1
|
Design, synthesis, and structure – Activity relationship studies of novel tryptamine derivatives as 5‑HT1B receptor agonists. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Seen SB, Gong Y, Ashton M. The application of the Fischer indole synthesis in medicinal chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Vyhlídalová B, Krasulová K, Pečinková P, Poulíková K, Vrzal R, Andrysík Z, Chandran A, Mani S, Dvorak Z. Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor That Induces CYP1A1 in Hepatic and Intestinal Cells. Int J Mol Sci 2020; 21:ijms21082799. [PMID: 32316498 PMCID: PMC7216230 DOI: 10.3390/ijms21082799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Zdeněk Andrysík
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Aneesh Chandran
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA;
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.M.); (Z.D.); Tel.: +1-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
- Correspondence: (S.M.); (Z.D.); Tel.: +1-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| |
Collapse
|
4
|
Conde CMS, Cyrino FZGA, Bottino DA, Gardette J, Bouskela E. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: Observation in the hamster cheek pouch. Microvasc Res 2007; 73:237-47. [PMID: 17196224 DOI: 10.1016/j.mvr.2006.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/01/2022]
Abstract
Previous experiments in our laboratory, using the hamster cheek pouch microcirculation, have shown that precapillary vessels exhibit spontaneous rhythmic luminal variations, termed vasomotion, a myogenic activity sustained by a balance between membrane currents among which polarizing K(+) currents play an important role. In these microvessels, endothelium-derived relaxing factors (EDRFs) seem to regulate arteriolar diameter [via nitric oxide (NO) and cyclic GMP] and vasomotion [probably via endothelium-derived hyperpolarizing factor (EDHF)]. Fish or fish oil diet can decrease the risk of cardiovascular diseases, probably by modifying the conductance of selective ion channels, such as K(+) and/or Ca(++), and/or increasing the production of vasodilators, such as NO. To investigate its effect on microvascular reactivity, using the same preparation and an intravital microscope coupled to a closed circuit TV system, male hamsters were treated for 14 days, twice a day, with 0.4 mL/100 g body weight with fish or olive oil. An attempt was also undertaken to record in arterioles, in vivo, the membrane potential of smooth muscle cells during their vasomotor activity combining conventional microelectrode and intravital microscopy techniques. The effects of topical application of two vasodilators, acetylcholine [endothelium-dependent one, NO release and membrane hyperpolarization via Ca(++)-activated K(+) channels (K(Ca))] and sodium nitroprusside (endothelium-independent, NO donor and no change on membrane potential) and two vasoconstrictors which elicited membrane depolarization via Ca(++) channels, phenylephrine (alpha(1)-adrenergic receptor agonist) and serotonin (5-hydroxi-tryptamine) on mean internal diameter of arterioles and venules, arteriolar blood flows, spontaneous arteriolar vasomotion frequency and amplitude and functional capillary density (FCD, number of capillaries with flowing red blood cells per unit area of tissue) were determined. Anesthesia was induced by sodium pentobarbital (i.p.) and maintained with alpha-chloralose through the femoral vein. In the presence of vasomotion, the membrane potentials are slowly oscillating by about 20 mV around values of approximately -50 mV in perfect synchrony with vasomotor movements and depolarizing phases coincide with vasoconstrictions while polarizing ones with vasodilatations. Comparing all parameters, in control conditions, only the spontaneous vasomotion frequency was significantly higher (2.37 times higher) on the group treated with fish oil and persisted as such throughout all experiments. With topical application of the drugs mentioned above, the group treated with fish oil showed, for each drug concentration, a balance towards vasodilatation with consequent increase on arteriolar blood flow and on FCD, compared with the olive oil treated one. No significant changes on mean arterial pressure, spontaneous arteriolar vasomotion amplitude or venular diameter could be detected in the two groups. Our results support the concept that, in the hamster cheek pouch microcirculation, fish oil supplementation activates K(+) channels which act as the EDHF and might also increase the production of vasodilators, probably NO.
