1
|
Moscovicz F, Taborda C, Fernández F, Borda N, Auzmendi J, Lazarowski A. Ironing out the Links: Ferroptosis in epilepsy and SUDEP. Epilepsy Behav 2024; 157:109890. [PMID: 38905915 DOI: 10.1016/j.yebeh.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Iron is a crucial element for almost all organisms because it plays a vital role in oxygen transport, enzymatic processes, and energy generation due to its electron transfer capabilities. However, its dysregulation can lead to a form of programmed cell death known as ferroptosis, which is characterized by cellular iron accumulation, reactive oxygen species (ROS) production, and unrestricted lipid peroxidation. Both iron and ferroptosis have been identified as key players in the pathogenesis of various neurodegenerative diseases. While in epilepsy this phenomenon remains relatively understudied, seizures can be considered hypoxic-ischemic episodes resulting in increased ROS production, lipid peroxidation, membrane disorganization, and cell death. All of this is accompanied by elevated intracellular free Fe2+ concentration and hemosiderin precipitation, as existing reports suggest a significant accumulation of iron in the brain and heart associated with epilepsy. Generalized tonic-clonic seizures (GTCS), a primary risk factor for Sudden Unexpected Death in Epilepsy (SUDEP), not only have an impact on the brain but also lead to cardiogenic dysfunctions associated with "Iron Overload and Cardiomyopathy" (IOC) and "Epileptic heart" characterized by electrical and mechanical dysfunction and a high risk of malignant bradycardia. In line with this phenomenon, studies conducted by our research group have demonstrated that recurrent seizures induce hypoxia in cardiomyocytes, resulting in P-glycoprotein (P-gp) overexpression, prolonged Q-T interval, severe bradycardia, and hemosiderin precipitation, correlating with an elevated spontaneous death ratio. In this article, we explore the intricate connections among ferroptosis, epilepsy, and SUDEP. By synthesizing current knowledge and drawing insights from recent publications, this study provides a comprehensive understanding of the molecular underpinnings. Furthermore, this review offers insights into potential therapeutic avenues and outlines future research directions.
Collapse
Affiliation(s)
- F Moscovicz
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - C Taborda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - F Fernández
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - N Borda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - J Auzmendi
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - A Lazarowski
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ilyas-Feldmann M, Langer O, Bauer M, Asselin MC, Hendrikse NH, Sisodiya SM, Duncan JS, Löscher W, Koepp M. Tolerability of tariquidar - A third generation P-gp inhibitor as add-on medication to antiseizure medications in drug-resistant epilepsy. Seizure 2024; 119:44-51. [PMID: 38776617 DOI: 10.1016/j.seizure.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE P-glycoprotein (P-gp) has been hypothesized to be involved in drug-resistance of epilepsy by actively extruding antiseizure medications (ASMs) from the brain. The P-gp inhibitor tariquidar (TQD) has been shown to effectively inhibit P-gp at the human blood-brain barrier, improving brain entry of several ASMs. A potential strategy to overcome drug-resistance is the co-administration of P-gp inhibitors such as TQD to ASMs. Here we present data on the tolerability of single-dose TQD as a potential add-on medication to ASMs. METHODS We performed a multi-centre cohort study including drug-resistant epilepsy patients and healthy controls from the United Kingdom and Austria. TQD was administered intravenously at five different doses (2 mg/kg or 3 mg/kg of TQD were given to drug-resistant epilepsy patients and healthy controls, higher doses of TQD at 4 mg/kg, 6 mg/kg and 8 mg/kg as well as a prolonged infusion aiming at a dose of 6 mg/kg were only given to healthy controls). Adverse events were recorded and graded using the Common Terminology Criteria (CTCAE) scale. Additionally, TQD plasma concentration levels were measured and compared between drug-resistant patients and healthy controls. RESULTS In total, 108 participants received TQD once at variable doses and it was overall well tolerated. At doses of 2 or 3 mg/kg TQD, only two of the 19 drug-resistant epilepsy patients and a third of the healthy controls (n = 14/42) reported adverse events probably related to TQD. The majority of those adverse events (96 %) were reported as mild. One drug-resistant epilepsy patient reported adverse events 24-hours after TQD administration possibly related to TQD-induced increased ASMs levels in the brain. CONCLUSIONS TQD is an effective and well tolerated P-gp inhibitor as a single dose and could potentially be used intermittently in conjunction with ASMs to improve efficacy. This promising strategy to overcome drug-resistance in epilepsy should be investigated further in clinical randomised controlled trials.
