1
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
2
|
James M, Lowrie M, Rusbridge C. Characteristics and clinical course of myoclonus in Cavalier King Charles Spaniels. J Vet Intern Med 2025; 39:e17227. [PMID: 39520132 PMCID: PMC11627513 DOI: 10.1111/jvim.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Myoclonus has been described in aging Cavalier King Charles Spaniels (CKCS), but the natural course of the disease and response to treatment have not been described. OBJECTIVES Report the clinical features and course of myoclonus in CKCS. ANIMALS Twenty-seven caregivers provided questionnaire responses at a median of 24 months after the onset of myoclonus in their CKCS. Fifteen caregivers completed a second follow-up questionnaire at a median of 17 months after submission of the first questionnaire. METHODS The caregivers of affected CKCS were invited to provide video footage for review. Owners of CKCS with videos demonstrating myoclonus then completed the online questionnaire for further evaluation. A second shortened questionnaire was sent to participants at least 6 months after completion of the first. RESULTS Most CKCS displayed spontaneous myoclonus affecting predominantly the head (25/27). Overall, the majority had episodes that increased in frequency (20/27) and severity (17/27). Eighteen dogs had developed changes in behavior since the onset of myoclonus. These dogs were typically older and had experienced myoclonic episodes for longer than dogs without behavioral changes. Generalized epileptic seizures were reported in 4/27 dogs. Ten dogs received medical treatment. Eight were prescribed levetiracetam; all had an initial decrease in episode frequency, but a subsequent increase in both frequency and severity of episodes was common. CONCLUSIONS AND CLINICAL IMPORTANCE Myoclonus in CKCS tends to progress in frequency and severity regardless of treatment. Progressive behavioral changes suggestive of cognitive decline are common. These findings support the possibility of an underlying neurodegenerative process.
Collapse
Affiliation(s)
| | - Mark Lowrie
- Movement ReferralsPreston BrookUnited Kingdom
| | - Clare Rusbridge
- School of Veterinary MedicineUniversity of SurreyGuildfordUnited Kingdom
| |
Collapse
|
3
|
Jablonski SA, Strohmeyer JL, Buchweitz JP, Lehner AF, Langlois DK. Prednisolone pharmacokinetics in dogs with protein-losing enteropathy. J Vet Intern Med 2025; 39:e17277. [PMID: 39715442 PMCID: PMC11665961 DOI: 10.1111/jvim.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND It is unknown if glucocorticoid malabsorption contributes to the approximate 50% treatment failure rate in dogs with protein-losing enteropathy (PLE). OBJECTIVE To compare pharmacokinetics (PK) of orally administered prednisolone in dogs with PLE vs healthy controls. ANIMALS Fourteen dogs with well-characterized PLE and 7 control dogs. METHODS Prospective case-controlled study. Dogs were treated with 1 mg/kg prednisolone PO once daily for approximately 3 weeks. Venous blood samples were collected at set timepoints before and after prednisolone administration on the first (T1) and final (T2) study days. Total and non-protein bound serum prednisolone concentrations were determined using liquid chromatography tandem-mass spectrometry, and pharmacokinetics variables were derived from the drug concentration data. Pharmacokinetics variables were compared between PLE and control dogs and between PLE short-term responders and non-responders. RESULTS The PLE dogs had a shorter half-life of the terminal slope than control dogs (harmonic mean of 1.3 vs 1.8 hours; P = .05) whereas the percentage of serum prednisolone that was non-protein bound was higher in PLE dogs than in control dogs (median of 15.7% vs 6.7%; P = .02) at T1. Total prednisolone drug exposures and maximum total serum drug concentrations did not differ between PLE and control dogs at T1 or T2, nor did they differ between short-term responders and non-responders within the PLE population (P > .05 for all comparisons). CONCLUSIONS AND CLINICAL IMPORTANCE Overall drug exposures are similar between PLE dogs and healthy controls. Glucocorticoid malabsorption is unlikely to be a common cause of treatment failure in dogs with PLE.
Collapse
Affiliation(s)
- Sara A. Jablonski
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Jessica L. Strohmeyer
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - John P. Buchweitz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Andreas F. Lehner
- Veterinary Diagnostic Laboratory, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| | - Daniel K. Langlois
- Department of Small Animal Clinical Sciences, College of Veterinary MedicineMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Banach M, Borowicz KK. Subchronic Treatment with CBZ Transiently Attenuates Its Anticonvulsant Activity in the Maximal Electroshock-Induced Seizure Test in Mice. Int J Mol Sci 2024; 25:13563. [PMID: 39769325 PMCID: PMC11677119 DOI: 10.3390/ijms252413563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of this study is to evaluate the anticonvulsant efficacy of carbamazepine (CBZ) following acute and chronic administration across four treatment protocols in a murine model of maximal electroshock-induced seizures. A single dose of the drug was utilized as a control. The neurotoxic effects were evaluated in the chimney test and the passive avoidance task. Furthermore, plasma and brain concentrations of CBZ were quantified across all treatment protocols. The subchronic administration of CBZ (7 × 2 protocol) resulted in an attenuation of its antielectroshock effect. In the three remaining treatment regimens (7 × 1, 14 × 1, and 14 × 2) the median effective doses of CBZ were comparable to the control. Neither acute nor chronic treatment with CBZ resulted in a discernible impact on motor coordination or long-term memory. The plasma and brain concentrations of CBZ were significantly lower in most chronic protocols when compared to a single-dose application. This may explain the transient attenuation of CBZ effectiveness in the 7 × 2 protocol, but not the return to the previous level. The anticonvulsant and neurotoxic profiles of CBZ did not differ after single and chronic administration. Therefore, experimental chronic studies with CBZ are not prerequisites for concluding and possibly translating results to clinical conditions.
Collapse
Affiliation(s)
| | - Kinga K. Borowicz
- Independent Experimental Neuropathophysiology Unit, Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland;
| |
Collapse
|
5
|
Bhuia MS, Al Hasan MS, Chowdhury R, Ansari SA, Ansari IA, Islam MT. Trans-Ferulic acid reduces the sedative activity of diazepam in thiopental sodium-induced sleeping mice: A potential GABAergic transmission. Neurotoxicol Teratol 2024; 106:107403. [PMID: 39547315 DOI: 10.1016/j.ntt.2024.107403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
trans-Ferulic acid (TFA), a bioactive compound found in many plants, has been recognized for its diverse pharmacological activities, including potential neurological benefits. Previous studies suggest that TFA exerts anxiolytic effects via GABAergic pathways. This study aimed to investigate the sedative effects of TFA and its possible molecular mechanisms through in vivo and in silico approaches. Adult Swiss mice were randomly divided into six groups (n = 7): control (vehicle), standard (DZP: Diazepam at 3 mg/kg, p.o.), three test groups (TFA at 25, 50, and 75 mg/kg, p.o.), and a combination group (TFA: 50 mg/kg with DZP: 3 mg/kg, p.o.). Thirty minutes post-treatment, thiopental sodium (TS) at 40 mg/kg was administered to induce sedation, and latency as well as duration of sleep, were observed for up to 4 h. In silico studies were conducted with GABAA receptor subunits (α1 and β2) to elucidate the possible molecular interactions. The results demonstrated that TFA significantly reduced latency and extended sleep duration in a dose-dependent manner compared to the control. Additionally, TFA combined with DZP further significantly (p < 0.001) enhanced these effects. In silico analysis revealed that TFA and DZP exhibited strong binding affinities with the GABAA receptor subunits (α1 and β2) in the identical binding sites, with binding energies of -6.8 and - 8.7 kcal/mol, respectively. Collectively, TFA exerted a mild sedative effect in TS-induced sleeping mice and modulated the activity of DZP, likely through interactions with GABAA receptors. TFA showed promising activity as a potential candidate for managing sleep disorders such as insomnia.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinforamtics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
6
|
Lauxmann S, Heuer D, Heckelmann J, Fischer FP, Schreiber M, Schriewer E, Widman G, Weber Y, Lerche H, Alber M, Schuh-Hofer S, Wolking S. Cenobamate: real-world data from a retrospective multicenter study. J Neurol 2024; 271:6596-6604. [PMID: 38954033 PMCID: PMC11447096 DOI: 10.1007/s00415-024-12510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Clinical trials have shown that cenobamate (CNB) is an efficacious and safe anti-seizure medication (ASM) for drug-resistant focal epilepsy. Here, we analyzed one of the largest real-world cohorts, covering the entire spectrum of epilepsy syndromes, the efficacy and safety of CNB, and resulting changes in concomitant ASMs. METHODS We conducted a retrospective observational study investigating CNB usage in two German tertiary referral centers between October 2020 and June 2023 with follow-up data up to 27 months of treatment. Our primary outcome was treatment response. Secondary outcomes comprised drug response after 12 and 18 months, seizure freedom rates, CNB dosage and retention, adverse drug reactions (ADRs), and changes in concomitant ASMs. RESULTS 116 patients received CNB for at least two weeks. At 6 months, 98 patients were eligible for evaluation. Thereof 50% (49/98) were responders with no relevant change at 12 and 18 months. Seizure freedom was achieved in 18.4% (18/98) at 6 months, 16.7% (11/66), and 3.0% (1/33) at 12 and 18 months. The number of previous ASMs did not affect the seizure response rate. Overall, CNB was well-tolerated, however, in 7.7% (9/116), ADRs led to treatment discontinuation. The most frequent changes of concomitant ASMs included the discontinuation or reduction of sodium channel inhibitors, clobazam reduction, and perampanel discontinuation, while brivaracetam doses were usually left unchanged. CONCLUSIONS CNB proved to be a highly effective and generally well-tolerated ASM in patients with severe drug-resistant epilepsy, comprising a broad array of epilepsy syndromes beyond focal epilepsy.