Collapse
Affiliation(s)
- Cristiane M S Conde
- Laboratório de Pesquisas em Microcirculação, Pavilhão Reitor Haroldo Lisboa da Cunha, térreo, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro RJ, Brazil
| | | | | | | | | |
Collapse
|
5
|
Letienne R, Verscheure Y, Perez M, Le Grand B, Colpaert FC, John GW. Donitriptan selectively decreases jugular venous oxygen saturation in the anesthetized pig: further insights into its mechanism of action relevant to headache relief. J Pharmacol Exp Ther 2003; 305:749-54. [PMID: 12606602 DOI: 10.1124/jpet.102.047225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of donitriptan on systemic arterial-jugular venous oxygen saturation difference were evaluated in pentobarbitone-anesthetized pigs. Oxygen and carbon dioxide partial pressures in systemic arterial and jugular venous blood as well as hemoglobin oxygen saturation were determined by conventional blood gas analysis. Vehicle (40% polyethyleneglycol in saline, n = 9) or donitriptan (0.01, 0.04, 0.16, 0.63, 2.5, 10, and 40 microg/kg, n = 7) were cumulatively infused over 15 min/dose. The involvement of 5-hydroxytryptamine(1B) (5-HT(1B)) receptors was assessed in the presence of the 5-HT(1B/1D) receptor antagonist, GR 127935. Donitriptan decreased markedly and dose dependently jugular venous oxygen saturation [ED(50) 0.5 (0.3-1.1) microg/kg], in parallel with increases in carotid vascular resistance [ED(50) 0.9 (0.7-1.1) microg/kg]. Since arterial oxygen saturation and partial pressure remained unchanged, donitriptan significantly increased arteriovenous oxygen saturation difference from 0.63 microg/kg (maximal variation: 57 +/- 18%, P < 0.05 compared with vehicle). Unexpectedly, donitriptan from 2.5 microg/kg induced marked and significant increases in carbon dioxide partial pressure (pVCO(2)) in venous blood (maximal increase 18.8 +/- 5.7%; P < 0.05 compared with vehicle). Pretreatment with GR 127935 (0.63 mg/kg, n = 5) abolished the fall in venous oxygen saturation and the increase in carotid vascular resistance and reduced the increases in pVCO(2) induced by donitriptan. The results demonstrate that donitriptan, via 5-HT(1B) receptor activation, decreases the oxygen saturation of venous blood draining the head, concomitantly with cranial vasoconstriction. Since donitriptan also increased pVCO(2), an effect upon cerebral oxygen consumption and metabolism is suggested in addition to cranial vasoconstriction, which may be relevant to its headache-relieving effects.
Collapse
Affiliation(s)
- Robert Letienne
- Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, 81106 Castres Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Link A, Link B. [In the pipeline. Triptans--new developments]. PHARMAZIE IN UNSERER ZEIT 2002; 31:486-93. [PMID: 12369167 DOI: 10.1002/1615-1003(200209)31:5<486::aid-pauz486>3.0.co;2-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Ferrari MD, Goadsby PJ, Roon KI, Lipton RB. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 2002; 22:633-58. [PMID: 12383060 DOI: 10.1046/j.1468-2982.2002.00404.x] [Citation(s) in RCA: 423] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The triptans, selective serotonin 5-HT1B/1D agonists, are very effective acute migraine drugs. Soon, seven different triptans will be clinically available at 13 different oral doses, making evidence-based selection guidelines necessary. Triptan trials have similar designs, facilitating meta-analysis. We wished to provide an evidence-based foundation for using triptans in clinical practice, and to review the methodological issues surrounding triptan trials. We asked pharmaceutical companies and the principal investigators of company-independent trials for the 'raw patient data' of all double-blind, randomized, controlled, clinical trials with oral triptans in migraine. All data were cross-checked with published or presented data. We calculated summary estimates across studies for important efficacy and tolerability parameters, and compared these with those from direct, head-to-head, comparator trials. Out of 76 eligible clinical trials, 53 (12 not yet published) involving 24089 patients met the criteria for inclusion. Mean results (and 95% confidence intervals) for sumatriptan 100 mg, the first available and most widely prescribed oral triptan, are 59% (57-60) for 2 h headache response (improvement from moderate or severe to mild or no pain); 29% (27-30) for 2 h pain free (improvement to no pain); 20% (18-21) for sustained pain free (pain free by 2 h and no headache recurrence or use of rescue medication 