1
|
Xiang J, Yu X, Bonnette S, Anand M, Riehm CD, Schlink B, Diekfuss JA, Myer GD, Jiang Y. Improved Biomagnetic Signal-To-Noise Ratio and Source Localization Using Optically Pumped Magnetometers with Synthetic Gradiometers. Brain Sci 2023; 13:663. [PMID: 37190628 PMCID: PMC10136792 DOI: 10.3390/brainsci13040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Optically pumped magnetometers (OPMs) can capture brain activity but are susceptible to magnetic noise. The objective of this study was to evaluate a novel methodology used to reduce magnetic noise in OPM measurements. A portable magnetoencephalography (MEG) prototype was developed with OPMs. The OPMs were divided into primary sensors and reference sensors. For each primary sensor, a synthetic gradiometer (SG) was constructed by computing a secondary sensor that simulated noise with signals from the reference sensors. MEG data from a phantom with known source signals and six human participants were used to assess the efficacy of the SGs. Magnetic noise in the OPM data appeared predominantly in a low frequency range (<4 Hz) and varied among OPMs. The SGs significantly reduced magnetic noise (p < 0.01), enhanced the signal-to-noise ratio (SNR) (p < 0.001) and improved the accuracy of source localization (p < 0.02). The SGs precisely revealed movement-evoked magnetic fields in MEG data recorded from human participants. SGs provided an effective method to enhance SNR and improve the accuracy of source localization by suppressing noise. Software-simulated SGs may provide new opportunities regarding the use of OPM measurements in various clinical and research applications, especially those in which movement is relevant.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoqian Yu
- Laureate Institute for Brain Research, 6655 S Yale Ave., Tulsa, OK 74136, USA
| | - Scott Bonnette
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Manish Anand
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Christopher D. Riehm
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Bryan Schlink
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
| | - Jed A. Diekfuss
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
| | - Gregory D. Myer
- Emory Sport Performance and Research Center (SPARC), Emory University, Flowery Branch, GA 30542, USA
- Emory Sports Medicine Center, Emory Healthcare, Atlanta, GA 30329, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 45267, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA 02453, USA
| | - Yang Jiang
- Department of Behavioral Science, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Li Y, Sun Y, Zhang T, Shi Q, Sun J, Xiang J, Chen Q, Hu Z, Wang X. The relationship between epilepsy and cognitive function in benign childhood epilepsy with centrotemporal spikes. Brain Behav 2020; 10:e01854. [PMID: 32959999 PMCID: PMC7749571 DOI: 10.1002/brb3.1854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION This study was aimed to explore the relationship between neural network changes in newly diagnosed children with Benign Childhood Epilepsy with Centrotemporal Spikes (BECTS) and cognitive impairment. METHODS Children's cognition was evaluated using the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). Magnetoencephalographic (MEG) data of 18 healthy children and 22 BECTS patients were recorded in order to construct a functional connectivity (FC) network, which was quantified by graph theory (GT). RESULTS The mean age of the control group was 7.94 ± 1.89 years, and the mean age of BECTS patients was 8.14 ± 1.73 years. Our results show that the WISC-IV index scores in the BECTS group were significantly lower than those in the control group. Besides, the FC network pattern of BECTS patients changed significantly in the 12-30, 30-80, and 250-500 Hz frequency band. The local functional connections between posterior cingulate cortex (PCC) and frontal lobe varied significantly in 12-30, 80-250, and 250-500 Hz. Our GT analysis shows that the connection strength of BECTS patients increases significantly in the 12-30 Hz frequency band, the path length decreases significantly in the 12-30 Hz and 30-80 Hz frequency bands, with the clustering coefficient decreasing significantly in the 12-30 Hz, 30-80 Hz, and 250-500 Hz frequency bands. Correlation analysis showed that the full-scale IQ (FSIQ) was positively correlated with the 12-30 Hz clustering coefficient, verbal comprehension index (VCI) was positively correlated with the 250-500 Hz clustering coefficient, perceptual reasoning index (PRI) was positively correlated with the 12-30 Hz clustering coefficient, and perceptual reasoning index (PSI) was negatively correlated with the 12-30 Hz path length. CONCLUSION There is a trend of cognitive impairment in patients with early BECTS. This trend of cognitive impairment in early BECTS children may be related to the changes in the FC network pattern.