Collapse
Affiliation(s)
- Maria Ilyas-Feldmann
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Psychosocial Services in Vienna, Vienna, Austria
| | - Marie-Claude Asselin
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| |
Collapse
|
3
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2024:10.1007/s12035-024-04220-6. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Mishra P, Singh SC, Ramadass B. Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action. World Neurosurg X 2024; 22:100328. [PMID: 38444870 PMCID: PMC10914588 DOI: 10.1016/j.wnsx.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Drug-resistant epilepsy (DRE) poses a significant global challenge, impacting the well-being of patients. Anti-epileptic drugs often fail to effectively control seizures in individuals with DRE. This condition not only leads to persistent seizures but also induces neurochemical imbalances, elevating the risk of sudden unexpected death in epilepsy and comorbidities. Moreover, patients experience mood and personality alterations, educational and vocational setbacks, social isolation, and cognitive impairments. Ketogenic diet has emerged as a valuable therapeutic approach for DRE, having been utilized since 1920. Various types of ketogenic diets have demonstrated efficacy in controlling seizures. By having a multimodal mechanism of action, the ketogenic diet reduces neuronal excitability and the frequency of seizure episodes. In our narrative review, we have initially provided a concise overview of the factors contributing to drug resistance in epilepsy. Subsequently, we have discussed the different available ketogenic diets. We have reviewed the underlying mechanisms through which the ketogenic diet operates. These mechanisms encompass decreased neuronal excitability, enhanced mitochondrial function, alterations in sleep patterns, and modulation of the gut microbiome. Understanding the complex mechanisms by which this diet acts is essential as it is a rigorous diet and requires good compliance. Hence knowledge of the mechanisms may help to advance research on achieving similar therapeutic effects through other less stringent approaches.
Collapse
Affiliation(s)
- Priyadarshini Mishra
- Department of Physiology, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| | - Sajal Clarence Singh
- Department of Physiology, Institute of Medical Sciences & SUM Hospital, Odisha, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
He Z, Liu C, Lin L, Feng G, Wu G. Real-world safety of Levetiracetam: Mining and analysis of its adverse drug reactions based on FAERS database. Seizure 2024; 117:253-260. [PMID: 38537425 DOI: 10.1016/j.seizure.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Levetiracetam is a relatively new and widely utilized anti-seizure medication; however, limited information is available regarding its adverse effects. This study aims to thoroughly investigate, evaluate, and present evidence on the safety profile of Levetiracetam, relying on data from the FDA Adverse Event Reporting System (FAERS) database to facilitate informed clinical decision-making. METHODS We employed various statistical measures, including Reporting Odds Ratio (ROR), Proportionate Reporting Ratio (PRR), and analysis by the Medicines and Healthcare Products Regulatory Agency (MHRA), to identify signals of adverse reactions associated with Levetiracetam. Positive signals consistent with Designated Medical Event (DME) were singled out for focused comparison and discussion. RESULTS The analysis of 26,182 adverse events linked to Levetiracetam as the primary suspected drug revealed 692 positive signals spanning 22 System Organ Classes (SOCs). Nervous system disorders were the most frequently reported, followed by psychiatric disorders, and general disorders and administration site conditions. 11 positive signals consistent with Preferred Terms (PTs) in DME were identified, predominantly concentrated in 6 SOCs. Among these, rhabdomyolysis, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS) exhibited relatively large values of A, ROR, and Chi-squared. Additionally, PTs related to spontaneous abortion, drug interaction, urethral atresia, ventricular septal defect, and atrial septal defect showed significant strength. CONCLUSIONS The study indicates that Levetiracetam carries a potential risk of causing rhabdomyolysis, SJS, TEN, DRESS as well as spontaneous abortion. Signals related to drug interaction, urethral atresia, ventricular septal defect, and atrial septal defect warrant heightened attention in clinical use.