2-24 h post-dose), and 67% (63-70) for consistency (response in at least two out of three treated attacks); placebo-subtracted proportions for patients with at least one adverse event (AE) are 13% (8-18), for at least one central nervous system AE 6% (3-9), and for at least one chest AE 1.9% (1.0-2.7). Compared with these data: rizatriptan 10 mg shows better efficacy and consistency, and similar tolerability; eletriptan 80 mg shows better efficacy, similar consistency, but lower tolerability; almotriptan 12.5 mg shows similar efficacy at 2 h but better sustained pain-free response, consistency, and tolerability; sumatriptan 25 mg, naratriptan 2.5 mg and eletriptan 20 mg show lower efficacy and better tolerability; zolmitriptan 2.5 mg and 5 mg, eletriptan 40 mg, and rizatriptan 5 mg show very similar results. The results of the 22 trials that directly compared triptans show the same overall pattern. We received no data on frovatriptan, but publicly available data suggest substantially lower efficacy. The major methodological issues involve the choice of the primary endpoint, consistency over multiple attacks, how to evaluate headache recurrence, use of placebo-subtracted proportions to control for across-study differences, and the difference between tolerability and safety. In addition, there are a number of methodological issues specific for direct comparator trials, including encapsulation and patient selection. At marketed doses, all oral triptans are effective and well tolerated. Differences among them are in general relatively small, but clinically relevant for individual patients. Rizatriptan 10 mg, eletriptan 80 mg and almotriptan 12.5 mg provide the highest likelihood of consistent success. Sumatriptan features the longest clinical experience and the widest range of formulations. All triptans are contra-indicated in the presence of cardiovascular disease.
Collapse
Affiliation(s)
- M D Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
8
|
van den Broek RWM, MaassenVanDenBrink A, Mulder PGH, Bogers AJJC, Avezaat CJJ, John GW, Saxena PR. Comparison of contractile responses to donitriptan and sumatriptan in the human middle meningeal and coronary arteries. Eur J Pharmacol 2002; 443:125-32. [PMID: 12044802 DOI: 10.1016/s0014-2999(02)01576-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Donitriptan is a potent, high efficacy agonist at 5-HT(1B/1D) receptors. We investigated the contractile effects of donitriptan and sumatriptan on human isolated blood vessels of relevance to therapeutic efficacy in migraine (middle meningeal artery) and coronary adverse events (coronary artery). Furthermore, using the concentration-response curves in the middle meningeal artery, we predicted the plasma concentration needed for the therapeutic effect of donitriptan. Both donitriptan and sumatriptan contracted the middle meningeal artery with similar apparent efficacy (E(max): 103+/-8% and 110+/-12%, respectively), but the potency of donitriptan (pEC(50): 9.07+/-0.14) was significantly higher than that of sumatriptan (pEC(50): 7.41+/-0.08). In the coronary artery, the contraction to donitriptan was biphasic with a significantly higher maximal response (E(max): 29+/-6%) than sumatriptan (E(max): 14+/-2%; pEC(50): 5.71+/-0.16), yielding two distinct pEC(50) values (8.25+/-0.16 and 5.60+/-0.24). Incubation with the 5-HT(2) receptor antagonist ketanserin (10 microM) eliminated the low affinity component of the concentration-response curve of donitriptan and the resultant E(max) and pEC(50) were 9+/-2% and 7.33+/-0.21, respectively. Ketanserin was without effect on the sumatriptan-induced contraction. Based on the middle meningeal artery contraction, concentrations (C(max)) of donitriptan that may be expected to have a therapeutic efficacy equivalent to that of 50 and 100 mg sumatriptan are predicted to be around 2.5 and 4.3 nM, respectively. Such concentrations are likely to induce only a small coronary artery contraction of 2.9+/-1.5% and 3.8+/-2.0%, respectively; these are not different from those by C(max) concentrations of sumatriptan (1.7+/-0.4% or 2.2+/-0.4%). The present results suggest that, like sumatriptan, donitriptan exhibits cranioselectivity and would be effective in aborting migraine attacks with a similar coronary side-effect profile as sumatriptan.
Collapse
Affiliation(s)
- Rémon W M van den Broek
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Post Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Peter J Goadsby
- Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | |
Collapse
|