Collapse
Affiliation(s)
- Yihan Li
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Shi
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qiqi Chen
- MEG Center, Nanjing Brain Hospital, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhou ZY, Yu YW, Wu D, Liu HX, Xiang J, Wu T, Chen QQ, Wang XS. Abnormality of visual neuromagnetic activation in female migraineurs without aura between attacks. J Headache Pain 2019; 20:7. [PMID: 30651072 PMCID: PMC6734467 DOI: 10.1186/s10194-018-0957-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The present study aimed to preliminary explore the abnormal neuromagnetic activation in female migraine patients between attacks using magnetoencephalography (MEG) and pattern reversed visual evoked magnetic fields (PR-VEFs). METHODS A total of 17 female migraine subjects during the headache-free phase and 17 healthy controls (HC) were studied using a 275-channel magnetoencephalography (MEG) system. In this study, visual evoked magnetic fields (VEFs) were generated by a pattern-reversal check as the visual stimulus. The average of 100 VEFs was evolved by different half patterns were averaged and used to analyze waveform, spectrum, and source location within two frequency ranges (5-100 and 100-1000 Hz), respectively. RESULTS In migraine subjects, the latency of second peak of VEFs (VIIs) showed significant prolongations when compared with HC. On the sensor level, the cortical spectral power in migraine subjects was similar to that of HC in the 5-100 Hz range and was lower in the 1000-1000 Hz range. There was a decrement of source strength in the visual cortex in migraine patients when compared to HC in both the 5-100 and 100-1000 Hz frequency range. Moreover, there was a similar odds of activation in 5-100 and 100-1000 Hz frequency ranges in the area beyond the primary visual cortex between the two groups. In addition, no correlation was observed between clinical data (intensity of headache, headache-history duration, the frequency of headaches) and MEG results. CONCLUSIONS The findings presented in the current study, suggested that interictal cortical activation following a visual stimulus was low in female migraine patients. The low pre-activation was detected in the visual cortex using VEF and MEG in both low and high-frequency band. Our results add to the existing evidence that cortical interictal excitability change may be relative to the pain-module mechanism in migraine brains. Thus, our data improved the apprehension of the cortical disorder of migraine in the high-frequency domain.
Collapse
Affiliation(s)
- Zhi Y. Zhou
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Yan W. Yu
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Di Wu
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Hong X. Liu
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu 210029 People’s Republic of China
| | - Jing Xiang
- The MEG Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220 USA
| | - Ting Wu
- The MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu People’s Republic of China
| | - Qi Q. Chen
- The MEG Center, Nanjing Brain Hospital, Nanjing, Jiangsu People’s Republic of China
| | - Xiao S. Wang
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu 210029 People’s Republic of China
| |
Collapse
|
4
|
Leiken KA, Xiang J, Curry E, Fujiwara H, Rose DF, Allen JR, Kacperski JE, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Quantitative neuromagnetic signatures of aberrant cortical excitability in pediatric chronic migraine. J Headache Pain 2016; 17:46. [PMID: 27113076 PMCID: PMC4844586 DOI: 10.1186/s10194-016-0641-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/15/2016] [Indexed: 11/24/2022] Open
Abstract
Background Reports have suggested that abnormal cortical excitability may be associated with acute migraines. The present study quantitatively assesses the degree of cortical excitability in chronic migraine as compared to acute migraine and healthy controls within the pediatric population. Methods We investigated 27 children suffering from chronic migraine, 27 children suffering from acute migraine, and 27 healthy controls using a magnetoencephalography (MEG) system, recording at a sampling rate of 6000 Hz. All groups were age-matched and gender-matched. Neuromagnetic brain activation was elicited by a finger-tapping motor task. The spatiotemporal and spectral signatures of MEG data within a 5–2884 Hz range were analyzed using Morlet wavelet transform and beamformer analyses. Results Compared with controls, the chronic migraine group showed (1) significantly prolonged latencies of movement-elicited magnetic fields (MEFs) between 5 and 100 Hz; (2) increased spectral power between 100 and 200 Hz, and between 2200 and 2800 Hz; and (3) a higher likelihood of neuromagnetic activation in the ipsilateral sensorimotor cortices, supplementary motor area, and occipital regions. Compared with acute migraine group, chronic migraine patients showed (1) significantly higher odds of having strong MEFs after 150 ms; and (2) significantly higher odds of having neuromagnetic activation from the deep brain areas. Conclusions Results demonstrated that chronic migraine subjects were not only different from the healthy controls, but also different from acute migraine subjects. The chronification of migraines may be associated with elevated cortical excitability, delayed and spread neural response, as well as aberrant activation from deep brain areas.