Collapse
Affiliation(s)
- Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany.
| | - David Heuer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Jan Heckelmann
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Florian P Fischer
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Melanie Schreiber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Elisabeth Schriewer
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Guido Widman
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Yvonne Weber
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Michael Alber
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tuebingen, Germany
| | - Sigrid Schuh-Hofer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tuebingen, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
7
|
Salama H, Salama A, Oscher L, Jallo GI, Shimony N. The role of neuromodulation in the management of drug-resistant epilepsy. Neurol Sci 2024; 45:4243-4268. [PMID: 38642321 DOI: 10.1007/s10072-024-07513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Drug-resistant epilepsy (DRE) poses significant challenges in terms of effective management and seizure control. Neuromodulation techniques have emerged as promising solutions for individuals who are unresponsive to pharmacological treatments, especially for those who are not good surgical candidates for surgical resection or laser interstitial therapy (LiTT). Currently, there are three neuromodulation techniques that are FDA-approved for the management of DRE. These include vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS). Device selection, optimal time, and DBS and RNS target selection can also be challenging. In general, the number and localizability of the epileptic foci, alongside the comorbidities manifested by the patients, substantially influence the selection process. In the past, the general axiom was that DBS and VNS can be used for generalized and localized focal seizures, while RNS is typically reserved for patients with one or two highly localized epileptic foci, especially if they are in eloquent areas of the brain. Nowadays, with the advance in our understanding of thalamic involvement in DRE, RNS is also very effective for general non-focal epilepsy. In this review, we will discuss the underlying mechanisms of action, patient selection criteria, and the evidence supporting the use of each technique. Additionally, we explore emerging technologies and novel approaches in neuromodulation, such as closed-loop systems. Moreover, we examine the challenges and limitations associated with neuromodulation therapies, including adverse effects, complications, and the need for further long-term studies. This comprehensive review aims to provide valuable insights on present and future use of neuromodulation.
Collapse
Affiliation(s)
- HusamEddin Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Ahmed Salama
- Al-Quds University-School of Medicine, Abu Dis, Jerusalem, Palestine
| | - Logan Oscher
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th Street South, St. Petersburg, FL, 33701, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| |
Collapse
|
8
|
Espinosa-Jovel C, Valencia N, Gaitán L, Riveros S. Impact of Third-Generation Antiseizure Medications on People with Epilepsy in a Low-Income Population: The Brivaracetam Experience in a Real-World Study. Drugs Real World Outcomes 2024; 11:477-485. [PMID: 39039377 PMCID: PMC11365876 DOI: 10.1007/s40801-024-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Third-generation antiseizure medications, such as brivaracetam, are recognized for their superior safety, tolerability, and pharmacokinetic profiles. However, their potential benefits are often limited in low-income populations because of challenges related to availability and affordability. OBJECTIVE We aimed to evaluate the effectiveness and safety of brivaracetam for treating epilepsy in a low-income population, within a real-world setting. METHODS This retrospective cohort study included individuals with epilepsy from a low-income population in Bogotá, Colombia, who were treated with brivaracetam between January 2020 and July 2023. Effectiveness (mean seizure reduction and ≥ 50% seizure reduction) and safety (retention rate and adverse events) were evaluated. RESULTS A total of 106 individuals were included, with a median age of 33 years (interquartile range: 24-44). Most had focal epilepsy with a median disease duration of 25.4 years (standard deviation: 13.6). The baseline seizure frequency was 4 seizures per month (interquartile range: 2-15) and individuals had previously received a mean of 4.4 (standard deviation: 1.8) antiseizure medications. The mean percentage seizure reduction at 3, 6, and 12 months was 55.3%, 66.9%, and 63.8%, respectively. Additionally, 60%, 63.8%, and 65.9% of individuals achieved a ≥ 50% seizure reduction at 3, 6, and 12 months, respectively. Retention rate at 3 months was 89% (n = 95) and 18.7% (n = 20) reported adverse effects. CONCLUSIONS In a real-world setting, brivaracetam has been shown to be safe and effective for the treatment of epilepsy in individuals from a low-income population. This study suggests that people with epilepsy living in this context can significantly benefit from the use of third-generation antiseizure medications.
Collapse
Affiliation(s)
- Camilo Espinosa-Jovel
- Epilepsy Program, Hospital de Kennedy, Subred de Servicios de Salud Sur Occidente, Av. 1 de Mayo #40B-54, Hospital de Kennedy, Epilepsy Program, Bogotá, Colombia.
- Neurology Postgraduate Program, Universidad de la Sabana, Chía, Colombia.
| | - Natalia Valencia
- Neurology Postgraduate Program, Universidad de la Sabana, Chía, Colombia
| | - Lisa Gaitán
- Neurology Postgraduate Program, Universidad de la Sabana, Chía, Colombia
| | - Sandra Riveros
- Epilepsy Program, Hospital de Kennedy, Subred de Servicios de Salud Sur Occidente, Av. 1 de Mayo #40B-54, Hospital de Kennedy, Epilepsy Program, Bogotá, Colombia
- Neurology Postgraduate Program, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
9
|
Harrington EG, Kissack P, Terry JR, Woldman W, Junges L. Treatment effects in epilepsy: a mathematical framework for understanding response over time. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1308501. [PMID: 38988793 PMCID: PMC11233745 DOI: 10.3389/fnetp.2024.1308501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, affecting over 65 million people worldwide. Treatment typically commences with the use of anti-seizure medications, including both mono- and poly-therapy. Should these fail, more invasive therapies such as surgery, electrical stimulation and focal drug delivery are often considered in an attempt to render the person seizure free. Although a significant portion ultimately benefit from these treatment options, treatment responses often fluctuate over time. The physiological mechanisms underlying these temporal variations are poorly understood, making prognosis a significant challenge when treating epilepsy. Here we use a dynamic network model of seizure transition to understand how seizure propensity may vary over time as a consequence of changes in excitability. Through computer simulations, we explore the relationship between the impact of treatment on dynamic network properties and their vulnerability over time that permit a return to states of high seizure propensity. For small networks we show vulnerability can be fully characterised by the size of the first transitive component (FTC). For larger networks, we find measures of network efficiency, incoherence and heterogeneity (degree variance) correlate with robustness of networks to increasing excitability. These results provide a set of potential prognostic markers for therapeutic interventions in epilepsy. Such markers could be used to support the development of personalized treatment strategies, ultimately contributing to understanding of long-term seizure freedom.
