1
|
Grau-Bové X, Subirana L, Meister L, Soubigou A, Neto A, Elek A, Naranjo S, Fornas O, Gomez-Skarmeta JL, Tena JJ, Irimia M, Bertrand S, Sebé-Pedrós A, Escriva H. An amphioxus neurula stage cell atlas supports a complex scenario for the emergence of vertebrate head mesoderm. Nat Commun 2024; 15:4550. [PMID: 38811547 PMCID: PMC11136973 DOI: 10.1038/s41467-024-48774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Anaël Soubigou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
- Institut universitaire de France (IUF), Paris, France.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| |
Collapse
|
2
|
Guo M, Goudarzi KM, Abedi S, Pieber M, Sjöberg E, Behnan J, Zhang XM, Harris RA, Bartek J, Lindström MS, Nistér M, Hägerstrand D. SFRP2 induces a mesenchymal subtype transition by suppression of SOX2 in glioblastoma. Oncogene 2021; 40:5066-5080. [PMID: 34021259 PMCID: PMC8363098 DOI: 10.1038/s41388-021-01825-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Intratumoral heterogeneity is a characteristic of glioblastomas that contain an intermixture of cell populations displaying different glioblastoma subtype gene expression signatures. Proportions of these populations change during tumor evolution, but the occurrence and regulation of glioblastoma subtype transition is not well described. To identify regulators of glioblastoma subtypes we utilized a combination of in vitro experiments and in silico analyses, using experimentally generated as well as publicly available data. Through this combined approach SOX2 was identified to confer a proneural glioblastoma subtype gene expression signature. SFRP2 was subsequently identified as a SOX2-antagonist, able to induce a mesenchymal glioblastoma subtype signature. A subset of patient glioblastoma samples with high SFRP2 and low SOX2 expression was particularly enriched with mesenchymal subtype samples. Phenotypically, SFRP2 decreased tumor sphere formation, stemness as assessed by limiting dilution assay, and overall cell proliferation but increased cell motility, whereas SOX2 induced the opposite effects. Furthermore, an SFRP2/non-canonical-WNT/KLF4/PDGFR/phospho-AKT/SOX2 signaling axis was found to be involved in the mesenchymal transition. Analysis of human tumor tissue spatial gene expression patterns showed distinct expression of SFRP2- and SOX2-correlated genes in vascular and cellular areas, respectively. Finally, conditioned media from SFRP2 overexpressing cells increased CD206 on macrophages. Together, these findings present SFRP2 as a SOX2-antagonist with the capacity to induce a mesenchymal subtype transition in glioma cells located in vascular tumor areas, highlighting its role in glioblastoma tumor evolution and intratumoral heterogeneity.
Collapse
Affiliation(s)
- Min Guo
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Shiva Abedi
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Melanie Pieber
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Elin Sjöberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jinan Behnan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,Department of Neurosurgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xing-Mei Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Centre for Molecular Medicine, Solna, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden.,The Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Mikael S Lindström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden
| | - Daniel Hägerstrand
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Solna, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum, Solna, Sweden.
| |
Collapse
|
3
|
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins. J Cell Commun Signal 2018; 12:103-112. [PMID: 28589318 PMCID: PMC5842174 DOI: 10.1007/s12079-017-0398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
4
|
Techavichit P, Gao Y, Kurenbekova L, Shuck R, Donehower LA, Yustein JT. Secreted Frizzled-Related Protein 2 (sFRP2) promotes osteosarcoma invasion and metastatic potential. BMC Cancer 2016; 16:869. [PMID: 27821163 PMCID: PMC5100268 DOI: 10.1186/s12885-016-2909-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OS), which has a high potential for developing metastatic disease, is the most frequent malignant bone tumor in children and adolescents. Molecular analysis of a metastatic genetically engineered mouse model of osteosarcoma identified enhanced expression of Secreted Frizzled-Related Protein 2 (sFRP2), a putative regulator of Wnt signaling within metastatic tumors. Subsequent analysis correlated increased expression in the human disease, and within highly metastatic OS cells. However, the role of sFRP2 in osteosarcoma development and progression has not been well elucidated. Methods Studies using stable gain or loss-of-function alterations of sFRP2 within human and mouse OS cells were performed to assess changes in cell proliferation, migration, and invasive ability in vitro, via both transwell and 3D matrigel assays. In additional, xenograft studies using overexpression of sFRP2 were used to assess effects on in vivo metastatic potential. Results Functional studies revealed stable overexpression of sFRP2 within localized human and mouse OS cells significantly increased cell migration and invasive ability in vitro and enhanced metastatic potential in vivo. Additional studies exploiting knockdown of sFRP2 within metastatic human and mouse OS cells demonstrated decreased cell migration and invasion ability in vitro, thus corroborating a critical biological phenotype carried out by sFRP2. Interestingly, alterations in sFRP2 expression did not alter OS proliferation rates or primary tumor development. Conclusions While future studies further investigating the molecular mechanisms contributing towards this sFRP2-dependent phenotype are needed, our studies clearly provide evidence that aberrant expression of sFRP2 can contribute to the invasive and metastatic potential for osteosarcoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2909-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Piti Techavichit
- Department of Pediatrics, Hematology-Oncology, Bumrungrad Hospital, Bangkok, Thailand
| | - Yang Gao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence A Donehower
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Range RC, Wei Z. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development 2016; 143:1523-33. [PMID: 26952978 PMCID: PMC4909856 DOI: 10.1242/dev.128165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
Abstract