Collapse
Affiliation(s)
- Zhimin He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, PR China
| | - Lin Lin
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, PR China; School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guowen Feng
- Department of Pharmacy, Langzhong People's Hospital, Nanchong, Sichuan, 637400, PR China.
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, PR China.
| |
Collapse
|
6
|
Jain A, Ralta A, Batra G, Joshi R, Garg N, Bhatia A, Medhi B, Chakrabarti A, Prakash A. SEW2871 reduces seizures via the sphingosine 1-phosphate receptor-1 pathway in the pentylenetetrazol and phenobarbitone kindling model of drug-refractory epilepsy. Clin Exp Pharmacol Physiol 2024; 51:e13839. [PMID: 38302080 DOI: 10.1111/1440-1681.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.
Collapse
Affiliation(s)
- Ashish Jain
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Arti Ralta
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Gitika Batra
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Neurology, PGIMER, Chandigarh, India
| | - Rupa Joshi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Pharmacology, Maharishi Markandeshwar Institute of Medical Science and Research, Ambala, India
| | - Nitika Garg
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Amitava Chakrabarti
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
7
|
Rashid HU, Ullah S, Carr DF, Khattak MIK, Asad MI, Rehman MU, Tipu MK. The association of ABCB1 gene polymorphism with clinical response to carbamazepine monotherapy in patients with epilepsy. Mol Biol Rep 2024; 51:191. [PMID: 38270743 DOI: 10.1007/s11033-023-09061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disease but around 30% of patients fail to respond to antiepileptic drug (AED) treatment. Genetic variation of the ATP-binding cassette subfamily B, member 1 (ABCB1) gene, a drug efflux transporter may infer treatment resistance by decreasing gastrointestinal absorption and preventing AED entry into the brain. This study examined the impact of ABCB1 genetic variants on carbamazepine responsiveness. MATERIALS AND METHODS Genomic DNA was extracted from whole blood of 104 epileptic patients. Genotyping of 3 ABCB1 variants (c.C3435T, c.G2677T/A and c.C1236T) was undertaken using validated TaqMan allelic discrimination assays. Plasma carbamazepine levels were measured at 3 and 6 months following the initial dose using high-performance liquid chromatography (HPLC) alongside clinical outcomes evaluation. RESULTS Nonresponse to carbamazepine (CBZ) was associated significantly with the ABCB1 variants c.C3435T, c.G2677T/A, c.C1236T and TTT, TTC haplotypes (P < 0.05). There was no significant association between variants and plasma CBZ level (P > 0.05). CONCLUSIONS Our results showed that variant alleles of the ABCB1 gene and TTT, TTC haplotypes were significantly associated with CBZ resistance without affecting the plasma level of carbamazepine. The findings of this study may help to predict patient's response to treatment ultimately it will improve the personalized and evidence based treatment choice of patients with epilepsy.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakir Ullah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Daniel F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | | | - Muhammad Imran Asad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Tulbah AS, Elkomy MH, Zaki RM, Eid HM, Eissa EM, Ali AA, Yassin HA, Aldosari BN, Naguib IA, Hassan AH. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int J Pharm X 2023; 6:100206. [PMID: 37637477 PMCID: PMC10458293 DOI: 10.1016/j.ijpx.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba A. Yassin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University (Arish campus), Arish, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira H. Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
9
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Liu P, He M, Xu X, He Y, Yao W, Liu B. Real-world safety of Lacosamide: A pharmacovigilance study based on spontaneous reports in the FDA adverse event reporting system. Seizure 2023; 110:203-211. [PMID: 37423166 DOI: 10.1016/j.seizure.