Collapse
Affiliation(s)
- Elanor G. Harrington
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Peter Kissack
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Borowicz-Reutt K, Banach M. Chronic Treatment with Oxcarbazepine Attenuates Its Anticonvulsant Effect in the Maximal Electroshock Model in Mice. Int J Mol Sci 2024; 25:6751. [PMID: 38928457 PMCID: PMC11203542 DOI: 10.3390/ijms25126751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of this study was to assess the impact of acute and chronic treatment with oxcarbazepine on its anticonvulsant activity, neurological adverse effects, and protective index in mice. Oxcarbazepine was administered in four protocols: once or twice daily for one week (7 × 1 or 7 × 2) and once or twice daily for two weeks (14 × 1 or 14 × 2). A single dose of the drug was employed as a control. The anticonvulsant effect was evaluated in the maximal electroshock test in mice. Motor and long-term memory impairment were assessed using the chimney test and the passive avoidance task, respectively. The concentrations of oxcarbazepine in the brain and plasma were determined via high-performance liquid chromatography. Two weeks of oxcarbazepine treatment resulted in a significant reduction in the anticonvulsant (in the 14 × 1; 14 × 2 protocols) and neurotoxic (in the 14 × 2 schedule) effects of this drug. In contrast, the protective index for oxcarbazepine in the 14 × 2 protocol was found to be lower than that calculated for the control. No significant deficits in memory or motor coordination were observed following repeated administration of oxcarbazepine. The plasma and brain concentrations of this anticonvulsant were found to be significantly higher in the one-week protocols. Chronic treatment with oxcarbazepine may result in the development of tolerance to its anticonvulsant and neurotoxic effects, which appears to be dependent on pharmacodynamic mechanisms.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | | |
Collapse
|
11
|
MacLean A, Chappell AS, Kranzler J, Evrard A, Monchal H, Roucard C. BAER-101, a selective potentiator of α2- and α3-containing GABA A receptors, fully suppresses spontaneous cortical spike-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Drug Dev Res 2024; 85:e22160. [PMID: 38380694 DOI: 10.1002/ddr.22160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BAER-101 (formerly AZD7325) is a selective partial potentiator of α2/3-containing γ-amino-butyric acid A receptors (GABAARs) and produces minimal sedation and dizziness. Antiseizure effects in models of Dravet and Fragile X Syndromes have been published. BAER-101 has been administered to over 700 healthy human volunteers and patients where it was found to be safe and well tolerated. To test the extent of the antiseizure activity of BAER-1010, we tested BAER-101 in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model, a widely used and translationally relevant model. GAERS rats with recording electrodes bilaterally located over the frontal and parietal cortices were used. Electroencepholographic (EEG) signals in freely moving awake rats were analyzed for spike-wave discharges (SWDs). BAER-101 was administered orally at doses of 0.3-100 mg/kg and diazepam was used as a positive control using a cross-over protocol with a wash-out period between treatments. The number of SWDs was dose-dependently reduced by BAER-101 with 0.3 mg/kg being the minimally effective dose (MED). The duration of and total time in SWDs were also reduced by BAER-101. Concentrations of drug in plasma achieved an MED of 10.1 nM, exceeding the Ki for α2 or α3, but 23 times lower than the Ki for α5-GABAARs. No adverse events were observed up to a dose 300× MED. The data support the possibility of antiseizure efficacy without the side effects associated with other GABAAR subtypes. This is the first report of an α2/3-selective GABA PAM suppressing seizures in the GAERS model. The data encourage proceeding to test BAER-101 in patients with epilepsy.
Collapse
|
12
|
Burton CP, Chumin EJ, Collins AY, Persohn SA, Onos KD, Pandey RS, Quinney SK, Territo PR. Levetiracetam modulates brain metabolic networks and transcriptomic signatures in the 5XFAD mouse model of Alzheimer's disease. Front Neurosci 2024; 17:1336026. [PMID: 38328556 PMCID: PMC10847229 DOI: 10.3389/fnins.2023.1336026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. Methods Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing 18F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. Results Pharmacokinetics of LEV showed a sex and dose dependence in Cmax, CL/F, and AUC0-∞, with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed 18F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e., positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent 18F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. Discussion This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration-dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of 18F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value toward informing clinical study design.
Collapse
Affiliation(s)
- Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Evgeny J. Chumin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alyssa Y. Collins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara K. Quinney
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
13
|
Smith JL, Wertz J, Lippa A, Ping X, Jin X, Cook JM, Witkin JM, Cerne R. KRM-II-81 suppresses epileptifom activity across the neural network of cortical tissue from a patient with pharmacoresistant epilepsy. Heliyon 2024; 10:e23752. [PMID: 38223703 PMCID: PMC10784158 DOI: 10.1016/j.heliyon.2023.e23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
A clinical case of a 19-year-old male patient with pharmacoresistant seizures occurring following parieto-occipital tumor-resection at age 6 is described. Seizure surgery work-up included prolonged video EEG monitoring and head CT without contrast. Seizure focus was localized to the left temporal lobe, and we felt that the patient was an excellent candidate for seizure surgery. The patient underwent a left frontotemporal craniotomy for removal of the seizure focus with intraoperative electrocorticography (ECoG) conducted pre and post resection. ECoG recordings pre- and post-resection confirmed resolution of seizure generation. Imaging obtained immediately postoperatively showed complete resection of the residual tumor with no evidence of recurrence in follow-ups. A year after the surgery the patient is seizure-free but remains on seizure medication. With the patient's consent the excised epileptogenic tissue was used for ex-vivo research studies. The microelectrode recordings confirmed epileptiform activity in the excised tissue incubated in excitatory artificial cerebrospinal fluid. The epileptiform activity in the epileptogenic tissue was suppressed by addition of KRM-II-81, a novel α2/3 subtype preferring GABAA receptor (GABAAR) potentiator with previously demonstrated antiepileptic efficacy in multiple animal models of epilepsy and with reduced potential for CNS side-effects compared to classical benzodiazepine GABAAR potentiators. These findings support the proposition that KRM-II-81 might reduce seizure burden in pharmacoresistant patients.
Collapse
Affiliation(s)
- Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
- Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| |
Collapse
|
14
|
Burton CP, Chumin EJ, Collins AY, Persohn SA, Onos KD, Pandey RS, Quinney SK, Territo PR. Levetiracetam Modulates Brain Metabolic Networks and Transcriptomic Signatures in the 5XFAD Mouse Model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566574. [PMID: 38014102 PMCID: PMC10680636 DOI: 10.1101/2023.11.10.566574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. METHODS Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing 18F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. RESULTS Pharmacokinetics of LEV showed a sex and dose dependence in Cmax, CL/F, and AUC0-∞, with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed 18F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e. positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent 18F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. DISCUSSION This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration- dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of 18F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value towards informing clinical study design.
Collapse
Affiliation(s)
- Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Evgeny J. Chumin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis IN 46202
| | - Alyssa Y. Collins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
| | - Sara K. Quinney
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis IN 46202 USA
| | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis IN 46202 USA
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis IN 46202 USA
| |
Collapse
|
15
|
Lattanzi S, Canafoglia L, Canevini MP, Casciato S, Cerulli Irelli E, Chiesa V, Dainese F, De Maria G, Didato G, Di Gennaro G, Falcicchio G, Fanella M, Ferlazzo E, Gangitano M, La Neve A, Mecarelli O, Montalenti E, Morano A, Piazza F, Pizzanelli C, Pulitano P, Ranzato F, Rosati E, Tassi L, Di Bonaventura C. Adjunctive brivaracetam and sustained seizure frequency reduction in very active focal epilepsy. Epilepsia 2023; 64:2922-2933. [PMID: 38079181 DOI: 10.1111/epi.17740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This study aimed to explore the effectiveness of brivaracetam (BRV) according to baseline seizure frequency and past treatment history in subjects with focal epilepsy who were included in the Brivaracetam Add-On First Italian Network Study (BRIVAFIRST). METHODS BRIVAFIRST was a 12-month retrospective, multicenter study including adults prescribed adjunctive BRV. Study outcomes included sustained seizure response (SSR), sustained seizure freedom (SSF), and the rates of treatment discontinuation and adverse events (AEs). Baseline seizure frequency was stratified as <5, 5-20, and >20 seizures per month, and the number of prior antiseizure medications (ASMs) as <5 and ≥6. RESULTS A total of 994 participants were included. During the 1-year study period, SSR was reached by 45.8%, 39.3%, and 22.6% of subjects with a baseline frequency of <5, 5-20, and >20 seizures per month (p < .001); the corresponding figures for the SSF were 23.4%, 9.8%, and 2.8% (p < .001). SSR was reached by 51.2% and 26.5% participants with a history of 1-5 and ≥6 ASMs (p < .001); the corresponding rates of SSF were 24.7% and 4.5% (p < .001). Treatment discontinuation due to lack of efficacy was more common in participants with >20 seizures compared to those with <5 seizures per month (25.8% vs. 9.3%, p < .001), and in participants with history of ≥6 prior ASMs compared to those with history of 1-5 ASMs (19.6% vs. 12.2%, p = .002). There were no differences in the rates of BRV withdrawal due to AEs and the rates of AEs across the groups of participants defined according to the number of seizures at baseline and the number of prior ASMs. SIGNIFICANCE The baseline seizure frequency and the number of previous ASMs were predictors of sustained seizure frequency reduction with adjunctive BRV in subjects with focal epilepsy.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Laura Canafoglia
- Department of Epileptology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Paola Canevini
- Epilepsy Center, Child Neuropsychiatry Unit, AAST Santi Paolo Carlo, Milan, Italy
- Department of Health Sciences, Università degli Studi, Milan, Italy
| | | | - Emanuele Cerulli Irelli
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Valentina Chiesa
- Epilepsy Center, Child Neuropsychiatry Unit, AAST Santi Paolo Carlo, Milan, Italy
| | | | - Giovanni De Maria
- Clinical Neurophysiology Unit, Epilepsy Center, Spedali Civili, Brescia, Italy
| | - Giuseppe Didato
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University Hospital of Bari A. Moro, Bari, Italy
| | - Martina Fanella
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Massimo Gangitano
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University Hospital of Bari A. Moro, Bari, Italy
| | - Oriano Mecarelli
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Elisa Montalenti
- Epilepsy Center, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federico Piazza
- Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy
| | - Chiara Pizzanelli
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Neurology Unit, Pisa University Hospital, Pisa, Italy
| | - Patrizia Pulitano
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora Rosati
- Department of Neurofarba, University of Florence, Florence, Italy
| | - Laura Tassi
- C. Munari Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
17
|
Haas C, Salzmann AP, Binz TM, Staubli G, Seiler M, Steuer AE. Analytical description of adolescent binge drinking patients. BMC Pediatr 2023; 23:512. [PMID: 37845619 PMCID: PMC10577939 DOI: 10.1186/s12887-023-04325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Binge drinking is a widespread health compromising behavior among adolescents and young adults, leading to significant health problems, injuries and mortality. However, data on alcohol consumption is often unreliable, as it is mainly based on self-reporting surveys. In this five-year study (2014-2019) at the University Children's Hospital Zurich, we analyzed blood samples from adolescent binge drinking patients to investigate blood alcohol concentrations (BACs), co-ingestion of drugs, assess compliance between self-reported and measured substance use, and test for genetic components of innate alcohol tolerance. Furthermore, hair analysis was performed to retrospectively access drug exposure and to evaluate the potential of hair analysis to assess binge drinking. METHODS In a prospective, single-center study, patients with alcohol intoxications aged 16 years and younger were included. Blood and hair samples were analyzed by sensitive liquid chromatography - tandem mass spectrometry drug analysis. HTTLPR genotyping was performed with PCR and fragment analysis. RESULTS Among 72 cases, 72 blood and 13 hair samples were analyzed. BACs ranged from 0.08-3.20‰ (mean 1.63‰, median 1.60‰), while a mean concentration of 3.64 pg/mg hair (median 3.0 pg/mg) of the alcohol marker ethyl glucuronide (EtG) was detected in eleven hair samples, providing no evidence of chronic excessive drinking. In 47% of the cases, co-ingested drugs were qualitatively detected next to ethanol, but only 9% of the detected drugs had blood concentrations classified as pharmacologically active. Cannabis consumption (22%) and stimulant intake (16%) were the most frequently observed drugs. Compliance between patients' statements and measured substances matched well. Although we investigated the genetic contribution to innate alcohol tolerance via the 5-HTTLPR polymorphism, the diverse genetic background of the cohort and small sample size did not allow any conclusions to be drawn. CONCLUSION Almost half of our binge drinking patients tested positive for other substances, primarily cannabis. We anticipate that our study enhances understanding of consumption behavior of young people and encourage continued efforts to address the harmful effects of binge drinking and co-occurring substance use.
