1
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
2
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
3
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Ahmed W, Hang H, Zhuang Y, Guo M. Inducing Non-genetically Modified Induced Embryonic Sertoli Cells Derived From Embryonic Stem Cells With Recombinant Protein Factors. Front Cell Dev Biol 2021; 8:533543. [PMID: 33585437 PMCID: PMC7875124 DOI: 10.3389/fcell.2020.533543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Embryonic Sertoli cells (eSCs) possess multiple supporting functions and research value in gonadal development and sex determination. However, the limitation of acquiring quality eSCs had hindered the further application. Herein, we successfully derived non-genetically modified (non-GM)-induced embryonic Sertoli-like cells (eSLCs) from mouse embryonic stem cells (ESCs) with a TM4 cell-derived conditioned medium containing recombinant endogenous protein factors Sry, Sox9, Sf1, Wt1, Gata4, and Dmrt1. These eSLCs were determined through morphology; transcriptional expression levels of stage-specific, epithelial, and mesenchymal marker genes; flow cytometry, immunofluorescence; and immunocytochemistry and functionally determined by coculture with spermatogonia stem cells. Results indicated that these eSLCs performed similarly to eSCs in specific biomarkers and expression of marker genes and supported the maturation of spermatogonia. The study induced eSLCs from mouse ESCs by defined protein factors. However, the inducing efficiency of the non-GM method was still lower than that of the lentiviral transduction method. Thus, this work established a foundation for future production of non-GM eSLCs for clinical applications and fundamental theory research.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Hang H, Zhuang Y, Guo M. Differentiation roadmap of embryonic Sertoli cells derived from mouse embryonic stem cells. Stem Cell Res Ther 2019; 10:81. [PMID: 30850007 PMCID: PMC6408820 DOI: 10.1186/s13287-019-1180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. However, the deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. Therefore, this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism. Methods Six inducing factors, Sry, Sox9, SF1, WT1, GATA4, and Dmrt1, were respectively transduced into mES cells by lentiviral infection according to the experimental design. The test groups were identified by development stage-specific markers, AMH, Emx2, SF1, and FasL, using flow cytometry. Induced eSCs were determined by FasL and AMH biomarkers under immunofluorescence, immunocytochemistry, and flow cytometry. Moreover, the pluripotency markers, gonad development-related markers, epithelial markers and mesenchymal markers in test groups were transcriptionally determined by qPCR. Results In this study, the co-overexpression of all the six factors effectively produced a large population of eSCs from mES cells in 35 days of culturing. These eSCs were capable of forming tubular-like and ring-like structures with functional performance. The results of flow cytometry indicated that the upregulation of GATA4 and WT1 contributed to the growth of somatic cells in the coelomic epithelium regarded as the main progenitor cells of eSCs. Whereas, SF1 facilitated the development of eSC precursor cells, and Sry and Sox9 promoted the determination of male development. Moreover, the overexpression of Dmrt1 was essential for the maintenance of eSCs and some of their specific surface biomarkers such as FasL. The cellular morphology, biomarker identification, and transcriptomic analysis aided in exploring the regulatory mechanism of deriving eSCs from mES cells. Conclusion Conclusively, we have elucidated a differentiation roadmap of eSCs derived from mES cells with a relevant regulatory mechanism. Through co-overexpression of all these six factors, a large population of eSCs was successfully induced occupying 24% of the whole cell population (1 × 105 cells/cm2). By adopting this approach, a mass of embryonic Sertoli cells can be generated for the purpose of co-culture technique, organ transplantation, gonadal developmental and sex determination researches. Electronic supplementary material The online version of this article (10.1186/s13287-019-1180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Fan P, Ding XM, Tian XH, Feng XS, Yan H, Pan XM, Tian PX, Zheng J, Ding CG, Xue WJ. Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet. Chin Med J (Engl) 2017; 130:832-839. [PMID: 28345548 PMCID: PMC5381318 DOI: 10.4103/0366-6999.202730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Improving islet graft revascularization has become a crucial task for prolonging islet graft survival. Endothelial cells (ECs) are the basis of new microvessels in an isolated islet, and EC coating has been demonstrated to improve the vascularization and survival of an islet. However, the traditional method of EC coating of islets has low efficiency in vitro. This study was conducted to evaluate the effect of a polyglycolic acid (PGA) scaffold on the efficiency of islet coating by ECs and the angiogenesis in the coated islet graft. Methods: A PGA fibrous scaffold was used for EC coating of islet culture and was evaluated for its efficiency of EC coating on islets and islet graft angiogenesis. Results: In in vitro experiments, we found that apoptosis index of ECs-coating islet in PGA group (27% ± 8%) was significantly lower than that in control group (83% ± 20%, P < 0.05) after 7 days culture. Stimulation index was significantly greater in the PGA group than in the control group at day 7 after ECs-coating (2.07 ± 0.31 vs. 1.80 ± 0.23, P < 0.05). vascular endothelial growth factor (VEGF) level in the PGA group was significantly higher than the coating in the control group after 7 days culture (52.10 ± 13.50 ng/ml vs. 16.30 ± 8.10 ng/ml, P < 0.05). Because of a tight, circumvallated, adhesive and three-dimensional growth microenvironment, islet cultured in a PGA scaffold had higher coating efficiency showing stronger staining intensity of enzyme than those in the control group after 14 days of culture following ECs-coating. For in vivo study, PGA scaffold significantly prolonged the average survival time of EC-coated islet graft after transplantation compared with control group (15.30 ± 5.60 days vs. 8.30 ± 2.45 days, P < 0.05). The angiogenesis and area of survived grafts were more in the PGA group compared with the control group by measuring the mean microvessel density (8.60 ± 1.21/mm2 vs. 5.20 ± 0.87/mm2, P < 0.05). In addition, expression of VEGF and tyrosin-protein kinase receptor (Tie-2) gene increased in PGA scaffold group than that in control group by real-time reverse transcription-polymerase chain reaction analysis. Conclusions: These results demonstrate that the efficiency of EC coating of islets was successfully increased by culturing ECs on a PGA scaffold. This method enhances the function, survival, and vascularization of isolated islets in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Li
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ping Fan
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Hang Yan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xiao-Ming Pan
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Pu-Xun Tian
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Chen-Guang Ding
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Center of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| |
Collapse
|
6
|
Rawal S, Harrington S, Williams SJ, Ramachandran K, Stehno-Bittel L. Long-term cryopreservation of reaggregated pancreatic islets resulting in successful transplantation in rats. Cryobiology 2017; 76:41-50. [PMID: 28483491 DOI: 10.1016/j.cryobiol.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Preservation of pancreatic islets for long-term storage of islets used for transplantation or research has long been a goal. Unfortunately, few studies on long-term islet cryopreservation (1 month and longer) have reported positive outcomes in terms of islet yield, survival and function. In general, single cells have been shown to tolerate the cryopreservation procedure better than tissues/multicellular structures like islets. Thus, we optimized a method to cryopreserve single islet cells and, after thawing, reaggregated them into islet spheroids. Cryopreserved (CP) single human islet cells formed spheroids efficiently within 3-5 days after thawing. Approximately 79% of islet cells were recovered following the single-cell cryopreservation protocol. Viability after long-term cryopreservation (4 weeks or more) was significantly higher in the CP islet cell spheroids (97.4 ± 0.4%) compared to CP native islets (14.6 ± 0.4%). Moreover, CP islet cell spheroids had excellent viability even after weeks in culture (88.5 ± 1.6%). Metabolic activity was 4-5 times higher in CP islet cell spheroids than CP native islets at 24 and 48 h after thawing. Diabetic rats transplanted with CP islet cell spheroids were normoglycemic for 10 months, identical to diabetic rats transplanted with fresh islets. However, the animals receiving fresh islets required a higher volume of transplanted tissue to achieve normoglycemia compared to those transplanted with CP islet cell spheroids. By cryopreserving single cells instead of intact islets, we achieved highly viable and functional islets after thawing that required lower tissue volumes to reverse diabetes in rats.
Collapse
Affiliation(s)
- Sonia Rawal
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Stephen Harrington
- Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA; University of Kansas, 1450 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - S Janette Williams
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA
| | | | - Lisa Stehno-Bittel
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA.
| |
Collapse
|
7
|
Li Y, Ding X, Fan P, Guo J, Tian X, Feng X, Zheng J, Tian P, Ding C, Xue W. Inactivation of p27 kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation. Endocrinology 2016; 157:4121-4132. [PMID: 27631551 DOI: 10.1210/en.2016-1060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.