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Lacosamide is licensed for the treatment of focal seizures in both adults and children, however there is little information available on its adverse reactions. Using the FDA Adverse Event Reporting System (FAERS), we seek to assess adverse occurrences that may be related to Lacosamide. METHODS On the basis of the FAERS database from the fourth quarter of 2008 to the second quarter of 2022, disproportionality analysis was carried out using the reporting odds ratio (ROR) method, the United Kingdom Medicines and Healthcare Products Regulatory Agency omnbius standard (MHRA) method, and the bayesian confidence propagation neural network (BCPNN) method. We extracted valuable positive signals for designated medical event (DME) screening, focused on the evaluation and comparison of safety signals appearing in DME with system organ classification (SOC) analysis. RESULTS A total of 10,226 adverse reaction reports with Lacosamide as the primary suspect drug were obtained, with 30,960 reported cases, detecting 232 valuable positive signals, involving a total of 20 SOCs, of which the most frequently reported SOCs were nervous system disorders (6537 cases, 55.21%), psychiatric disorders (1530 cases, 12.92%), injury poisoning and procedural complications (1059 cases, 8.94%). According to 232 valuable positive signals with DME screening results, two signals of stevens-johnson syndrome and ventricular fibrillation were consistent with PT signals on the DME list, with the two SOCs focusing on skin and subcutaneous tissue disorders and cardiac disorders, respectively. CONCLUSIONS Our research demonstrates that the clinical use of Lacosamide should be noticed and avoided in relation to ADRs since it raises the risk of cardiac arrest, ventricular fibrillation, stevens-johnson syndrome, and rhabdomyolysis.
Collapse
Affiliation(s)
- Pengcheng Liu
- China Pharmaceutical University School of International Pharmaceutical Business, Nanjing 211198, Jiangsu, China
| | - Mengjiao He
- China Pharmaceutical University School of International Pharmaceutical Business, Nanjing 211198, Jiangsu, China
| | - Xiaoli Xu
- China Pharmaceutical University School of International Pharmaceutical Business, Nanjing 211198, Jiangsu, China
| | - Yun He
- China Pharmaceutical University School of Science, Nanjing 211198, Jiangsu, China
| | - Wenbing Yao
- China Pharmaceutical University School of International Pharmaceutical Business, Nanjing 211198, Jiangsu, China
| | - Bin Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
11
|
Fonseca-Barriendos D, Castañeda-Cabral JL, Martínez-Cuevas F, Besio W, Valdés-Cruz A, Rocha L. Transcranial Focal Electric Stimulation Avoids P-Glycoprotein Over-Expression during Electrical Amygdala Kindling and Delays Epileptogenesis in Rats. Life (Basel) 2023; 13:1294. [PMID: 37374077 DOI: 10.3390/life13061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Recent evidence suggests that P-glycoprotein (P-gp) overexpression mediates hyperexcitability and is associated with epileptogenesis. Transcranial focal electrical stimulation (TFS) delays epileptogenesis and inhibits P-gp overexpression after a generalized seizure. Here, first we measured P-gp expression during epileptogenesis and second, we assessed if TFS antiepileptogenic effect was related with P-gp overexpression avoidance. Male Wistar rats were implanted in right basolateral amygdala and stimulated daily for electrical amygdala kindling (EAK), P-gp expression was assessed during epileptogenesis in relevant brain areas. Stage I group showed 85% increase in P-gp in ipsilateral hippocampus (p < 0.001). Stage III group presented 58% and 57% increase in P-gp in both hippocampi (p < 0.05). Kindled group had 92% and 90% increase in P-gp in both hippocampi (p < 0.01), and 93% and 143% increase in both neocortices (p < 0.01). For the second experiment, TFS was administrated daily after each EAK stimulation for 20 days and P-gp concentration was assessed. No changes were found in the TFS group (p > 0.05). Kindled group showed 132% and 138% increase in P-gp in both hippocampi (p < 0.001) and 51% and 92% increase in both cortices (p < 0.001). Kindled + TFS group presented no changes (p > 0.05). Our experiments revealed that progression of EAK is associated with increased P-gp expression. These changes are structure-specific and dependent on seizure severity. EAK-induced P-gp overexpression would be associated with neuronal hyperexcitability and thus, epileptogenesis. P-gp could be a novel therapeutical target to avoid epileptogenesis. In accordance with this, TFS inhibited P-gp overexpression and interfered with EAK. An important limitation of the present study is that P-gp neuronal expression was not evaluated under the different experimental conditions. Future studies should be carried out to determine P-gp neuronal overexpression in hyperexcitable networks during epileptogenesis. The TFS-induced lessening of P-gp overexpression could be a novel therapeutical strategy to avoid epileptogenesis in high-risk patients.