Collapse
Affiliation(s)
- Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.
| | | | - Tina Maria Binz
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Georg Staubli
- Pediatric Emergency Department and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michelle Seiler
- Pediatric Emergency Department and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andrea Eva Steuer
- Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
MacKeigan D, Feja M, Meller S, Deking L, Javadova A, Veenhuis A, Felmy F, Gernert M. Long-lasting antiseizure effects of chronic intrasubthalamic convection-enhanced delivery of valproate. Neurobiol Dis 2023; 187:106321. [PMID: 37832796 DOI: 10.1016/j.nbd.2023.106321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Intracerebral drug delivery is an experimental approach for the treatment of drug-resistant epilepsies that allows for pharmacological intervention in targeted brain regions. Previous studies have shown that targeted pharmacological inhibition of the subthalamic nucleus (STN) via modulators of the GABAergic system produces antiseizure effects. However, with chronic treatment, antiseizure effects are lost as tolerance develops. Here, we report that chronic intrasubthalamic microinfusion of valproate (VPA), an antiseizure medication known for its wide range of mechanisms of action, can produce long-lasting antiseizure effects over three weeks in rats. In the intravenous pentylenetetrazole seizure-threshold test, seizure thresholds were determined before and during chronic VPA application (480 μg/d, 720 μg/d, 960 μg/d) to the bilateral STN. Results indicate a dose-dependent variation in VPA-induced antiseizure effects with mean increases in seizure threshold of up to 33%, and individual increases of up to 150%. The lowest VPA dose showed a complete lack of tolerance development with long-lasting antiseizure effects. Behavioral testing with all doses revealed few, acceptable adverse effects. VPA concentrations were high in STN and low in plasma and liver. In vitro electrophysiology with bath applied VPA revealed a reduction in spontaneous firing rate, increased background membrane potential, decreased input resistance and a significant reduction in peak NMDA, but not AMPA, receptor currents in STN neurons. Our results suggest an advantage of VPA over purely GABAergic modulators in preventing tolerance development with chronic intrasubthalamic drug delivery and provide first mechanistic insights in intracerebral pharmacotherapy targeting the STN.
Collapse
Affiliation(s)
- Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Amina Javadova
- Center for Systems Neuroscience, 30559 Hannover, Germany; Institute for Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alva Veenhuis
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Felix Felmy
- Center for Systems Neuroscience, 30559 Hannover, Germany; Institute for Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
19
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
20
|
Ghosh S, Sinha JK, Ghosh S, Sharma H, Bhaskar R, Narayanan KB. A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sci 2023; 13:1305. [PMID: 37759906 PMCID: PMC10527076 DOI: 10.3390/brainsci13091305] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is a complex neurological disorder affecting millions worldwide, with a substantial number of patients facing drug-resistant epilepsy. This comprehensive review explores innovative therapies for epilepsy management, focusing on their principles, clinical evidence, and potential applications. Traditional antiseizure medications (ASMs) form the cornerstone of epilepsy treatment, but their limitations necessitate alternative approaches. The review delves into cutting-edge therapies such as responsive neurostimulation (RNS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), highlighting their mechanisms of action and promising clinical outcomes. Additionally, the potential of gene therapies and optogenetics in epilepsy research is discussed, revealing groundbreaking findings that shed light on seizure mechanisms. Insights into cannabidiol (CBD) and the ketogenic diet as adjunctive therapies further broaden the spectrum of epilepsy management. Challenges in achieving seizure control with traditional therapies, including treatment resistance and individual variability, are addressed. The importance of staying updated with emerging trends in epilepsy management is emphasized, along with the hope for improved therapeutic options. Future research directions, such as combining therapies, AI applications, and non-invasive optogenetics, hold promise for personalized and effective epilepsy treatment. As the field advances, collaboration among researchers of natural and synthetic biochemistry, clinicians from different streams and various forms of medicine, and patients will drive progress toward better seizure control and a higher quality of life for individuals living with epilepsy.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | | | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
21
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
22
|
Tatum WO, Glauser T, Peters JM, Verma A, Weatherspoon S, Benbadis S, Becker DA, Puri V, Smith M, Misra SN, Rabinowicz AL, Carrazana E. Acute seizure therapies in people with epilepsy: Fact or fiction? A U.S. Perspective. Epilepsy Behav Rep 2023; 23:100612. [PMID: 37520180 PMCID: PMC10372156 DOI: 10.1016/j.ebr.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Patients with epilepsy (PWE) may experience seizure emergencies including acute repetitive seizures despite chronic treatment with daily antiseizure medications. Seizures may adversely impact routine daily activities and/or healthcare utilization and may impair the quality of life of patients with epilepsy and their caregivers. Seizures often occur at home, school, or work in a community setting. Appropriate treatment that is readily accessible for patients with seizure urgencies and emergencies is essential outside the hospital setting. When determining the best acute antiseizure therapy for PWE, clinicians need to consider all of the available rescue medications and their routes of administration including the safety and efficacy profiles. Benzodiazepines are a standard of care as a rescue therapy, yet there are several misconceptions about their use and safety. Reevaluating potential misconceptions and formulating best practices are necessary to maximize usage for each available option of acute therapy. We examine common beliefs associated with traditional use of acute seizure therapies to refute or support them based on the current level of evidence in the published literature.