Collapse
Affiliation(s)
- Kimberly A Leiken
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.
| | - Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Emily Curry
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA
| | - Hisako Fujiwara
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA
| | - Douglas F Rose
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Janelle R Allen
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joanne E Kacperski
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Hope L O'Brien
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Marielle A Kabbouche
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Scott W Powers
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.,Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew D Hershey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2015, Cincinnati, OH, 45220, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
5
|
Xiang J, Leiken K, Degrauw X, Kay B, Fujiwara H, Rose DF, Allen JR, Kacperski JE, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Spatial Heterogeneity of Cortical Excitability in Migraine Revealed by Multifrequency Neuromagnetic Signals. THE JOURNAL OF PAIN 2016; 17:694-706. [PMID: 26970516 DOI: 10.1016/j.jpain.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/23/2015] [Accepted: 02/11/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED To investigate the spatial heterogeneity of cortical excitability in adolescents with migraine, magnetoencephalography (MEG) recordings at a sampling rate of 6,000 Hz were obtained from 35 adolescents with an acute migraine and 35 age- and sex-matched healthy control participants during an auditory-motor task. Neuromagnetic activation from low- to high-frequency ranges (5-1,000 Hz) was measured at sensor and source levels. The heterogeneity of cortical excitability was quantified within each functional modality (auditory vs motor) and hemispherical lateralization. MEG data showed that high-frequency, not low-frequency neuromagnetic signals, showed heterogeneous cortical activation in migraine subjects compared with control participants (P < .001). The alteration of the heterogeneity of cortical excitability in migraine subjects was independent of age and sex. The degree of the neuromagnetic heterogeneity of cortical activation was significantly correlated with headache frequency (r = .71, P < .005). The alteration of cortical excitability in migraine subjects was spatially heterogeneous and frequency dependent, which previously has not been reported. The finding may be critical for developing spatially targeted therapeutic strategies for normalizing cortical excitability with the purpose of reducing headache attacks. PERSPECTIVE This article presents a new approach to quantitatively measure the spatial heterogeneity of cortical excitability in adolescents with migraine using MEG signals in a frequency range of 5 to 1,000 Hz. The characteristics of the location and degree of cortical excitability may be critical for spatially targeted treatment for migraine.
Collapse
Affiliation(s)
- Jing Xiang
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| | - Kimberly Leiken
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xinyao Degrauw
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Benjamin Kay
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hisako Fujiwara
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Douglas F Rose
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Janelle R Allen
- MEG Center, Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joanne E Kacperski
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Hope L O'Brien
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Marielle A Kabbouche
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Scott W Powers
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; MEG Center, Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew D Hershey
- MEG Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
6
|
Liu H, Ge H, Xiang J, Miao A, Tang L, Wu T, Chen Q, Yang L, Wang X. Resting state brain activity in patients with migraine: a magnetoencephalography study. J Headache Pain 2015; 16:525. [PMID: 25968099 PMCID: PMC4429423 DOI: 10.1186/s10194-015-0525-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/25/2015] [Indexed: 12/30/2022] Open
Abstract
Background Recent advances in migraine research have shown that the cerebral cortex serves a primary role in the pathogenesis of migraine. Since aberrant brain activity in migraine can be noninvasively detected with magnetoencephalography (MEG), The object of this study was to investigate the resting state cortical activity differences between migraineurs and controls and its related clinical characteristics. Methods Twenty-two subjects with an acute migraine and twenty-two age- and gender-matched controls were studied using MEG. MEG recordings were recorded 120 seconds during the headache attack. Analyze MEG signals from low (1–4 Hz) to high (200–1000 Hz)-frequency ranges. Results In comparison with the controls, brain activity in migraine subjects was significantly different from that of the controls both in two frequency ranges (55–90 Hz, p < 0.001) and (90–200 Hz, p < 0.004). But the power value showed no significantly differences between control and migraines in all frequency ranges (p > 0.05). All the clinical characteristics had no significant correlation with aberrant brain activity. Conclusions The results demonstrated that migraine subjects in resting state had significantly aberrant ictal brain activity that can be measured with neuromagnetic imaging techniques. The findings may facilitate the development of new therapeutic strategies in migraine treatment via alterations in cortical excitability with TMS and other medications in the future.
