important in toxin evolution? What kinds of selection pressures are acting on toxin-encoding genes and their cognate targets in envenomated animals? The emerging evidence highlights that venom composition and pharmacology adapts quickly in response to changing selection pressures resulting from new ecological interactions, and that such evolution occurs through a stunning variety of genetic mechanisms. Insects offer many opportunities to investigate the evolutionary dynamics of venom toxins due to their evolutionary history rich in venom-related adaptations, and their quick generation time and suitability for culture in the laboratory.
Collapse
|
9
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
10
|
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, Miao YL. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases 2020; 8:1400-1413. [PMID: 32368533 PMCID: PMC7190946 DOI: 10.12998/wjcc.v8.i8.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor disorders (PFDs) represent a group of common and frequently-occurring diseases that seriously affect the life quality of women, generally including stress urinary incontinence and pelvic organ prolapse. Surgery has been used as a treatment for PFD, but almost 30% of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates. Therefore, investigations of new therapeutic strategies are urgently needed. Stem cells possess strong multi-differentiation, self-renewal, immunomodulation, and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD. Recently, various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD, as well as reduced inflammatory reactions, collagen deposition, and foreign body reaction. However, with relatively high rates of complications such as bladder stone formation and wound infections, further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources, exosomes, and tissue-engineering combined with stem cell-based implants, among others. This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment, with the hope of providing more promising stem cell treatment strategies for PFD in the future.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Wei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Rui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Lin Yang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Feng-Nian Zhao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Li Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Kenning M, Müller CH, Sombke A. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ 2017; 5:e4023. [PMID: 29158971 PMCID: PMC5691793 DOI: 10.7717/peerj.4023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules-evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes' body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda.
Collapse
Affiliation(s)
- Matthes Kenning
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Andy Sombke
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
12
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
13
|
Arbuckle K. Evolutionary Context of Venom in Animals. EVOLUTION OF VENOMOUS ANIMALS AND THEIR TOXINS 2017. [DOI: 10.1007/978-94-007-6458-3_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
|
15
|
Kaji T, Keiler J, Bourguignon T, Miura T. Functional transformation series and the evolutionary origin of novel forms: evidence from a remarkable termite defensive organ. Evol Dev 2016; 18:78-88. [DOI: 10.1111/ede.12179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomonari Kaji
- Bamfield Marine Sciences Centre; 100 Pachena Rd Bamfield BC Canada V0R 1B0
| | - Jonas Keiler
- Allgemeine und Spezielle Zoologie; Institut für Biowissenschaften; Universität Rostock; Rostock Mecklenburg-Vorpommern Germany
| | - Thomas Bourguignon
- Department of Biological Sciences; National University of Singapore; 21 Lower Kent Ridge Rd Singapore
| | - Toru Miura
- Graduate School of Environmental Science; Hokkaido University; Sapporo Hokkaido Japan
| |
Collapse
|
16
|
Hakim MA, Yang S, Lai R. Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel) 2015; 7:4832-51. [PMID: 26593947 PMCID: PMC4663536 DOI: 10.3390/toxins7114832] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/23/2022] Open
Abstract
Venomous animals have evolved with sophisticated bio-chemical strategies to arrest prey and defend themselves from natural predators. In recent years, peptide toxins from venomous animals have drawn considerable attention from researchers due to their surprising chemical, biochemical, and pharmacological diversity. Similar to other venomous animals, centipedes are one of the crucial venomous arthropods that have been used in traditional medicine for hundreds of years in China. Despite signifying pharmacological importance, very little is known about the active components of centipede venoms. More than 500 peptide sequences have been reported in centipede venomous glands by transcriptome analysis, but only a small number of peptide toxins from centipede has been functionally described. Like other venomous animals such as snakes, scorpions, and spiders, the venom of centipedes could be an excellent source of peptides for developing drugs for treatments as well as bio-insecticides for agrochemical applications. Although centipede venoms are yet to be adequately studied, the venom of centipedes as well as their components described to date, should be compiled to help further research. Therefore, based on previous reports, this review focusses on findings and possible therapeutic applications of centipede venoms as well as their components.