Collapse
Affiliation(s)
- William O. Tatum
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224-1865, USA
| | - Tracy Glauser
- Comprehensive Epilepsy Center, Cincinnati Children’s Hospital, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jurriaan M. Peters
- Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Amit Verma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, 6560 Fannin St., Ste 802, Houston, TX 77030, USA
| | - Sarah Weatherspoon
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, 848 Adams Ave., Memphis, TN 38103, USA
| | - Selim Benbadis
- Comprehensive Epilepsy Program, University of South Florida & Tampa General Hospital, 2 Tampa General Cir., Tampa, FL 33606, USA
| | - Danielle A. Becker
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Vinay Puri
- Norton Children’s Neuroscience Institute, affiliated with University of Louisville, 411 E. Chestnut St., Suite 645, Louisville, KY 40202, USA
| | - Michael Smith
- Department of Neurology, Rush University, 1725 W. Harrison St., Ste 885, Chicago, IL 60612, USA
| | - Sunita N. Misra
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
| | | | - Enrique Carrazana
- Neurelis Inc., 3430 Carmel Mountain Rd., Ste 300, San Diego, CA 92121, USA
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI 96813, USA
| |
Collapse
|
23
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
24
|
Peña-Ceballos J, Moloney PB, Munteanu T, Doyle M, Colleran N, Liggan B, Breen A, Murphy S, El-Naggar H, Widdess-Walsh P, Delanty N. Adjunctive cenobamate in highly active and ultra-refractory focal epilepsy: A "real-world" retrospective study. Epilepsia 2023; 64:1225-1235. [PMID: 36790345 DOI: 10.1111/epi.17549] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Recent clinical trials have shown that cenobamate substantially improves seizure control in focal-onset drug-resistant epilepsy (DRE). However, little is known about cenobamate's performance in highly active (≥20 seizures/month) and ultra-refractory focal epilepsy (≥6 failed epilepsy treatments, including antiseizure medications [ASMs], epilepsy surgery, and vagus nerve stimulation). Here, we studied cenobamate's efficacy and tolerability in a "real-world" severe DRE cohort. METHODS We conducted a single-center retrospective analysis of consecutive adults treated with cenobamate between October 2020 and September 2022. All patients received cenobamate through an Early Access Program. Cenobamate retention, seizure outcomes, treatment-emergent adverse events, and adjustments to concomitant ASMs were analyzed. RESULTS Fifty-seven patients received cenobamate for at least 3 months (median duration, 11 months). The median cenobamate dose was 250 mg/day (range 75-350 mg). Baseline demographics were consistent with highly active (median seizure frequency, 60/month) and ultra-refractory epilepsy (median previously failed ASMs, nine). Most (87.8%) had prior epilepsy surgery and/or vagus nerve stimulation. Six patients stopped cenobamate due to lack of efficacy and/or adverse events. One patient died from factors unrelated to cenobamate. Among patients who continued cenobamate, three achieved seizure freedom (5.3% of cohort), 24 had a 75%-99% reduction in seizures (42.1% of cohort), and 16 had a 50%-74% reduction (28.1% of cohort). Cenobamate led to abolition of focal to bilateral tonic-clonic seizures in 55.6% (20/36) of patients. Among treatment responders, 67.4% (29/43) were treated with cenobamate doses of ≥250 mg/day. Three-fourths of patients reported at least one side-effect, most commonly fatigue and somnolence. Adverse events most commonly emerged at cenobamate doses of ≥250 mg/day. Side-effects were partially manageable by reducing the overall ASM burden, most often clobazam, eslicarbazepine, and perampanel. SIGNIFICANCE Patients with highly active and ultra-refractory focal epilepsy experienced meaningful seizure outcomes on cenobamate. Emergence of adverse events at doses above 250 mg/day may limit the potential for further improvements in seizure control at higher cenobamate doses.
Collapse
Affiliation(s)
| | - Patrick B Moloney
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| | - Tudor Munteanu
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Michael Doyle
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| | - Niamh Colleran
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Brenda Liggan
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Annette Breen
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Sinead Murphy
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Hany El-Naggar
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
25
|
Reynolds A, Vranic-Peters M, Lai A, Grayden DB, Cook MJ, Peterson A. Prognostic interictal electroencephalographic biomarkers and models to assess antiseizure medication efficacy for clinical practice: A scoping review. Epilepsia 2023; 64:1125-1174. [PMID: 36790369 DOI: 10.1111/epi.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Antiseizure medication (ASM) is the primary treatment for epilepsy. In clinical practice, methods to assess ASM efficacy (predict seizure freedom or seizure reduction), during any phase of the drug treatment lifecycle, are limited. This scoping review identifies and appraises prognostic electroencephalographic (EEG) biomarkers and prognostic models that use EEG features, which are associated with seizure outcomes following ASM initiation, dose adjustment, or withdrawal. We also aim to summarize the population and context in which these biomarkers and models were identified and described, to understand how they could be used in clinical practice. Between January 2021 and October 2022, four databases, references, and citations were systematically searched for ASM studies investigating changes to interictal EEG or prognostic models using EEG features and seizure outcomes. Study bias was appraised using modified Quality in Prognosis Studies criteria. Results were synthesized into a qualitative review. Of 875 studies identified, 93 were included. Biomarkers identified were classed as qualitative (visually identified by wave morphology) or quantitative. Qualitative biomarkers include identifying hypsarrhythmia, centrotemporal spikes, interictal epileptiform discharges (IED), classifying the EEG as normal/abnormal/epileptiform, and photoparoxysmal response. Quantitative biomarkers were statistics applied to IED, high-frequency activity, frequency band power, current source density estimates, pairwise statistical interdependence between EEG channels, and measures of complexity. Prognostic models using EEG features were Cox proportional hazards models and machine learning models. There is promise that some quantitative EEG biomarkers could be used to assess ASM efficacy, but further research is required. There is insufficient evidence to conclude any specific biomarker can be used for a particular population or context to prognosticate ASM efficacy. We identified a potential battery of prognostic EEG biomarkers, which could be combined with prognostic models to assess ASM efficacy. However, many confounders need to be addressed for translation into clinical practice.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michaela Vranic-Peters
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lai
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
27
|
LncRNA H19 Regulates P-glycoprotein Expression Through the NF-κB Signaling Pathway in the Model of Status Epilepticus. Neurochem Res 2023; 48:929-941. [PMID: 36394706 DOI: 10.1007/s11064-022-03803-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
Pharmaco-resistance is a challenging problem for treatment of status epilepticus (SE) in the clinic. P-glycoprotein (P-gp) is one of the most important multi-drug transporters that contribute to drug resistance of SE. Long noncoding RNAs (lncRNAs) have been increasingly recognized as versatile regulators of P-gp in tumors and epilepsy. However, the function of lncRNAs in drug resistance of SE remains largely unknown. In the present study, pilocarpine-induced rat model is used to explore the expression profiles of lncRNAs in the hippocampus of SE using RNA sequencing. Our results implied that the level of lncRNA H19 was significantly increased in the hippocampus of SE rats, which was positively correlated with the level of P-gp. While downregulation of H19 could inhibit the expression of P-gp and alleviate neural damage in the hippocampus of SE rats. Furthermore, it was revealed that H19 regulates P-gp expression through the nuclear factor-kappaB (NF-κB) signaling pathway by functioning as a competing endogenous RNA against microRNA-29a-3p. Overall, our study indicated that H19 regulates P-gp expression and neural damage induced by SE through the NF-κB signaling pathway, which provides a promising target to overcome drug resistance and alleviate brain damage for SE.
Collapse
|
28
|
Ilan Y. Next-Generation Personalized Medicine: Implementation of Variability Patterns for Overcoming Drug Resistance in Chronic Diseases. J Pers Med 2022; 12:jpm12081303. [PMID: 36013252 PMCID: PMC9410281 DOI: 10.3390/jpm12081303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases are a significant healthcare problem. Partial or complete non-responsiveness to chronic therapies is a significant obstacle to maintaining the long-term effect of drugs in these patients. A high degree of intra- and inter-patient variability defines pharmacodynamics, drug metabolism, and medication response. This variability is associated with partial or complete loss of drug effectiveness. Regular drug dosing schedules do not comply with physiological variability and contribute to resistance to chronic therapies. In this review, we describe a three-phase platform for overcoming drug resistance: introducing irregularity for improving drug response; establishing a deep learning, closed-loop algorithm for generating a personalized pattern of irregularity for overcoming drug resistance; and upscaling the algorithm by implementing quantified personal variability patterns along with other individualized genetic and proteomic-based ways. The closed-loop, dynamic, subject-tailored variability-based machinery can improve the efficacy of existing therapies in patients with chronic diseases.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem POB12000, Israel
| |
Collapse
|
29
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
30
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
31
|
Why won't it stop? The dynamics of benzodiazepine resistance in status epilepticus. Nat Rev Neurol 2022; 18:428-441. [PMID: 35538233 DOI: 10.1038/s41582-022-00664-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
Status epilepticus is a life-threatening neurological emergency that affects both adults and children. Approximately 36% of episodes of status epilepticus do not respond to the current preferred first-line treatment, benzodiazepines. The proportion of episodes that are refractory to benzodiazepines is higher in low-income and middle-income countries (LMICs) than in high-income countries (HICs). Evidence suggests that longer episodes of status epilepticus alter brain physiology, thereby contributing to the emergence of benzodiazepine resistance. Such changes include alterations in GABAA receptor function and in the transmembrane gradient for chloride, both of which erode the ability of benzodiazepines to enhance inhibitory synaptic signalling. Often, current management guidelines for status epilepticus do not account for these duration-related changes in pathophysiology, which might differentially impact individuals in LMICs, where the average time taken to reach medical attention is longer than in HICs. In this Perspective article, we aim to combine clinical insights and the latest evidence from basic science to inspire a new, context-specific approach to efficiently managing status epilepticus.