Collapse
Affiliation(s)
- Daniel Fonseca-Barriendos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitrio de Ciencias Biológicas y Agropecuaias, Universidad de Guadalajara, Zapopan C.P. 44600, Mexico
| | - Frida Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA
| | - Alejandro Valdés-Cruz
- Laboratorio de Neurofisiología del Control y la Regulación, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México C.P. 14370, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| |
Collapse
|
12
|
Jin Y, Ren L, Jing X, Wang H. Targeting ferroptosis as novel therapeutic approaches for epilepsy. Front Pharmacol 2023; 14:1185071. [PMID: 37124220 PMCID: PMC10133701 DOI: 10.3389/fphar.2023.1185071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Epilepsy is a chronic disorder of the central nervous system characterized by recurrent unprovoked seizures resulting from excessive synchronous discharge of neurons in the brain. As one of the most common complications of many neurological diseases, epilepsy is an expensive and complex global public health issue that is often accompanied by neurobehavioral comorbidities, such as abnormalities in cognition, psychiatric status, and social-adaptive behaviors. Recurrent or prolonged seizures can result in neuronal damage and cell death; however, the molecular mechanisms underlying the epilepsy-induced damage to neurons remain unclear. Ferroptosis, a novel type of regulated cell death characterized by iron-dependent lipid peroxidation, is involved in the pathophysiological progression of epilepsy. Emerging studies have demonstrated pharmacologically inhibiting ferroptosis can mitigate neuronal damage in epilepsy. In this review, we briefly describe the core molecular mechanisms of ferroptosis and the roles they play in contributing to epilepsy, highlight emerging compounds that can inhibit ferroptosis to treat epilepsy and associated neurobehavioral comorbidities, and outline their pharmacological beneficial effects. The current review suggests inhibiting ferroptosis as a therapeutic target for epilepsy and associated neurobehavioral comorbidities.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Lei Ren
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
13
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
14
|
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal. Diagnostics (Basel) 2023; 13:diagnostics13061048. [PMID: 36980356 PMCID: PMC10047193 DOI: 10.3390/diagnostics13061048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.
Collapse
|
15
|
Huang Y, Zhang Z, Chen L. Diagnosis and prognosis of serum Fut8 for epilepsy and refractory epilepsy in children. PLoS One 2023; 18:e0284239. [PMID: 37053181 PMCID: PMC10101470 DOI: 10.1371/journal.pone.0284239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
With adequate serum concentration of antiepileptic drugs, the epilepsy symptoms in many patients still cannot be controlled well. The alteration of glycosyltransferase has obvious influence on the pathogenesis of epilepsy. In this study, we focus on the diagnostic and prognostic value of fucosyltransferase 8 (Fut8) on epilepsy and refractory epilepsy. Serum samples of 199 patients with epilepsy, 59 patients with refractory epilepsy and 22 healthy controls who were diagnosed in Shenzhen Children's hospital from August 2018 to August 2019 were collected. The level of lectins was further analyzed by lectin chip and enzyme linked immunosorbent assay (ELISA). The diagnostic value of serum Fut8 for epilepsy and refractory epilepsy was evaluated by receiver operating characteristic curve. Finally, the difference in the recurrence rate of convulsion in patients with epilepsy or refractory epilepsy within 2 years were observed in different Fut8 expression patients. The concentration of valproic acid (VPA) were significant different between epilepsy and refractory epilepsy group. The expression of α1, 6-fucosylation and Fut8 was significantly increased in the refractory epilepsy group compared with healthy controls. The area under the curve of Fut8 as a biomarker for predicting epilepsy or refractory epilepsy was 0.620 and 0.856, respectively. There was a significant difference in the recurrence rate of convulsion within 2 years in the children with refractory epilepsy (p = 0.0493) not epilepsy (p = 0.1865) between the high and low Fut8 expression groups. Fut8 was one of the effective indicators for the diagnosis and prognosis of refractory epilepsy.