Collapse
Affiliation(s)
- Md Abdul Hakim
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing100009, China.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of sciences, Kunming 650223, Yunnan, China.
- Joint Laboratory of Natural Peptide, University of Science and Technology of China and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
17
|
Zhang Y. Why do we study animal toxins? DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:183-222. [PMID: 26228472 PMCID: PMC4790257 DOI: 10.13918/j.issn.2095-8137.2015.4.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/25/2015] [Indexed: 12/31/2022]
Abstract
Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223,
| |
Collapse
|
18
|
Cooper AM, Kelln WJ, Hayes WK. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. ZOOLOGY 2015; 117:398-414. [PMID: 25456977 DOI: 10.1016/j.zool.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.
Collapse
|
19
|
Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci U S A 2015; 112:4026-31. [PMID: 25775536 DOI: 10.1073/pnas.1424068112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.
Collapse
|
20
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
21
|
von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014; 6:3488-551. [PMID: 25533518 PMCID: PMC4280546 DOI: 10.3390/toxins6123488] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.
Collapse
Affiliation(s)
| | - Lahcen I Campbell
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| | - Ronald A Jenner
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| |
Collapse
|
22
|
Undheim EAB, Jones A, Clauser KR, Holland JW, Pineda SS, King GF, Fry BG. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes). Mol Biol Evol 2014; 31:2124-48. [PMID: 24847043 DOI: 10.1093/molbev/msu162] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, AustraliaVenom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Alun Jones
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | - John W Holland
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Sandy S Pineda
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Bryan G Fry
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, AustraliaVenom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
23
|
Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon 2014; 82:30-51. [PMID: 24548696 DOI: 10.1016/j.toxicon.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes. We also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha. Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha, the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use.
Collapse
Affiliation(s)
- Allen M Cooper
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA.
| | - Gerad A Fox
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - David R Nelsen
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| |
Collapse
|
24
|
Müller CHG, Rosenberg J, Hilken G. Ultrastructure, functional morphology and evolution of recto-canal epidermal glands in Myriapoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:43-61. [PMID: 24012854 DOI: 10.1016/j.asd.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/03/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
In Chilopoda, solitary epidermal glands are composed of a couple of cells only. These glands are highly abundant on the entire body surface and are distributed throughout the single-layered epidermis. Some authors provided more or less comprehensive observations on the structure of epidermal glands of specific chilopod taxa. However, no information is hitherto available on the ultrastructural diversity of these glands. Furthermore, potential homologies of these chilopod epidermal glands and of their characteristic cellular components remain unknown. Based on our results, we are now able to distinguish two types of epidermal glands in Chilopoda that can be clearly distinguished by their structure and the course of their conducting canal: recto-canal epidermal glands (rceg) and flexo-canal epidermal glands (fceg). In the present paper, we focus on the rceg. We examined the ultrastructural organization of these glands in the head region and on the anterior trunk segments of various representatives of the five extant chilopod orders by light- and electron-microscopy. According to our terminology, rceg consist of up to five different cell types including: a) distal canal cells, b) proximal canal cells, c) intermediary cells, and d) two different types of secretory cells. Intermediary and canal cells form a common conducting canal. The rceg may taxon-specifically differ in relative size and subcellular architecture, but all have the following features in common: 1) a wide distribution on various body regions among all five chilopod subtaxa, 2) the straight, broad and locally dilated conducting canal surrounded by closely packed microvilli or microvilliform infoldings around the apex of the canal cell(s), and 3) the tendency to aggregate to form compound glandular organs of massive size and complexity. Tricellular glandular units established by three different cell types are observed in Scutigeromorpha and Geophilomorpha, whereas four cell types constitute rceg in Lithobiomorpha and Craterostigmomorpha. Five different cell types per glandular unit are found only in Scolopendromorpha. The partial cuticularization of the lower part of the conducting canal formed by the intermediary cell, as found in Chilopoda, differs from the pattern described for equivalent euarthropod epidermal glands, as for instance in Hexapoda. Their wide distribution in Chilopoda and Progoneata makes it likely that tricellular rceg were at least present in the last common ancestor of the Myriapoda. Concerning Chilopoda, the evolution of highly diverse rceg is well explained on the basis of the Pleurostigmophora concept. Glands of the recto-canal type are also found in other arthropods. The paper discusses cases where homology of rceg and also fceg may be assumed beyond Myriapoda and briefly evaluates the potentials and the still-to-be-solved issues prior to use them as an additional character system to reconstruct the phylogeny of the Euarthropoda.