Collapse
|
32
|
Mueller JS, Tescarollo FC, Sun H. DREADDs in Epilepsy Research: Network-Based Review. Front Mol Neurosci 2022; 15:863003. [PMID: 35465094 PMCID: PMC9021489 DOI: 10.3389/fnmol.2022.863003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy can be interpreted as altered brain rhythms from overexcitation or insufficient inhibition. Chemogenetic tools have revolutionized neuroscience research because they allow "on demand" excitation or inhibition of neurons with high cellular specificity. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are the most frequently used chemogenetic techniques in epilepsy research. These engineered muscarinic receptors allow researchers to excite or inhibit targeted neurons with exogenous ligands. As a result, DREADDs have been applied to investigate the underlying cellular and network mechanisms of epilepsy. Here, we review the existing literature that has applied DREADDs to understand the pathophysiology of epilepsy. The aim of this review is to provide a general introduction to DREADDs with a focus on summarizing the current main findings in experimental epilepsy research using these techniques. Furthermore, we explore how DREADDs may be applied therapeutically as highly innovative treatments for epilepsy.
Collapse
Affiliation(s)
| | | | - Hai Sun
- Department of Neurosurgery, Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
33
|
West PJ, Thomson K, Billingsley P, Pruess T, Rueda C, Saunders GW, Smith MD, Metcalf CS, Wilcox KS. Spontaneous recurrent seizures in an intra-amygdala kainate microinjection model of temporal lobe epilepsy are differentially sensitive to antiseizure drugs. Exp Neurol 2022; 349:113954. [PMID: 34922908 PMCID: PMC8815304 DOI: 10.1016/j.expneurol.2021.113954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The discovery and development of novel antiseizure drugs (ASDs) that are effective in controlling pharmacoresistant spontaneous recurrent seizures (SRSs) continues to represent a significant unmet clinical need. The Epilepsy Therapy Screening Program (ETSP) has undertaken efforts to address this need by adopting animal models that represent the salient features of human pharmacoresistant epilepsy and employing these models for preclinical testing of investigational ASDs. One such model that has garnered increased interest in recent years is the mouse variant of the Intra-Amygdala Kainate (IAK) microinjection model of mesial temporal lobe epilepsy (MTLE). In establishing a version of this model, several methodological variables were evaluated for their effect(s) on pertinent quantitative endpoints. Although administration of a benzodiazepine 40 min after kainate (KA) induced status epilepticus (SE) is commonly used to improve survival, data presented here demonstrates similar outcomes (mortality, hippocampal damage, latency periods, and 90-day SRS natural history) between mice given midazolam and those that were not. Using a version of this model that did not interrupt SE with a benzodiazepine, a 90-day natural history study was performed and survival, latency periods, SRS frequencies and durations, and SRS clustering data were quantified. Finally, an important step towards model adoption is to assess the sensitivities or resistances of SRSs to a panel of approved and clinically used ASDs. Accordingly, the following ASDs were evaluated for their effects on SRSs in these mice: phenytoin (20 mg/kg, b.i.d.), carbamazepine (30 mg/kg, t.i.d.), valproate (240 mg/kg, t.i.d.), diazepam (4 mg/kg, b.i.d.), and phenobarbital (25 and 50 mg/kg, b.i.d.). Valproate, diazepam, and phenobarbital significantly attenuated SRS frequency relative to vehicle controls at doses devoid of observable adverse behavioral effects. Only diazepam significantly increased seizure freedom. Neither phenytoin nor carbamazepine significantly altered SRS frequency or freedom under these experimental conditions. These data demonstrate that SRSs in this IAK model of MTLE are pharmacoresistant to two representative sodium channel-inhibiting ASDs (phenytoin and carbamazepine) and partially sensitive to GABA receptor modulating ASDs (diazepam and phenobarbital) or a mixed-mechanism ASD (valproate). Accordingly, this model is being incorporated into the NINDS-funded ETSP testing platform for treatment resistant epilepsy.
Collapse
Affiliation(s)
- Peter J West
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA; Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84108, USA.
| | - Kyle Thomson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Peggy Billingsley
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Timothy Pruess
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Carlos Rueda
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Gerald W Saunders
- Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA; School of Dentistry, University of Utah, Salt Lake City, UT 84108, USA
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; Epilepsy Therapy Screening Program (ETSP) Contract Site, University of Utah, Salt Lake City, UT 84112, USA; Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
34
|
Seiden LG, Connor GS. The importance of drug titration in the management of patients with epilepsy. Epilepsy Behav 2022; 128:108517. [PMID: 35066388 DOI: 10.1016/j.yebeh.2021.108517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022]
Abstract
The variable response to antiseizure medication (ASM) treatment and the numerous drug- and patient-related factors that must be considered when initiating therapy make drug titration to an optimal and tolerable dose an essential component in the pharmacologic treatment of patients with epilepsy. When initiating a new ASM, a "start low, go slow" titration approach is generally recommended and has been shown to reduce the risk of severe idiosyncratic reactions with certain medications and improve tolerability with regard to many frequently occurring central nervous system-related adverse effects (e.g., somnolence, dizziness). Many patients with epilepsy will require medication changes due to lack of efficacy or intolerability of the initial regimen. When this occurs, patients may be switched from one monotherapy to another or receive adjunctive therapy. When transitioning a patient from one ASM to another (referred to as monotherapy conversion or transitional polytherapy), there are several strategies for tapering the baseline ASM depending on the clinical scenario. Regardless of the particular strategy, the goal should be to discontinue the baseline ASM in order to prevent increased toxicity due to drug load. When adding on ASM therapy, flexible titration of the new ASM and adjustment of concomitant ASMs to achieve disease control with the lowest possible drug load (lowest numbers and lowest doses) may help improve tolerability of the add-on therapy. Communication with patients during the initiation of a new therapy may help patients adhere to the titration schedule, allowing them to reach their optimal maintenance dose.
Collapse
Affiliation(s)
- Lawrence G Seiden
- The Multiple Sclerosis Center of Atlanta, 3200 Downwood Circle NW, Suite 550, Atlanta, GA 30327, USA.
| | - Gregory S Connor
- Neurological Center of Oklahoma, 6585 South Yale Avenue, Suite 620, Tulsa, OK 74136, USA
| |
Collapse
|
35
|
CLB add-on treatment in patients with epileptic encephalopathy: a single center experience with long-term follow-up. Acta Neurol Belg 2022; 122:51-57. [PMID: 33782854 DOI: 10.1007/s13760-021-01606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 10/21/2022]
Abstract
Clobazam (CLB) is an effective anticonvulsant used as an adjunctive treatment for several seizures and epilepsy syndromes. Data are limited on efficacy and safety of CLB as add-on therapy for epileptic encephalopaties (EEs) other than Lennox-Gastaut syndrome (LGS). This retrospective study aimed to assess efficacy and safety of long-term CLB add-on therapy for various EE syndromes. Data on CLB add-on therapy were assessed in 74 children (60.8% male) after 3 months (early) and 12 months (late) follow-up as well as in 57 (77%) patients who had been on CLB therapy longer than 12 months (mean:39.11 ± 30.29; range:12-129 months) (very late) were reported. Data on CLB add-on therapy were assessed in 74 children (60.8% male) after 3 months (early) and 12 months (late) follow-up as well as in 57 (77%) patients who had been on CLB therapy longer than 12 months (mean:39.11 ± 30.29; range:12-129 months) (very late) were reported. Good response rate (> 50%) for seizures was achieved in 24% at early follow-up, 30% at late follow-up, and 35% during very late follow-up. Complete seizure remission was achieved for 15% seizures; 72.7% occurred at very late follow-up. Myoclonic seizures were the most responsive (35%); this response increased during late follow-up (46%), whereas 27.3% of myoclonic-atonic/atonic seizures had good response at early and very late follow-up. At late follow-up, comparison of mean effective doses of CLB did not show significant difference among types of seizures with good response. Adverse effects reported in 15% of patients did not require stopping CLB therapy. Generalized epileptogenic potentials significantly decreased while focal epileptogenic potentials significantly increased at first year of treatment in comparison to basal EEG findings (p < 0.001). CLB should be considered as an optional antiepileptic that is well tolerated, particularly in EEs with myoclonic and myoclonic-atonic/atonic seizures.
Collapse
|
36
|
The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol Biochem Behav 2022; 213:173321. [PMID: 35041859 DOI: 10.1016/j.pbb.2021.173321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.
Collapse
|
37
|
Javaid MS, Antonic-Baker A, Pitsillou E, Liang J, French C, Hung A, O'Brien TJ, Kwan P, Karagiannis TC, Anderson A. Alpha-lipoic acid analogues in the regulation of redox balance in epilepsy: A molecular docking and simulation study. J Mol Graph Model 2021; 112:108116. [PMID: 35026665 DOI: 10.1016/j.jmgm.2021.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the pathophysiological mechanisms implicated in drug-resistant epilepsy. Recurrent seizures and prolonged treatment with anti-seizure medicines (ASMs) can produce reactive oxygen species (ROS) resulting in neuronal cell damage, cell toxicity, and cell death. This damage may contribute to the loss of efficacy of anti-seizure medicines. Add-on therapy with antioxidants, neuroimmunophilins, and polyphenols may thus be beneficial in drug-resistant epilepsy. In vitro and in vivo studies have shown a significant improvement in drug efficacy and seizure suppression using co-treatment of anti-seizure medication with naturally available antioxidants including alpha-lipoic acid (α-lipoic acid) from walnut; however, the underlying mechanisms of action remain to be fully understood. METHODS We undertook molecular docking and molecular dynamics simulations to determine whether alpha-lipoic acid and related analogues interacted with the human manganese superoxide dismutase (MnSOD) protein, a member of the oxidative metabolic pathway. The 3D structure of the compounds and the protein were retrieved from protein and chemical databases, binding sites were identified and ligand-protein interactions were performed. RESULTS Alpha-lipoic acid and various analogues docked within a human MnSOD binding region. Docking results were validated by molecular dynamic simulation. The CMX-2043 analogue showed strong binding with MnSOD compared to alpha-lipoic acid and other analogues. SIGNIFICANCE Our findings provide new insights into additional mechanisms of action, which may in part, account for the antioxidant properties associated with alpha-lipoic acid and related analogues. The results support further in vitro and in vivo evaluation of these compounds to better understand their potential as add-on therapy for ASM treatment in epilepsy.
