1
|
Bozso SJ, El-Andari R, Al-Adra D, Moon MC, Freed DH, Nagendran J, Nagendran J. A review of the immune response stimulated by xenogenic tissue heart valves. Scand J Immunol 2021; 93:e13018. [PMID: 33372305 DOI: 10.1111/sji.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 12/23/2022]
Abstract
Valvular heart disease continues to afflict millions of people around the world. In many cases, the only corrective treatment for valvular heart disease is valve replacement. Valve replacement options are currently limited, and the most common construct utilized are xenogenic tissue heart valves. The main limitation with the use of this valve type is the development of valvular deterioration. Valve deterioration results in intrinsic permanent changes in the valve structure, often leading to hemodynamic compromise and clinical symptoms of valve re-stenosis. A significant amount of research has been performed regarding the incidence of valve deterioration and determination of significant risk factors for its development. As a result, many believe that the underlying driver of valve deterioration is a chronic immune-mediated rejection process of the foreign xenogenic-derived tissue. The underlying mechanisms of how this occurs are an area of ongoing research and active debate. In this review, we provide an overview of the important components of the immune system and how they respond to xenografts. A review of the proposed mechanisms of xenogenic heart valve deterioration is provided including the immune response to xenografts. Finally, we discuss the role of strategies to combat valve degeneration such as preservation protocols, epitope modification and decellularization.
Collapse
Affiliation(s)
- Sabin J Bozso
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Ryaan El-Andari
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David Al-Adra
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michael C Moon
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H Freed
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jayan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| | - Jeevan Nagendran
- Department of Surgery, Division of Cardiac Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Bozso SJ, Kang JJH, Basu R, Adam B, Dyck JRB, Oudit GY, Moon MC, Freed DH, Nagendran J, Nagendran J. Structural Valve Deterioration Is Linked to Increased Immune Infiltrate and Chemokine Expression. J Cardiovasc Transl Res 2020; 14:503-512. [PMID: 33089488 DOI: 10.1007/s12265-020-10080-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023]
Abstract
We aim to investigate whether structural valve deterioration (SVD) of bioprosthetic xenogenic tissue heart valves (XTHVs) is associated with increased immune cell infiltration and whether co-expression of several chemokines correlates with this increase in immune infiltrate. Explanted XTHVs from patients undergoing redo valve replacement for SVD were obtained. Immunohistochemical, microscopic, and gene expression analysis approaches were used. XTHVs (n = 37) were obtained from 32 patients (mean 67.7 years) after a mean time of 11.6 years post-implantation. Significantly increased immune cellular infiltration was observed in the explanted SVD valves for all immune cell types examined, including T cells, macrophages, B cells, neutrophils, and plasma cells, compared to non-SVD controls. Furthermore, a significantly increased chemokine gradient in explanted SVD valves accompanied immune cell infiltration. These data suggest the development of SVD is associated with a significantly increased burden of immune cellular infiltrate correlated to the induction of a chemokine gradient around the XHTV, representing chronic immune rejection.Graphical abstract Proposed interaction between innate and adaptive immunity leading to the development of structural valve deterioration in xenogenic tissue heart valves.