Anterior signaling centers help specify and pattern the early anterior neuroectoderm (ANE) in many deuterostomes. In sea urchin the ANE is restricted to the anterior of the late blastula stage embryo, where it forms a simple neural territory comprising several types of neurons as well as the apical tuft. Here, we show that during early development, the sea urchin ANE territory separates into inner and outer regulatory domains that express the cardinal ANE transcriptional regulators FoxQ2 and Six3, respectively. FoxQ2 drives this patterning process, which is required to eliminate six3 expression from the inner domain and activate the expression of Dkk3 and sFRP1/5, two secreted Wnt modulators. Dkk3 and low expression levels of sFRP1/5 act additively to potentiate the Wnt/JNK signaling pathway governing the positioning of the ANE territory around the anterior pole, whereas high expression levels of sFRP1/5 antagonize Wnt/JNK signaling. sFRP1/5 and Dkk3 levels are rigidly maintained via autorepressive and cross-repressive interactions with Wnt signaling components and additional ANE transcription factors. Together, these data support a model in which FoxQ2 initiates an anterior patterning center that implements correct size and positions of ANE structures. Comparisons of functional and expression studies in sea urchin, hemichordate and chordate embryos reveal striking similarities among deuterostome ANE regulatory networks and the molecular mechanism that positions and defines ANE borders. These data strongly support the idea that the sea urchin embryo uses an ancient anterior patterning system that was present in the common ambulacrarian/chordate ancestor.
Collapse
Affiliation(s)
- Ryan C Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zheng Wei
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Bastin BR, Chou HC, Pruitt MM, Schneider SQ. Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii. EvoDevo 2015; 6:37. [PMID: 26640641 PMCID: PMC4669655 DOI: 10.1186/s13227-015-0032-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background Wnt signaling pathways are highly conserved signal transduction pathways important for axis formation, cell fate specification, and organogenesis throughout metazoan development. Within the various Wnt pathways, the frizzled transmembrane receptors (Fzs) and secreted frizzled-related proteins (sFRPs) play central roles in receiving and antagonizing Wnt signals, respectively. Despite their importance, very little is known about the frizzled-related gene family (fzs & sfrps) in lophotrochozoans, especially during early stages of spiralian development. Here we ascertain the frizzled-related gene complement in six lophotrochozoan species, and determine their spatial and temporal expression pattern during early embryogenesis and larval stages of the marine annelid Platynereis dumerilii. Results Phylogenetic analyses confirm conserved homologs for four frizzled receptors (Fz1/2/7, Fz4, Fz5/8, Fz9/10) and sFRP1/2/5 in five of six lophotrochozoan species. The sfrp3/4 gene is conserved in one, divergent in two, and evidently lost in three lophotrochozoan species. Three novel fz-related genes (fzCRD1-3) are unique to Platynereis. Transcriptional profiling and in situ hybridization identified high maternal expression of fz1/2/7, expression of fz9/10 and fz1/2/7 within animal and dorsal cell lineages after the 32-cell stage, localization of fz5/8, sfrp1/2/5, and fzCRD-1 to animal-pole cell lineages after the 80-cell stage, and no expression for fz4, sfrp3/4, and fzCRD-2, and -3 in early Platynereis embryos. In later larval stages, all frizzled-related genes are expressed in distinct patterns preferentially in the anterior hemisphere and less in the developing trunk. Conclusions Lophotrochozoans have retained a generally conserved ancestral bilaterian frizzled-related gene complement (four Fzs and two sFRPs). Maternal expression of fz1/2/7, and animal lineage-specific expression of fz5/8 and sfrp1/2/5 in early embryos of Platynereis suggest evolutionary conserved roles of these genes to perform Wnt pathway functions during early cleavage stages, and the early establishment of a Wnt inhibitory center at the animal pole, respectively. Numerous frizzled receptor-expressing cells and embryonic territories were identified that might indicate competence to receive Wnt signals during annelid development. An anterior bias for frizzled-related gene expression in embryos and larvae might point to a polarity of Wnt patterning systems along the anterior–posterior axis of this annelid. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0032-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| | | | | | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, 503 Science Hall II, Ames, IA 50011 USA
| |
Collapse
|
7
|
Wang Z, Li Q, Zhang B, Lu Y, Yang Y, Ban D, Zhang H. Single nucleotide polymorphism scanning and expression of the FRZB gene in pig populations. Gene 2014; 543:198-203. [PMID: 24731717 DOI: 10.1016/j.gene.2014.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/27/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022]
Abstract
Secreted frizzled-related protein 3 (sFRP3), encoded by the gene FRZB, is a member of the sFRP family with important roles in inhibition of the Wnt signalling pathway through competitive binding of the Wnt receptor. Here, we investigated pig FRZB as a candidate gene for growth traits and identified three polymorphic sites, an insertion (A-532B) and two SNPs (G636A and C650T) in its 5'-UTR. The genotype distributions of G636A and C650T were significantly different among mini-type indigenous (Diannan Small-ear and Tibetan), normal indigenous (Laiwu and Huai), and introduced (Large Yorkshire and Landrace) breeds. In semi-quantitative PCR expression analysis, expression of FRZB mRNA was abundant in tissues of hypophysis, longissimus dorsi muscle, and adipose tissues, and low in the heart, hypothalamus, and brain. Quantitative determination of mRNA level and protein expression analysis were corresponding. The results demonstrated that FRZB gene expression in longissimus dorsi muscle and liver tissue was significantly higher in Diannan Small-ear and Tibetan pigs than in the Large Yorkshire breed (P<0.05); however, in back fat tissue, the expression was significantly higher in Diannan Small-ear pig than in Tibetan or Large Yorkshire breeds (P<0.05). Given the known growth and fat characteristics of the breeds, these results indicate that FRZB expression has a negative association with muscle growth and a positive association with fat deposition. In conclusion, FRZB may be a major candidate gene for growth traits in pigs.