Collapse
Affiliation(s)
- Muhammad Shahid Javaid
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Ana Antonic-Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Chris French
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
38
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
39
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
40
|
Chen H, Amdur R, Pauldurai J, Koubeissi M. Seizure recurrence after prolonged seizure control: Patterns and risk factors. Epilepsy Behav 2021; 124:108330. [PMID: 34649159 DOI: 10.1016/j.yebeh.2021.108330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To identify the patterns and possible predictors of seizure recurrence after durable seizure freedom during maintenance of anti-seizure medication (ASM) treatment. METHODS We conducted a retrospective longitudinal study that identified all adult individuals with epilepsy (IWE) at the George Washington University outpatient epilepsy clinic between 1/1/2014 and 12/31/2016 who had been seizure free for at least 2 years. We followed up the patients until 5/30/2020 for seizure recurrence. The data were analyzed using survival analysis, univariate analysis, and multivariate regression with Cox proportional hazard model. Outcomes were dichotomized into seizure relapse and seizure freedom. The total number of relapses and triggers of the initial relapse for individual patient were also analyzed. RESULTS This single-center cohort consisted of 220 IWE (age 21-80) of whom 99 patients had been seizure free for 2-3 years and 121 patients had been seizure free for more than 3 years. In this cohort, 48 patients (22%) experienced at least one seizure relapse during the span of the study. Of the relapsing patients, 25 (52%) had a single seizure relapse, and 8 (15%) had frequent seizure relapses (n ≥ 5) and developed pharmacoresistance. Half of the initial seizure relapses occurred without a trigger. Among those with at least one year of follow-up after relapsing (n = 33), 29 (86%) regained seizure freedom for at least 1 year. Among 26 patients with at least 2 years of follow-up, only 14 (55%) regained at least 2 years of seizure freedom. Previous longer duration of seizure freedom and ASM monotherapy predicted less chances of seizure relapse and fewer seizure numbers after relapse. No difference in prognosis was noted among relapsing patients between those with or without triggers. SIGNIFICANCE Patients with well-controlled epilepsy may have seizure relapses with or without identifiable triggers. Most patients regained at least 1-year seizure freedom after the initial relapse, whereas about half patients reachieved 2-year seizure remission. About 15% of the relapsing patients may subsequently develop pharmacoresistance. Prognostic factors of seizure recurrences include duration of initial seizure remission and the number of ASMs used during remission. The presence of identifiable triggers for the initial seizure relapse does not predict future outcome.
Collapse
Affiliation(s)
- Hai Chen
- Department of Neurology, George Washington University, School of Medicine and Health Sciences, United States.
| | - Richard Amdur
- Department of Surgery, George Washington University, School of Medicine and Health Sciences, United States
| | - Jennifer Pauldurai
- Department of Neurology, George Washington University, School of Medicine and Health Sciences, United States
| | - Mohamad Koubeissi
- Department of Neurology, George Washington University, School of Medicine and Health Sciences, United States
| |
Collapse
|
41
|
Lai KKH, Tsang A, Kuk AKT, Ko CKL, Chan E, Ko STC. A Review of Tolerance and Safety Profiles of Long-Term Botulinum Neurotoxin Type A in Asian Patients with Hemifacial Spasm and Benign Essential Blepharospasm. Neuroophthalmology 2021; 45:293-300. [PMID: 34566211 DOI: 10.1080/01658107.2021.1916043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
This article reports the tolerance and long-term safety profiles of botulinum neurotoxin type A among Asian patients with benign essential blepharospasm (BEB) and hemifacial spasm (HFS). We performed a retrospective review of clinical documents and procedure records of consecutive BEB and HFS patients receiving onabotulinum toxin A (Botox) treatment in our clinic over the past 20 years. We reviewed the information of 105 patients diagnosed with BEB (n = 31) and HFS (n = 74). All of the patients were Asian. The mean age of disease onset was 59 (range 37-80) years old for BEB and 61 (range 31-83) for HFS. The mean follow up was 84 (range 12-240) months and the mean number of sessions per patient was 19 (range 1-61). The botulinum toxin dose per session increased significantly in both BEB (16.5 versus 21.6 units, p < .05) and HFS (22.6 versus 26.9 units, p < .05) patients after a mean of 18 sessions; however, the onset time, effective duration and subjective treatment outcome were similar over time in both BEB and HFS patients. At least one local complication was reported among 26% and 41% of patients with BEB and HFS respectively, with ptosis (32%) being most frequent.
Collapse
Affiliation(s)
- Kenneth Ka Hei Lai
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Alan Tsang
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Andrew K T Kuk
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Callie K L Ko
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Edwin Chan
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Simon T C Ko
- Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| |
Collapse
|
42
|
Gedikli Ö, Akca M, Yildirim M. Electroencephalographic investigation of the effects of Ginkgo biloba on spike-wave discharges in rats with genetic absence epilepsy. Epilepsy Behav 2021; 122:108165. [PMID: 34343959 DOI: 10.1016/j.yebeh.2021.108165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE EGb 761, a plant extract obtained from the leaves of the Ginkgo biloba tree, is widely used in modern medicine and traditional medicine applications in the treatment of many diseases. However, in some clinical case reports, it has been suggested that G. biloba causes epileptic seizures. A limited number of experimental animal studies related to the effects of G. biloba on epileptic seizures do not provide sufficient information on the solution of a serious clinical problem with contrasting findings. We aimed to investigate the effects of EGb 761 administered in different doses to adult male Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is the genetic animal model of absence epilepsy, on absence seizures using in vivo electrophysiological method. In addition, the effects of EGb 761 doses on locomotor behavior of WAG/Rij rats were evaluated with open-field and rotarod behavioral tests. METHODS 50, 100, 200, and 400 mg/kg doses of EGb 761 were administered to male WAG/Rij rats with implanted EEG electrodes by oral gavage for 28 days. Evaluation of absence seizures was performed on spike-wave discharges (SWDs) in EEG recorded for 4 h each week. The number of SWDs, the total duration of SWDs, and the mean duration of SWD were determined for the analysis. RESULTS In the group treated with 400 mg/kg EGb 761, the number of SWDs and the mean duration of SWD at the 1st and 7th doses and the total duration of SWDs at the 1st, 7th and 14th doses were significantly increased (p < 0.05). In all experimental groups treated with EGb 761 doses, there was no significant change in locomotor activity in the open-field and the rotarod tests. CONCLUSION Ginkgo biloba extract EGb 761 increased the epileptic SWD parameters of WAG/Rij rats at high doses (400 mg/kg), causing a pro-epileptic effect on absence seizures. It should be noted that in patients with epilepsy and in high-dose applications, G. biloba extract EGb 761 may lead to an increase in neuronal excitability.