Collapse
Affiliation(s)
- Hongxing Liu
- The Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, Guang Zhou Road 264, Nanjing, Jiangsu, 210029, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li K, Zhang Y, Ning Y, Zhang H, Liu H, Fu C, Ren Y, Zou Y. The effects of acupuncture treatment on the right frontoparietal network in migraine without aura patients. J Headache Pain 2015; 16:518. [PMID: 25916336 PMCID: PMC4411327 DOI: 10.1186/s10194-015-0518-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Functional and structural abnormalities in resting-state brain networks in migraine patients have been confirmed by previous functional magnetic resonance imaging (fMRI) studies. However, few studies focusing on the neural responses of therapeutic treatment on migraine have been conducted. In this study, we tried to examined the treatment-related effects of standard acupuncture treatment on the right frontoparietal network (RFPN) in migraine patients. METHODS A total of 12 migraine without aura (MWoA) patients were recruited to undergo resting-state fMRI scanning and were rescanned after 4 weeks standard acupuncture treatment. Another 12 matched healthy control (HC) subjects underwent once scanning for comparison. We analyzed the functional connectivity of the RFPN between MWoA patients and HC subjects before treatment and that of the MWoA patients before and after treatment. Diffusion tensor images (DTI) data analyzing was also performed to detect fiber-related treatment responses. RESULTS We observed significantly decreased FC in the RFPN and that the decreased FC could be reversed by acupuncture treatment. The changes of FC in MWoA patients was negatively correlated with the decrease of visual analogue scale (VAS) scores after treatment. This study indicated that acupuncture treatment for MWoA patients was associated with normalizing effects on the intrinsic decreased FC of the RFPN. CONCLUSIONS Our study provided new insights into the treatment-related neural responses in MWoA patients and suggested potential functional pathways for the evaluation of treatment in MWoA patients. Future studies are still in need to confirm the current results and to elucidate the complex neural mechanisms of acupuncture treatment.
Collapse
Affiliation(s)
- Kuangshi Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100700, China,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abnormal cortical activation in females with acute migraine: A magnetoencephalography study. Clin Neurophysiol 2015; 126:170-9. [DOI: 10.1016/j.clinph.2014.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/23/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
9
|
Powers SW. Logan Wright Award: Team science, team care, team training, and team leadership: my experience. J Pediatr Psychol 2014; 39:277-82. [PMID: 24648410 DOI: 10.1093/jpepsy/jsu002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Scott W Powers
- PhD, FAHS, Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, ML-3015, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
10
|
Xiang J, deGrauw X, Korman AM, Allen JR, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Neuromagnetic abnormality of motor cortical activation and phases of headache attacks in childhood migraine. PLoS One 2013; 8:e83669. [PMID: 24386250 PMCID: PMC3873943 DOI: 10.1371/journal.pone.0083669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability.
Collapse
Affiliation(s)
- Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Xinyao deGrauw
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Abraham M. Korman
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Janelle R. Allen
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hope L. O'Brien
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Marielle A. Kabbouche
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Scott W. Powers
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Andrew D. Hershey
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
11
|
Xiang J, deGrauw X, Korostenskaja M, Korman AM, O'Brien HL, Kabbouche MA, Powers SW, Hershey AD. Altered cortical activation in adolescents with acute migraine: a magnetoencephalography study. THE JOURNAL OF PAIN 2013; 14:1553-63. [PMID: 23792072 DOI: 10.1016/j.jpain.2013.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. PERSPECTIVE This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This methodology analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future.
Collapse
Affiliation(s)
- Jing Xiang
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Guo X, Xiang J, Wang Y, O’Brien H, Kabbouche M, Horn P, Powers SW, Hershey AD. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study. PLoS One 2012. [PMID: 23185541 PMCID: PMC3502360 DOI: 10.1371/journal.pone.0050095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.
