1
|
Vongseenin S, Ha-Ji-A-Sa N, Thanprasertsuk S, Bongsebandhu-Phubhakdi S. Deciphering migraine pain mechanisms through electrophysiological insights of trigeminal ganglion neurons. Sci Rep 2023; 13:14449. [PMID: 37660112 PMCID: PMC10475091 DOI: 10.1038/s41598-023-41521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Migraine is a complex neurological disorder that affects millions of people worldwide. Despite extensive research, the underlying mechanisms that drive migraine pain and related abnormal sensation symptoms, such as hyperalgesia, allodynia, hyperesthesia, and paresthesia, remain poorly understood. One of the proposed mechanisms is cortical spreading depression (CSD), which is believed to be involved in the regulation of trigeminovascular pathways by sensitizing the pain pathway. Another mechanism is serotonin depletion, which is implicated in many neurological disorders and has been shown to exacerbate CSD-evoked pain at the cortical level. However, the effects of CSD and serotonin depletion on trigeminal ganglion neurons, which play a critical role in pain signal transmission, have not been thoroughly studied. In this study, we aimed to investigate the association between CSD and serotonin depletion with peripheral sensitization processes in nociceptive small-to-medium (SM) and large (L) -sized trigeminal ganglion neurons at the electrophysiological level using rat models. We divided the rats into four groups: the control group, the CSD group, the serotonin depletion group, and the CSD/serotonin depletion group. We induced CSD by placing KCl on a burr hole and serotonin depletion by intraperitoneal injection of PCPA (para-chlorophenoxyacetic acid). We then isolated trigeminal ganglion neurons from all groups and classified them according to size. Using patch-clamp recording, we recorded the excitability parameters and action potential (AP) properties of the collected neurons. Our results showed that in SM-sized trigeminal ganglion neurons, the CSD-SM and CSD/serotonin depletion groups had a higher positive resting membrane potential (RMP) than the control-SM group (p = 0.001 and p = 0.002, respectively, post-hoc Tukey's test). In addition, the gap between RMP and threshold in the CSD-SM group was significantly narrower than in the control-SM group (p = 0.043, post-hoc Tukey's test). For L-sized neurons, we observed prolongation of the AP rising time, AP falling time, and AP duration in neurons affected by CSD (p < 0.05, pairwise comparison test). In conclusion, our study provides new insights into the underlying mechanisms of migraine pain and abnormal somatosensation. CSD and serotonin depletion promote the transmission of pain signals through the peripheral sensitization process of nociceptive small-to-medium-sized trigeminal ganglion neurons, as well as nociceptive and non-nociceptive large-sized trigeminal ganglion neurons.
Collapse
Affiliation(s)
- S Vongseenin
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - N Ha-Ji-A-Sa
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - S Thanprasertsuk
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Chulalongkorn University, Bangkok, 10330, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - S Bongsebandhu-Phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Zhang M, Liu Y, Hu G, Kang L, Ran Y, Su M, Yu S. Cognitive impairment in a classical rat model of chronic migraine may be due to alterations in hippocampal synaptic plasticity and N-methyl-D-aspartate receptor subunits. Mol Pain 2021; 16:1744806920959582. [PMID: 32869707 PMCID: PMC7517984 DOI: 10.1177/1744806920959582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although migraine is a major global public health problem, its impact on cognitive abilities remains controversial. Thus, the present study investigated the effects of repeated administration of inflammatory soup to the dura of rats, over three weeks, on spatial cognition, hippocampal synaptic plasticity, and the expression of N-methyl-D-aspartate receptor subunits. Additionally, low doses of amitriptyline (5 mg/kg) were applied to assess its therapeutic effects. The inflammatory soup group exhibited significant reductions in the cutaneous stimulation threshold, presence of mild cognitive impairment, and decreased long-term potentiation in right hippocampus. However, amitriptyline improved pain behaviors, enhanced cognitive function, and increased synaptic plasticity in the inflammatory soup rats. On the other hand, the administration of amitriptyline to normal rats negatively influenced synaptic plasticity and reduced the expression of N-methyl-D-aspartate receptor subunits. The present results indicate that inflammatory soup-induced dural nociception led to impairments in spatial cognition that could be attributed to reductions in hippocampal long-term potentiation and the decreased expression of N-methyl-D-aspartate receptor subunits.