Collapse
Affiliation(s)
- Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Metehan Akca
- Electroneurophysiology Program, Hamidiye Vocational School of Health Services, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
43
|
Pérez-Pérez D, Frías-Soria CL, Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav 2021; 121:106430. [PMID: 31378558 DOI: 10.1016/j.yebeh.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant epilepsy affects approximately one-third of the patients with epilepsy. The pharmacoresistant condition in epilepsy is mainly explained by six hypotheses. In addition, several experimental models have been used to understand the mechanisms involved in pharmacoresistant epilepsy and to identify novel therapies to control this condition. However, the global prevalence of this disease persists without changes. Several factors can explain this situation. First of all, the pharmacoresistant epilepsy is explained by different and independent hypotheses. Each hypothesis indicates specific mechanisms to explain the drug-resistant condition in epilepsy. However, there are different findings suggesting common mechanisms between the different hypotheses. Other important situation is that the experimental models designed for the screening of drugs with potential anticonvulsant effect do not consider factors such as age, gender, type of epilepsy, and comorbid disorders. The present review focuses on indicating the limitations for each hypothesis and the relationships among them. The relevance to consider central and peripheral phenomena associated with the drug-resistant condition in different types of epilepsy is also indicated. The necessity to establish a global hypothesis that integrates all the phenomena associated with the pharmacoresistant epilepsy is proposed. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM (MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Luisa Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
44
|
Horowitz MA, Kelleher M, Taylor D. Should gabapentinoids be prescribed long-term for anxiety and other mental health conditions? Addict Behav 2021; 119:106943. [PMID: 33931301 DOI: 10.1016/j.addbeh.2021.106943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023]
Abstract
Prescription rates for gabapentinoids are rising in England. Pregabalin is currently recommended by NICE for the treatment of anxiety. Gabapentinoids have some overlap with the action of benzodiazepines, and have similar issues with tolerance, dependence, addiction and withdrawal. They were scheduled as class C controlled drugs in 2019 because of these risks. There were 244 deaths due to poisoning recorded by the ONS in 2019 involving pregabalin. Poisonings due to pregabalin usually involve concomitant use of opioids or other drugs. The rate of deaths involving pregabalin has been rising steeply for the last 10 years, and now exceeds those attributed to diazepam, fentanyl, the tricyclics as a group or SSRIs as a group. Evidence for the use of pregabalin in anxiety is derived from short-term trials, with marginal differences from placebo, which do not take into account the longer term effects of tolerance, dependence and withdrawal. We call on NICE to re-evaluate their support for use of pregabalin in anxiety in light of its known harms. The use of gabapentinoids off-label for other psychiatric conditions should also be re-considered. In general, psychotropic medications require longer term efficacy and safety studies before allowing widespread use.
Collapse
|
45
|
Lack of observed tolerance to diazepam nasal spray (Valtoco®) after long-term rescue therapy in patients with epilepsy: Interim results from a phase 3, open-label, repeat-dose safety study. Epilepsy Behav 2021; 120:107983. [PMID: 33957437 DOI: 10.1016/j.yebeh.2021.107983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Tolerance is a known consideration for maintenance use of benzodiazepines and other antiseizure drugs; however, clinical experience suggests that tolerance may not be anticipated with long-term intermittent use of benzodiazepines as rescue therapy. Diazepam nasal spray (Valtoco®) is a proprietary intranasal formulation approved for the acute treatment of intermittent, stereotypic episodes of frequent seizure activity (ie, seizure clusters, acute repetitive seizures) in patients with epilepsy aged ≥6 years. Reported here are exploratory analyses investigating whether there was evidence of development of tolerance in an interim analysis of a long-term, phase 3, open-label safety study of diazepam nasal spray. METHODS Patients and care partners were trained to administer 5, 10, 15, or 20 mg of diazepam nasal spray (age- and weight-based dosing), with a second dose administered 4-12 hours later if needed. A series of analyses were performed to assess evidence of tolerance using 2 equal, adjacent time periods and data for each patient to compare the proportion of events for which second doses of diazepam nasal spray (as a proxy for effectiveness) were administered in period 1 compared with period 2. RESULTS A total of 175 patients were enrolled at interim cutoff, and 158 were treated with diazepam nasal spray for 3370 seizure-cluster events. For 73.4% of patients, duration of exposure to diazepam nasal spray was ≥12 months. A total of 191 analyses were conducted; the proportion of analyses in which second doses in period 2 were lower than in period 1 was 72.8%. Only 5 analyses showed nominally statistically significant changes (P < 0.05); this is fewer than expected by chance, and these differences were not directionally consistent. There was no safety signal with continued use. CONCLUSIONS These analyses found no statistical evidence of tolerance with the use of diazepam nasal spray over time based on use of a second dose in an initial period of the study compared with a subsequent period for each patient. These results are in agreement with prior studies of benzodiazepine rescue therapy.
Collapse
|
46
|
Shishmanova-Doseva M, Peychev L, Yoanidu L, Uzunova Y, Atanasova M, Georgieva K, Tchekalarova J. Anticonvulsant Effects of Topiramate and Lacosamide on Pilocarpine-Induced Status Epilepticus in Rats: A Role of Reactive Oxygen Species and Inflammation. Int J Mol Sci 2021; 22:2264. [PMID: 33668718 PMCID: PMC7956388 DOI: 10.3390/ijms22052264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Status epilepticus (SE) is a neurological disorder characterized by a prolonged epileptic activity followed by subsequent epileptogenic processes. The aim of the present study was to evaluate the early effects of topiramate (TPM) and lacosamide (LCM) treatment on oxidative stress and inflammatory damage in a model of pilocarpine-induced SE. METHODS Male Wistar rats were randomly divided into six groups and the two antiepileptic drugs (AEDs), TPM (40 and 80 mg/kg, i.p.) and LCM (10 and 30 mg/kg, i.p.), were injected three times repeatedly after pilocarpine administration. Rats were sacrificed 24 h post-SE and several parameters of oxidative stress and inflammatory response have been explored in the hippocampus. RESULTS The two drugs TPM and LCM, in both doses used, succeeded in attenuating the number of motor seizures compared to the SE-veh group 30 min after administration. Pilocarpine-induced SE decreased the superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels while increasing the catalase (CAT) activity, malondialdehyde (MDA), and IL-1β levels compared to the control group. Groups with SE did not affect the TNF-α levels. The treatment with a higher dose of 30 mg/kg LCM restored to control level the SOD activity in the SE group. The two AEDs, in both doses applied, also normalized the CAT activity and MDA levels to control values. In conclusion, we suggest that the antioxidant effect of TPM and LCM might contribute to their anticonvulsant effect against pilocarpine-induced SE, whereas their weak anti-inflammatory effect in the hippocampus is a consequence of reduced SE severity.
Collapse
Affiliation(s)
| | - Lyudmil Peychev
- Department of Pharmacology and Drug Toxicology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Lyubka Yoanidu
- Department of Bioorganic Chemistry, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (L.Y.); (Y.U.)
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (L.Y.); (Y.U.)
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800 Pleven, Bulgaria;
| | - Katerina Georgieva
- Department of Physiology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
47
|
Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, Gerlach B, Hempel K, Bespalov A, Dirnagl U, Parnham MJ. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov 2021; 20:64-81. [PMID: 33199880 PMCID: PMC7667479 DOI: 10.1038/s41573-020-0087-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Academic research plays a key role in identifying new drug targets, including understanding target biology and links between targets and disease states. To lead to new drugs, however, research must progress from purely academic exploration to the initiation of efforts to identify and test a drug candidate in clinical trials, which are typically conducted by the biopharma industry. This transition can be facilitated by a timely focus on target assessment aspects such as target-related safety issues, druggability and assayability, as well as the potential for target modulation to achieve differentiation from established therapies. Here, we present recommendations from the GOT-IT working group, which have been designed to support academic scientists and funders of translational research in identifying and prioritizing target assessment activities and in defining a critical path to reach scientific goals as well as goals related to licensing, partnering with industry or initiating clinical development programmes. Based on sets of guiding questions for different areas of target assessment, the GOT-IT framework is intended to stimulate academic scientists' awareness of factors that make translational research more robust and efficient, and to facilitate academia-industry collaboration.
Collapse
Affiliation(s)
| | - Lorena Martinez Gamboa
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Martine C J Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Marc Bonin-Andresen
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Arbach
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- SPARK-Validation Fund, Berlin Institute of Health, Berlin, Germany
| | - Pascal Schendel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katja Hempel
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anton Bespalov
- PAASP GmbH, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
- Faculty of Biochemistry, Chemistry & Pharmacy, J.W. Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
48
|
Löscher W, Klein P. The Pharmacology and Clinical Efficacy of Antiseizure Medications: From Bromide Salts to Cenobamate and Beyond. CNS Drugs 2021; 35:935-963. [PMID: 34145528 PMCID: PMC8408078 DOI: 10.1007/s40263-021-00827-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- grid.429576.bMid-Atlantic Epilepsy and Sleep Center, Bethesda, MD USA
| |
Collapse
|
49
|
Bröer S. Not Part of the Temporal Lobe, but Still of Importance? Substantia Nigra and Subthalamic Nucleus in Epilepsy. Front Syst Neurosci 2020; 14:581826. [PMID: 33381016 PMCID: PMC7768985 DOI: 10.3389/fnsys.2020.581826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023] Open
Abstract
The most researched brain region in epilepsy research is the temporal lobe, and more specifically, the hippocampus. However, numerous other brain regions play a pivotal role in seizure circuitry and secondary generalization of epileptic activity: The substantia nigra pars reticulata (SNr) and its direct input structure, the subthalamic nucleus (STN), are considered seizure gating nuclei. There is ample evidence that direct inhibition of the SNr is capable of suppressing various seizure types in experimental models. Similarly, inhibition via its monosynaptic glutamatergic input, the STN, can decrease seizure susceptibility as well. This review will focus on therapeutic interventions such as electrical stimulation and targeted drug delivery to SNr and STN in human patients and experimental animal models of epilepsy, highlighting the opportunities for overcoming pharmacoresistance in epilepsy by investigating these promising target structures.
Collapse
Affiliation(s)
- Sonja Bröer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
50
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|