Collapse
Affiliation(s)
- Yang Li
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Xiaoming Ding
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Ping Fan
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Jian Guo
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Xiaohui Tian
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Xinshun Feng
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Jin Zheng
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Puxun Tian
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Chenguang Ding
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| | - Wujun Xue
- Department of Renal Transplantation (Y.L., X.D., X.T., X.F., J.Z., P.T., C.D., W.X.), Center of Nephrology, the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; Institute of Organ Transplantation (Y.L., X.D., X.T, X.F., J.Z., P.T., C.D., W.X.), Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China; and Departments of Rheumatism and Immunology (P.F.) and Hepatobiliary (J.G.), the First Affiliated Hospital Xi'an Jiaotong University, No. 277 West Yanta Street, Xi'an, 710061, People's Republic of China
| |
Collapse
|
8
|
Chen W, Shu Z, Gao D, Shen AQ. Sensing and Sensibility: Single-Islet-based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules. Adv Healthc Mater 2016; 5:223-31. [PMID: 26606153 DOI: 10.1002/adhm.201500515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/10/2015] [Indexed: 12/11/2022]
Abstract
Despite decades of research and clinical studies of islet transplantations, finding simple yet reliable islet quality assays that correlate accurately with in vivo potency is still a major challenge, especially for real-time and single-islet-based quality assessment. Herein, proof-of-concept studies of a cryopreserved microcapsule-based quality control assays are presented for single islets. Individual rat pancreatic islets and fluorescent oxygen-sensitive dye (FOSD) are encapsulated in alginate hydrogel microcapsules via a microfluidic device. To test the susceptibility of the microcapsules and the FOSD to cryopreservation, the islet microcapsules containing FOSD are cryopreserved and the islet functionalities (adenosine triphosphate, static insulin release measurement, and oxygen consumption rate) are assessed after freezing and thawing steps. The cryopreserved islet capsules with FOSD remain functional after encapsulation and freezing/thawing procedures, validating a simple yet reliable individual-islet-based quality control method for the entire islet processing procedure prior to transplantation. This work also demonstrates that the functionality of cryopreserved islets can be improved by introducing trehalose into the routinely used cryoprotectant dimethyl sulfoxide. The functionalized alginate hydrogel microcapsules with embedded FOSD and optimized cryopreservation protocol presented in this work serve as a versatile islet quality assay and offer tremendous promise for tackling existing challenges in islet transplantation procedures.
Collapse
Affiliation(s)
- Wanyu Chen
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Zhiquan Shu
- Department of Mechanical Engineering; University of Washington; Seattle WA 98195 USA
- School of Mechanical and Materials Engineering; Washington State University; Everett 98201 WA USA
| | - Dayong Gao
- Department of Mechanical Engineering; University of Washington; Seattle WA 98195 USA
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa 904-0495 Japan
| |
Collapse
|
9
|
Manning Fox JE, Lyon J, Dai XQ, Wright RC, Hayward J, van de Bunt M, Kin T, Shapiro AMJ, McCarthy MI, Gloyn AL, Ungrin MD, Lakey JR, Kneteman NM, Warnock GL, Korbutt GS, Rajotte RV, MacDonald PE. Human islet function following 20 years of cryogenic biobanking. Diabetologia 2015; 58:1503-12. [PMID: 25930156 PMCID: PMC4472956 DOI: 10.1007/s00125-015-3598-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS There are potential advantages to the low-temperature (-196 °C) banking of isolated islets, including the maintenance of viable islets for future research. We therefore assessed the in vitro and in vivo function of islets cryopreserved for nearly 20 years. METHODS Human islets were cryopreserved from 1991 to 2001 and thawed between 2012 and 2014. These were characterised by immunostaining, patch-clamp electrophysiology, insulin secretion, transcriptome analysis and transplantation into a streptozotocin (STZ)-induced mouse model of diabetes. RESULTS The cryopreservation time was 17.6 ± 0.4 years (n = 43). The thawed islets stained positive with dithizone, contained insulin-positive and glucagon-positive cells, and displayed levels of apoptosis and transcriptome profiles similar to those of freshly isolated islets, although their insulin content was lower. The cryopreserved beta cells possessed ion channels and exocytotic responses identical to those of freshly isolated beta cells. Cells from a subset of five donors demonstrated similar perifusion insulin secretion profiles pre- and post-cryopreservation. The transplantation of cryopreserved islets into the diabetic mice improved their glucose tolerance but did not completely normalise their blood glucose levels. Circulating human insulin and insulin-positive grafts were detectable at 10 weeks post-transplantation. CONCLUSIONS/INTERPRETATION We have demonstrated the potential for long-term banking of human islets for research, which could enable the use of tissue from a large number of donors with future technologies to gain new insight into diabetes.