Collapse
Affiliation(s)
- Carsten H G Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie, Soldmannstr. 23, D-17487 Greifswald, Germany; Universität Rostock, Institut für Biowissenschaften, Lehrstuhl für Allgemeine & Spezielle Zoologie, Universitätsplatz 2, D-18051 Rostock, Germany.
| | - Jörg Rosenberg
- Universität Duisburg-Essen, Universitätsklinikum Essen, Zentrales Tierlaboratorium, Hufelandstr. 55, D-45122 Essen, Germany.
| | - Gero Hilken
- Universität Duisburg-Essen, Universitätsklinikum Essen, Zentrales Tierlaboratorium, Hufelandstr. 55, D-45122 Essen, Germany.
| |
Collapse
|
25
|
Maruzzo D, Bonato L. Morphology and diversity of the forcipules in Strigamia centipedes (Chilopoda, Geophilomorpha). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:17-25. [PMID: 24067538 DOI: 10.1016/j.asd.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The morphology of the venomous limbs (forcipules) of 13 species of Strigamia and of six other geophilomorphs was studied with light microscopy, scanning electron microscopy, and, for a subsample, with confocal laser scanning microscopy. In all Strigamia species a well-distinct denticle is present invariantly on the inner side of the terminal article (tarsungulum), in sub-basal position, just proximal to a faint transverse sulcus and a cuticular introflexion that corresponds to the insertion point of a tendon. Strigamia species differ mainly in size and shape of the denticle and thickness of the distal part of the tarsungulum, suggesting some functional diversity in piercing and handling prey. Anatomical evidence supports the hypothesis that the tarsungulum corresponds to two ancestral articles and a denticle at the basis of the tarsungulum originated multiple times within geophilomorphs, however in different positions corresponding to either the ancestral sub-terminal article (in Strigamia, other Geophiloidea and some Schendylidae) or the ancestral terminal article (in the himantariid Thracophilus).
Collapse
Affiliation(s)
- Diego Maruzzo
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy
| | - Lucio Bonato
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| |
Collapse
|
26
|
Hayden L, Arthur W. Expression patterns of Wnt genes in the venom claws of centipedes. Evol Dev 2013; 15:365-72. [PMID: 24074281 DOI: 10.1111/ede.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The venom claws of centipedes, also known as forcipules, represent an evolutionary novelty that must have arisen in the centipede stem species, as they are not found in any other myriapods. The developmental-genetic changes that are involved in the origin of novelties are of considerable interest. It has previously been shown that centipede forcipules have a unique Hox code. However, this is a combinatorial code: no single Hox gene has a forcipule-specific expression. Here, we focus on Wnt genes. Two genes of this family show forcipule-specific expression in the "model centipede" Strigamia maritima: Wnt7 and Wnt11. For Wnt7, this forcipular expression zone seems to be a new one, which has arisen in evolution subsequently to other expression zones of the same gene. However, for Wnt11, the forcipule-specific expression probably arose by reduction of a more general pattern that originally included most or all of the limbs of an ancestral myriapod. Thus the developmental-genetic basis of the evolutionary change that turned the first pair of walking legs into venom claws is complex, involving different types of change in expression pattern. This sort of complexity is likely to be the case regarding evolutionary changes in morphology in general. Whether the origins of those features that can be considered as novelties are different in terms of their developmental-genetic basis from more routine evolutionary changes remains an open question.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
27
|
Dugon MM, Hayden L, Black A, Arthur W. Development of the venom ducts in the centipede Scolopendra: an example of recapitulation. Evol Dev 2013; 14:515-21. [PMID: 23134209 DOI: 10.1111/ede.12004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to previous claims that (a) there is a law of recapitulation and, conversely, (b) recapitulation never happens, the evolutionary repatterning of development can take many forms, of which recapitulation is one. Here, we add another example to the list of case studies of recapitulation. This example involves the development of the venom claws (forcipules) in the centipede Scolopendra subspinipes mutilans, and in particular the development of the duct through which venom flows from the gland that produces it (proximal) to the opening called the meatus (distal) through which it is injected into prey. Most of the information we present is from early postembryonic stages--these have been neglected in previous work on centipede development. We show that the venom ducts arise from sutures that are invaginations of the cuticle. In S. s. mutilans, the invagination in each forcipule forms into a tubular structure that detaches itself from the exoskeleton and moves toward the center of the forcipule. This is in contrast to extant Scutigera, and also, probably, Scolopendra's extinct Scutigera-like ancestors, where the duct remains attached to the cuticle of throughout development. Thus, S. s. mutilans exhibits a recapitulatory repatterning of development.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | | | | | | |
Collapse
|
28
|
Brigandt I, Love AC. Conceptualizing Evolutionary Novelty: Moving Beyond Definitional Debates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:417-27. [DOI: 10.1002/jez.b.22461] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 01/20/2023]
Affiliation(s)
- Ingo Brigandt
- Department of Philosophy; University of Alberta; Edmonton; Alberta; Canada
| | - Alan C. Love
- Department of Philosophy and Minnesota Center for Philosophy of Science; University of Minnesota; Minneapolis; Minnesota
| |
Collapse
|
29
|
Dugon MM, Arthur W. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:874-880. [PMID: 22490529 DOI: 10.1016/j.jinsphys.2012.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
Many animal phyla contain clades in which most or all species are venom-injecting predators. An example, in the arthropods, is the class Chilopoda, containing the approximately 3500 species of centipedes. Very little ecological or behavioural work yielding quantitative data has been conducted on centipede predation. Here, we describe a study of this kind. Our experiments employed one centipede species - a large tropical one, Scolopendra subspinipes mutilans - and two species of prey - a cricket, Gryllus assimilis, and a locust, Schistocerca gregaria. We conducted two experiments. The first was aimed at investigating the extent to which the centipedes attacked prey in particular tagmata as opposed to at random over the whole body surface. The results showed that the centipedes were highly selective, preferring to attack the head or thorax rather than the abdomen; indeed, they often reoriented the prey in order to achieve this. A possible explanation of this behaviour is to maximize the speed with which the neurotoxins in the venom reach either the brain or the thoracic ganglia that control limb movement. The second experiment was aimed at investigating the effect of venom-extraction on the attack rate, and specifically at testing if the magnitude of any such effect differed between the two types of prey, which differ considerably in size. The results showed a major effect of venom extraction in relation to both types of prey, but with the time taken to return to a 'normal' attack rate being longer in the case of the larger prey-type, namely the locust. We discuss these results in relation to the 'venom optimization hypothesis' and, more generally, to the principle of minimizing the production/use of venom, which is an energetically expensive resource.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland, University Rd, Galway, Ireland.
| | | |
Collapse
|
30
|
Dugon MM, Black A, Arthur W. Variation and specialisation of the forcipular apparatus of centipedes (Arthropoda: Chilopoda): a comparative morphometric and microscopic investigation of an evolutionary novelty. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:231-243. [PMID: 22370199 DOI: 10.1016/j.asd.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
The forcipules of centipedes are the only known example in the animal kingdom of an evolutionary transition from walking legs to venom-injecting appendages. They provide a classic case of an evolutionary novelty under most (but not all) definitions of that concept. Although there is a reasonable literature on forcipules, and on the forcipular segment more generally, it is fragmentary and scattered. Also, many previous studies have been based on a single species and hence have no comparative component. Here, we build on this earlier literature by providing detailed qualitative and quantitative information on the forcipular segments of representatives of the five extant orders of centipedes. Our results reveal notable differences between the orders - as well as considerable variation within some of them. The pattern of inter-group differences can be used to infer, albeit cautiously, a major evolutionary trend from a presumed scutigeromorph-like last common ancestor (LCA), in which the forcipules were probably leg-like (as in present-day scutigeromorphs) to a more specialized claw-like structure with movement restricted to the horizontal plane. This morphological trend may reflect an ecological trend from open-habitat ambush predation to leaf-litter and subterranean predatory opportunism.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|