Collapse
Affiliation(s)
- Yunxiu Huang
- Department of Laboratory Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| | - Zhou Zhang
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Linmu Chen
- Department of Pharmacy, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| |
Collapse
|
16
|
Grigoreva TA, Sagaidak AV, Novikova DS, Tribulovich VG. Implication of ABC transporters in non-proliferative diseases. Eur J Pharmacol 2022; 935:175327. [DOI: 10.1016/j.ejphar.2022.175327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
17
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Krami AM, Ratib C, Charoute H, Rouba H, Roky R, Barakat A, Nahili H. Association between G2677T/A polymorphism in ABCB1 gene and the risk of drug resistance epilepsy: An updated systematic review and meta-analysis. Epilepsy Res 2022; 185:106977. [PMID: 35853334 DOI: 10.1016/j.eplepsyres.2022.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Epilepsy is a common serious brain condition characterized by the abnormal electrical activity of neurons. In most cases, epileptic patients respond to antiepileptic drugs. Approximately, one-third of patients prove medically intractable. The ABCB1 gene is a superfamily of ATP-binding cassette (ABC) transporters that encode a drug-transport protein, lead to cells and organs protects and eliminates toxic agents. We performed this meta-analysis to assess the association between G2677T/A in the ABCB1 gene and the risk of drug resistance in epileptic patients. METHODS Two online libraries (PubMed and Scopus) were used to identify studies that report the relationship between G2677T/A polymorphism in the MDR1 gene and the risk of antiepileptic drug resistance. The meta-analysis was performed using Review Manager 5.3 software. The pooled odds ratios and 95 % confidence intervals (CIs) were calculated using a random or fixed effects model according to the heterogeneity between studies. RESULTS A total of 33 eligible studies were included in this meta-analysis which 4192 patients were drug-resistant and 5079 patients were drug-responsive. As a result, a significant association was observed in overall population for the genetic model GG+GA vs AA (OR with 95 % CI = 0,56 [0.34,0.93]; P = 0.02). The subgroup ethnicity analysis showed a significant decrease in the risk of AEDs resistance in the Caucasian population. CONCLUSION In conclusion, our analysis demonstrates that G2677T/A polymorphism in the ABCB1 gene decreases the risk of drug resistance. More studies are needed in the different ethnic groups to clarify the role of polymorphism in AEDs resistance.
Collapse
Affiliation(s)
- Al Mehdi Krami
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco; Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Chorouk Ratib
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco; Laboratory of Biotechnology environment and health, Faculty of Science El Jadida, Morocco
| | - Hicham Charoute
- Research unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco.
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Rachida Roky
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| | - Halima Nahili
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, 20360, Casablanca, Morocco
| |
Collapse
|
19
|
Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals That Interfere With Drug Metabolism and Transport, Modifying Plasma Concentration in Humans and Animals. Dose Response 2022; 20:15593258221120485. [PMID: 36158743 PMCID: PMC9500303 DOI: 10.1177/15593258221120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.