Collapse
Affiliation(s)
- Zhixiu Wang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, People's Republic of China
| | - Qinggang Li
- Institute of Animal Sciences and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, People's Republic of China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, People's Republic of China
| | - Yunfeng Lu
- School of Life Science & Technology, Nanyang Normal University, Nanyang 473061, Henan Province, People's Republic of China
| | - Yuzeng Yang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, People's Republic of China
| | - Dongmei Ban
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, People's Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Rd., Beijing 100193, People's Republic of China.
| |
Collapse
|
8
|
Stuckenholz C, Lu L, Thakur PC, Choi TY, Shin D, Bahary N. Sfrp5 modulates both Wnt and BMP signaling and regulates gastrointestinal organogenesis [corrected] in the zebrafish, Danio rerio. PLoS One 2013; 8:e62470. [PMID: 23638093 PMCID: PMC3639276 DOI: 10.1371/journal.pone.0062470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Sfrp5 belongs to the family of secreted frizzled related proteins (Sfrp), secreted inhibitors of Wingless-MMTV Integration Site (Wnt) signaling, which play an important role in cancer and development. We selected sfrp5 because of its compelling expression profile in the developing endoderm in zebrafish, Danio rerio. In this study, overexpression of sfrp5 in embryos results in defects in both convergent extension (CE) by inhibition of non-canonical Wnt signaling and defects in dorsoventral patterning by inhibition of Tolloid-mediated proteolysis of the BMP inhibitor Chordin. From 25 hours post fertilization (hpf) to 3 days post fertilization (dpf), both overexpression and knockdown of Sfrp5 decrease the size of the endoderm, significantly reducing liver cell number. At 3 dpf, insulin-positive endodermal cells fail to coalesce into a single pancreatic islet. We show that Sfrp5 inhibits both canonical and non-canonical Wnt signaling during embryonic and endodermal development, resulting in endodermal abnormalities.
Collapse
Affiliation(s)
- Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lili Lu
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prakash C. Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tae-Young Choi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zhang YJ, Zhao L, Meng YP, Shi DL. Xenopus radial spoke protein 3 gene is expressed in the multiciliated cells of epidermis and otic vesicles and sequentially in the nephrostomes. Dev Genes Evol 2012; 223:183-8. [PMID: 23247584 DOI: 10.1007/s00427-012-0433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
We describe the phylogenetic analysis and expression pattern of the Xenopus radial spoke protein 3 (RSP3) gene during early development. The Xenopus RSP3 protein presents characteristic features of the RSP3 family. It contains a radial spoke domain, which is 75 and 72 % identical to the corresponding region of human and Chlamydomonas RSP3 proteins, respectively. Examination of the phylogenetic relationship between the Xenopus RSP3 protein and its known homologues from different deuterostomes indicates that the RSP3 proteins are highly conserved among deuterostomes. Whole-mount in situ hybridization analyses show that Xenopus RSP3 is a maternal mRNA enriched in the animal hemisphere during cleavage stages. The expression is detected in the dorsal region of the embryo during gastrulation, then in the presumptive neuroectoderm at the end of gastrulation. During neurulation and at the subsequent stages, the expression of RSP3 mRNA is detected in the entire multiciliated cells of epidermis. At tail-bud stages, it is progressively expressed in the otic vesicles and sequentially expressed in the nephrostomes. Expression could be also detected in the floor plate of the neural tube. This expression pattern persists until at least late tail-bud stages.
Collapse
Affiliation(s)
- Yan-Jun Zhang
- School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|