Collapse
Affiliation(s)
- Xinyao Guo
- Department of Human Anatomy and Histology-Embryology, Xi'an Jiaotong University, School of Medicine, Xi'an, Shaanxi, People’s Republic of China
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jing Xiang
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Yingying Wang
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hope O’Brien
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Marielle Kabbouche
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| | - Paul Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Scott W. Powers
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Andrew D. Hershey
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Neurology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
13
|
Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2012; 70:838-45. [PMID: 22162064 DOI: 10.1002/ana.22537] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The periaqueductal gray matter (PAG), a known modulator of somatic pain transmission, shows evidence of interictal functional and structural abnormalities in migraineurs, which may contribute to hyperexcitability along spinal and trigeminal nociceptive pathways, and lead to the migraine attack. The aim of this study was to examine functional connectivity of the PAG in migraine. METHODS Using resting-state functional MRI, we compared functional connectivity between PAG and a subset of brain areas involved in nociceptive/somatosensory processing and pain modulation in 17 subjects with migraine, during a pain-free state, versus 17 gender- and age-matched controls. We also assessed the relation between intrinsic resting-state correlations within PAG networks and the average monthly frequency of migraine attacks, as well as allodynia. RESULTS Our findings show stronger connectivity between the PAG and several brain areas within nociceptive and somatosensory processing pathways in migraineurs versus controls. In addition, as the monthly frequency of migraine attacks worsens, the strength of the connectivity in some areas within these pathways increases, whereas a significant decrease in functional resting-state connectivity between the PAG and brain regions with a predominant role in pain modulation (prefrontal cortex, anterior cingulate, amygdala) can be evidenced. Finally, migraineurs with a history of allodynia exhibit significantly reduced connectivity between PAG, prefrontal regions, and anterior cingulate compared to migraineurs without allodynia. INTERPRETATION These data reveal interictal dysfunctional dynamics within pain pathways in migraine manifested as an impairment of the descending pain modulatory circuits, likely leading to loss of pain inhibition, and hyperexcitability primarily in nociceptive areas.
Collapse
Affiliation(s)
- Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | |
Collapse
|
14
|
Wang Y, Holland SK, Vannest J. Concordance of MEG and fMRI patterns in adolescents during verb generation. Brain Res 2012; 1447:79-90. [PMID: 22365747 DOI: 10.1016/j.brainres.2012.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
In this study we focused on direct comparison between the spatial distributions of activation detected by functional magnetic resonance imaging (fMRI) and localization of sources detected by magnetoencephalography (MEG) during identical language tasks. We examined the spatial concordance between MEG and fMRI results in 16 adolescents performing a three-phase verb generation task that involves repeating the auditorily presented concrete noun and generating verbs either overtly or covertly in response to the auditorily presented noun. MEG analysis was completed using a synthetic aperture magnetometry (SAM) technique, while the fMRI data were analyzed using the general linear model approach with random-effects. To quantify the agreement between the two modalities, we implemented voxel-wise concordance correlation coefficient (CCC) and identified the left inferior frontal gyrus and the bilateral motor cortex with high CCC values. At the group level, MEG and fMRI data showed spatial convergence in the left inferior frontal gyrus for covert or overt generation versus overt repetition, and the bilateral motor cortex when overt generation versus covert generation. These findings demonstrate the utility of the CCC as a quantitative measure of spatial convergence between two neuroimaging techniques.
Collapse
Affiliation(s)
- Yingying Wang
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
15
|
Abstract
Primary headache are one of the most common health complaints in children and adolescents, yet there remain significant gaps in our understanding of the underlying pathophysiology of these conditions. Recently, there have been several areas of research that have assisted with filling this gap in our knowledge. These areas include a better understanding of the disease characteristics including additional associated symptoms and the refinement of the description of related conditions and comorbidities; continued examination of the epidemiology of primary headaches; the progression of migraine across these developmental ages; the molecular and physiological changes; and the potential role for vitamins and cofactor deficiencies in the pathophysiology. These studies continue to add to our fund of knowledge on the basis of migraine and tension-type headache as primary neurological conditions and their impact on the developing brain.
Collapse
Affiliation(s)
- Andrew D Hershey
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Division of Neurology, Cincinnati, OH, USA
| |
Collapse
|
16
|
Korostenskaja M, Pardos M, Kujala T, Rose DF, Brown D, Horn P, Wang Y, Fujiwara H, Xiang J, Kabbouche MA, Powers SW, Hershey AD. Impaired Auditory Information Processing During Acute Migraine: A Magnetoencephalography Study. Int J Neurosci 2011; 121:355-65. [PMID: 21425948 DOI: 10.3109/00207454.2011.560312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Milena Korostenskaja
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|