Collapse
Affiliation(s)
- Sabin J Bozso
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jimmy J H Kang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Benjamin Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Division of Pediatrics, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Gavin Y Oudit
- Cardiovascular Research Centre, Division of Cardiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Michael C Moon
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Darren H Freed
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jayan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Jeevan Nagendran
- Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Park CS, Kim YJ, Lee JR, Lim HG, Chang JE, Jeong S, Kwon N. Anticalcification effect of a combination of decellularization, organic solvents and amino acid detoxification on glutaraldehyde-fixed xenopericardial heart valves in a large-animal long-term circulatory model. Interact Cardiovasc Thorac Surg 2017; 25:391-399. [DOI: 10.1093/icvts/ivx131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/21/2017] [Indexed: 11/12/2022] Open
|
4
|
Schwartz RS, Holmes DR, Van Tassel RA, Hauser R, Henry TD, Mooney M, Matthews R, Doshi S, Jones RM, Virmani R. Left atrial appendage obliteration: mechanisms of healing and intracardiac integration. JACC Cardiovasc Interv 2010; 3:870-7. [PMID: 20723861 DOI: 10.1016/j.jcin.2010.04.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/26/2010] [Accepted: 04/26/2010] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The objectives of this study were: 1) to delineate the temporal course of histopathologic healing as the left atrial appendage (LAA) is obliterated by a mechanical device; and 2) to compare this process with other intravascular and intracardiac implanted technologies. BACKGROUND Intracardiac device healing is incompletely understood. We thus studied the histopathology of device-based LAA obliteration. METHODS Nine dog hearts were examined over time after LAA device placement and results were compared with human hearts with prior LAA obliteration using the same device. RESULTS At 3 days in dogs, atrial surfaces were covered by fibrin, which sealed gaps between the LA wall and the device and filled the LA appendage cavity. At 45 days, endothelial cells covered the endocardial surface with underlying smooth muscle cells that sealed the device-LA interface. Regions with prior thrombus were replaced by endocardium surrounding the device membrane. Disorganized thrombus remained in the LAA body and at the periphery near the appendage walls. Mild inflammation was observed as thrombus resorbed. By 90 days, a complete endocardial lining covered the former LAA ostium. Organizing thrombus had become connective tissue, with no residual inflammation. The human necropsy hearts had similar findings. In these 4 hearts (139, 200, 480, and 852 days after implant), the ostial fabric membrane was covered with endocardium. The appendage surface contained organizing thrombus with minimal inflammation. Organizing fibrous tissue was inside the LAA cavity, prominent near the atrial wall. The LAA interior contained organizing thrombus. CONCLUSIONS This intracardiac device integration study delineated healing stages of early thrombus deposition, thrombus organization, inflammation and granulation tissue, final healing by connective tissue, and endocardialization without inflammation. These observations may yield insight into cellular healing processes in other cardiac devices.
Collapse
Affiliation(s)
- Robert S Schwartz
- Minneapolis Heart Institute and Foundation, Minneapolis, Minnesota 55407, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sung K, Kim WG, Seo JW. Immunologically untreated fresh xenograft implantation in a pig-to-goat model. Artif Organs 2008; 32:810-5. [PMID: 18959669 DOI: 10.1111/j.1525-1594.2008.00650.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunologically untreated frozen-stored xenografts show controlled rejection and repair due to reduced cellularity in our previous study. To clarify the issue, we compared results obtained using fresh and frozen-stored xenografts. Porcine pulmonary valved conduits were prepared without immunologic treatment and implanted in the right ventricular outflow tract of goats under cardiopulmonary bypass immediately after harvest without frozen storage (the fresh group) or after frozen storage (-70 degrees C for 3 - 7 days) (the frozen group). Four goats were assigned to be raised for 3 (N = 1) or 6 (N = 3) months postoperatively in each group. One goat in the frozen group assigned for the 6-month observation expired at 2 months postoperatively because of thrombotic occlusion of the pulmonary valve. The other goats survived until the scheduled sacrifice. According to echocardiographic findings, one animal sacrificed at 3 months in the frozen group showed more than a moderate degree of pulmonary regurgitation, but all animals in the fresh group showed less than a mild degree. On gross examination, leaflets were slightly better preserved in the fresh group and aneurysmal dilatation of the pulmonary artery was observed at 3 months only in the frozen group. Microscopically, pulmonary arteries showed less severe degenerative changes in the fresh group. Moreover, in the fresh group, viable donor valve cells were still present until 3 months postoperatively (though it disappeared at 6 months postoperatively) and a linear endothelial lining of viable host cells was prominent on all leaflets, whereas this was not the case in the frozen group. In conclusion, fresh xenografts preserved cellular viability and showed fewer degenerative changes than frozen-stored xenografts. Thus, immunologically untreated fresh xenografts could provide a potential valve substitute with distinctive advantages in terms of self-healing potential as compared with frozen-stored xenografts.
Collapse
Affiliation(s)
- Kiick Sung
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|