Collapse
Affiliation(s)
- Mingjie Zhang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Yufei Liu
- Department of Neurology, Tianjin Third Central Hospital, PR China
| | - Guanqun Hu
- Department of Neurology, Tianjin Union Medicine Center, PR China
| | - Li Kang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Ye Ran
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Min Su
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, PR China
| |
Collapse
|
3
|
Ding X, Peng D. Transient Global Amnesia: An Electrophysiological Disorder Based on Cortical Spreading Depression-Transient Global Amnesia Model. Front Hum Neurosci 2020; 14:602496. [PMID: 33363460 PMCID: PMC7753037 DOI: 10.3389/fnhum.2020.602496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Transient global amnesia (TGA) is a benign memory disorder with etiologies that have been debated for a long time. The prevalence of stressful events before a TGA attack makes it hard to overlook these precipitating factors, given that stress has the potential to organically effect the brain. Cortical spreading depression (CSD) was proposed as a possible cause decades ago. Being a regional phenomenon, CSD seems to affect every aspect of the micro-mechanism in maintaining the homeostasis of the central nervous system (CNS). Corresponding evidence regarding hemodynamic and morphological changes from TGA and CSD have been accumulated separately, but the resemblance between the two has not been systematically explored so far, which is surprising especially considering that CSD had been confirmed to cause secondary damage in the human brain. Thus, by deeply delving into the anatomic and electrophysiological properties of the CNS, the CSD-TGA model may render insights into the basic pathophysiology behind the façade of the enigmatic clinical presentation.
Collapse
Affiliation(s)
- Xuejiao Ding
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Rasmussen R, O'Donnell J, Ding F, Nedergaard M. Interstitial ions: A key regulator of state-dependent neural activity? Prog Neurobiol 2020; 193:101802. [PMID: 32413398 PMCID: PMC7331944 DOI: 10.1016/j.pneurobio.2020.101802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
Throughout the nervous system, ion gradients drive fundamental processes. Yet, the roles of interstitial ions in brain functioning is largely forgotten. Emerging literature is now revitalizing this area of neuroscience by showing that interstitial cations (K+, Ca2+ and Mg2+) are not static quantities but change dynamically across states such as sleep and locomotion. In turn, these state-dependent changes are capable of sculpting neuronal activity; for example, changing the local interstitial ion composition in the cortex is sufficient for modulating the prevalence of slow-frequency neuronal oscillations, or potentiating the gain of visually evoked responses. Disturbances in interstitial ionic homeostasis may also play a central role in the pathogenesis of central nervous system diseases. For example, impairments in K+ buffering occur in a number of neurodegenerative diseases, and abnormalities in neuronal activity in disease models disappear when interstitial K+ is normalized. Here we provide an overview of the roles of interstitial ions in physiology and pathology. We propose the brain uses interstitial ion signaling as a global mechanism to coordinate its complex activity patterns, and ion homeostasis failure contributes to central nervous system diseases affecting cognitive functions and behavior.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - John O'Donnell
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, United States.
| |
Collapse
|
5
|
Abstract
Many animal models of migraine have been described. Some of them have been useful in the development of new therapies. All of them have their shortcomings. Animal models of chronic migraine have been relatively less frequently described. Whether a rigid distinction between episodic and chronic migraine is useful when their underlying pathophysiology is likely to be the same and that migraine frequency probably depends on complex polygenic influences remains to be determined. Any model of chronic migraine must reflect the chronicity of the disorder and be reliable and validated with pharmacological interventions. Future animal models of chronic migraine are likely to involve recurrent activation of the trigeminal nociceptive system. Valid models would provide a means for investigating pathophysiological mechanism of the transformation from episodic to chronic migraine and may also be used to test the efficacy of potential preventive medications.