Collapse
Affiliation(s)
- Jocelyn E. Manning Fox
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Xiao Qing Dai
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Robert C. Wright
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Julie Hayward
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tatsuya Kin
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Mark D. Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Jonathan R. Lakey
- Departments of Surgery and Biomedical Engineering, University of California, Irvine, USA
| | | | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Gregory S. Korbutt
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Raymond V. Rajotte
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Surgery, Surgical Medical Research Institute, HMRC, University of Alberta, Edmonton, AB Canada T6G 2S2
| | - Patrick E. MacDonald
- Alberta Diabetes Institute, University of Alberta, LKS Centre, Edmonton, AB Canada T6G 2R3
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft. PLoS One 2013; 8:e56696. [PMID: 23437215 PMCID: PMC3577699 DOI: 10.1371/journal.pone.0056696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs) are the basis of islet vascularization and Sertoli cells (SCs) have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32), survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt) and demonstrated increased vascular endothelial growth factor receptor 2 (KDR) and angiogenesis signal molecules (FAk and PLC-γ). SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.
Collapse
|
11
|
Xue WJ, Luo XH, Li Y, Liu HB, Tian XH, Feng XS, Ding XM, Tian PX, Ge GQ, Pan XM, Li SB. Effects of astragalosides on cultured islets after cryopreservation in rats. Transplant Proc 2012; 43:3908-12. [PMID: 22172871 DOI: 10.1016/j.transproceed.2011.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/07/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To explore the effects of AST (astragalosides) on cultured rat islet yield, purity, and function after cryopreservation in rats. METHODS Pancreatic islets were isolated from 30 Sprague-Dawley rats using the standard technique of collagenase P digestion and discontinuous Ficoll gradient purification. After thaw, the islets were randomly divided into AST group and control group (n=15). Next, the islet cells were cultured in AST-containing medium or standard medium for 7, 14, and 21 days after cryopreservation and thaw. The quantity, purity, and survival rate were calculated in the two groups before and after culture. Then the in vitro and in vivo function was observed in diabetic rats after islet transplantation. RESULTS The quantity and purity of islets had no difference between the two groups before culture (P>.05) while the difference after culture was significantly (P<.05). The survival rate of islets was 48% in AST group and 32% in the control group 21 days after thaw (P<.05). After 3 days, there was significantly a higher simulation index in the AST group than in the control group (P<.05). There was a significant difference in blood glucose and insulin concentrations between the groups after 3 days (P<.05). CONCLUSION AST can be added to the culture medium to reduce the loss of islet cryopreservation and be intravenously injected to improve culture islet function in vitro and prolong islet graft survival in diabetic rats.
Collapse
Affiliation(s)
- W-J Xue
- Department of Renal Transplant, Center of Nephropathy, The First Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, Shannxi, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In this Editor's Review, articles published in 2011 are organized by category and briefly summarized. As the official journal of The International Federation for Artificial Organs, The International Faculty for Artificial Organs, and the International Society for Rotary Blood Pumps, Artificial Organs continues in the original mission of its founders "to foster communications in the field of artificial organs on an international level."Artificial Organs continues to publish developments and clinical applications of artificial organ technologies in this broad and expanding field of organ replacement, recovery, and regeneration from all over the world. We take this time also to express our gratitude to our authors for offering their work to this journal. We offer our very special thanks to our reviewers who give so generously of time and expertise to review, critique, and especially provide meaningful suggestions to the author's work whether eventually accepted or rejected. Without these excellent and dedicated reviewers, the quality expected from such a journal would not be possible. We also express our special thanks to our Publisher, Wiley-Blackwell, for their expert attention and support in the production and marketing of Artificial Organs. In this Editor's Review, that historically has been widely well-received by our readership, we aim to provide a brief reflection of the currently available worldwide knowledge that is intended to advance and better human life while providing insight for continued application of technologies and methods of organ replacement, recovery, and regeneration. We look forward to recording further advances in the coming years.
Collapse
Affiliation(s)
- Paul S Malchesky
- Artificial Organs Editorial Office, 10 West Erie Street, Painesville, OH 44077, USA.
| |
Collapse
|