Collapse
|
6
|
Hansrivijit P, Vibulyaseck S, Maneepark M, Srikiatkhachorn A, Bongsebandhu-Phubhakdi S. GluN2A/B ratio elevation induced by cortical spreading depression: electrophysiological and quantitative studies of the hippocampus. J Physiol Sci 2015; 65:S3-S10. [PMID: 31941175 PMCID: PMC10722574 DOI: 10.1007/bf03405849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cortical spreading depression (CSD), an underlying mechanism of migraine aura, propagates to the hippocampus, and might explain hippocampusassociated symptoms during migraine attack. We hypothesised that this process is, some parts, mediated by NMDA receptors. By using a rat model, CSD was elicited by solid KCl for 45 minutes prior to electrophysiological and quantitative analyses. The result from electrophysiological study was the ratio of glutamate NMDA receptor 2A and 2B subunits (GluN2A/B). Total NMDA receptor response was isolated using an AMPA antagonist, prior to a GluN2B receptor antagonist. The GluN2A/B ratio was calculated by dividing the remaining NMDA-mediated field-excitatory synaptic potentials (fEPSP) with the subtracted difference of NMDAmediated fEPSP. Western blot analysis of the hippocampus was performed to confirm the quantitative change of GluN2A/B ratio. In hippocampal slice study (n = 12), the GluN2A/B ratio of hippocampal fEPSP was significantly increased in CSD group. Western blot analysis (n = 30) revealed an increase in GluN2A subunits and a decrease in GluN2B subunits in the hippocampus ipsilateral to the CSD induction. Our current study revealed that GluN2A/B ratio was shown to be elevated following CSD stimulation by increasing the total number of GluN2A while reducing the total number of GluN2B subunits. This ratio was demonstrated to be associated with synaptic plasticity of the hippocampus in numerous studies. In conclusion, we showed that CSD increased GluN2A/B ratio, in turn, would result in altered synaptic plasticity. Our findings provide a probable implication on the correlation of migraine aura and hippocampusassociated symptoms.
Collapse
Affiliation(s)
- Panupong Hansrivijit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suteera Vibulyaseck
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Montree Maneepark
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Anan Srikiatkhachorn
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Lin KH, Chen YT, Fuh JL, Li SY, Chen TJ, Tang CH, Wang SJ. Migraine is associated with a higher risk of transient global amnesia: a nationwide cohort study. Eur J Neurol 2014; 21:718-24. [PMID: 24520813 DOI: 10.1111/ene.12346] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- K.-H. Lin
- Department of Medicine; Taipei Veterans General Hospital; Taoyuan Branch; Taoyuan Taiwan
- School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Neurology; Neurological Institute; Taipei Veterans General Hospital; Taipei Taiwan
| | - Y.-T. Chen
- School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Medicine; Taipei City Hospital Heping Fuyou Branch; Taipei Taiwan
- Division of Nephrology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - J.-L. Fuh
- School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Neurology; Neurological Institute; Taipei Veterans General Hospital; Taipei Taiwan
- Institute of Brain Science; National Yang-Ming University; Taipei Taiwan
| | - S.-Y. Li
- Division of Nephrology; Department of Medicine; Taipei Veterans General Hospital; Taipei Taiwan
- Institute of Clinical Medicine; National Yang-Ming University; Taipei Taiwan
| | - T.-J. Chen
- School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Family Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - C.-H. Tang
- School of Health Care Administration; Taipei Medical University; Taipei Taiwan
| | - S.-J. Wang
- School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Neurology; Neurological Institute; Taipei Veterans General Hospital; Taipei Taiwan
- Institute of Brain Science; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|