Collapse
Affiliation(s)
| | - Renato León-Rodríguez
- Laboratorio de Contención Biológica BSL-3, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
21
|
Martin P, Czerwiński M, Limaye PB, Muranjan S, Ogilvie BW, Smith S, Boyd B. In vitro evaluation of fenfluramine and norfenfluramine as victims of drug interactions. Pharmacol Res Perspect 2022; 10:e00958. [PMID: 35599345 PMCID: PMC9124820 DOI: 10.1002/prp2.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
Fenfluramine (FFA) has potent antiseizure activity in severe, pharmacoresistant childhood‐onset developmental and epileptic encephalopathies (e.g., Dravet syndrome). To assess risk of drug interaction affecting pharmacokinetics of FFA and its major metabolite, norfenfluramine (nFFA), we conducted in vitro metabolite characterization, reaction phenotyping, and drug transporter−mediated cellular uptake studies. FFA showed low in vitro clearance in human liver S9 fractions and in intestinal S9 fractions in all three species tested (t1/2 > 120 min). Two metabolites (nFFA and an N‐oxide or a hydroxylamine) were detected in human liver microsomes versus six in dog and seven in rat liver microsomes; no metabolite was unique to humans. Selective CYP inhibitor studies showed FFA metabolism partially inhibited by quinidine (CYP2D6, 48%), phencyclidine (CYP2B6, 42%), and furafylline (CYP1A2, 32%) and, to a lesser extent (<15%), by tienilic acid (CYP2C9), esomeprazole (CYP2C19), and troleandomycin (CYP3A4/5). Incubation of nFFA with rCYP1A2, rCYP2B6, rCYP2C19, and rCYP2D6 resulted in 10%−20% metabolism and no clear inhibition of nFFA metabolism by any CYP‐selective inhibitor. Reaction phenotyping showed metabolism of FFA by recombinant human cytochrome P450 (rCYP) enzymes rCYP2B6 (10%–21% disappearance for 1 and 10 µM FFA, respectively), rCYP1A2 (22%−23%), rCYP2C19 (49%−50%), and rCYP2D6 (59%−97%). Neither FFA nor nFFA was a drug transporter substrate. Results show FFA metabolism to nFFA occurs through multiple pathways of elimination. FFA dose adjustments may be needed when administered with strong inhibitors or inducers of multiple enzymes involved in FFA metabolism (e.g., stiripentol).
Collapse
|
22
|
Fagiolino P, Vázquez M. Tissue Drug Concentration. Curr Pharm Des 2022; 28:1109-1123. [PMID: 35466869 DOI: 10.2174/1381612828666220422091159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Blood flow enables the delivery of oxygen and nutrients to the different tissues of the human body. Drugs follow the same route as oxygen and nutrients; thus, drug concentrations in tissues are highly dependent on the blood flow fraction delivered to each of these tissues. Although the free drug concentration in blood is considered to correlate with pharmacodynamics, the pharmacodynamics of a drug is actually primarily commanded by the concentrations of drug in the aqueous spaces of bodily tissues. However, the concentrations of drug are not homogeneous throughout the tissues, and they rarely reflect the free drug concentration in the blood. This heterogeneity is due to differences in the blood flow fraction delivered to the tissues and also due to membrane transporters, efflux pumps, and metabolic enzymes. The rate of drug elimination from the body (systemic elimination) depends more on the driving force of drug elimination than on the free concentration of drug at the site from which the drug is being eliminated. In fact, the actual free drug concentration in the tissues results from the balance between the input and output rates. In the present paper, we develop a theoretical concept regarding solute partition between intravascular and extravascular spaces; discuss experimental research on aqueous/non-aqueous solute partitioning and clinical research on microdialysis; and present hypotheses to predict in-vivo elimination using parameters of in-vitro metabolism.
Collapse
Affiliation(s)
- Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
23
|
Pomilio AB, Vitale AA, Lazarowski AJ. Neuroproteomics Chip-Based Mass Spectrometry and Other Techniques for Alzheimer´S Disease Biomarkers – Update. Curr Pharm Des 2022; 28:1124-1151. [DOI: 10.2174/1381612828666220413094918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease (AD) is a progressive neurodegenerative disease of growing interest given that there is cognitive damage and symptom onset acceleration. Therefore, it is important to find AD biomarkers for early diagnosis, disease progression, and discrimination of AD and other diseases.
Objective:
To update the relevance of mass spectrometry for the identification of peptides and proteins involved in AD useful as discriminating biomarkers.
Methods:
Proteomics and peptidomics technologies that show the highest possible specificity and selectivity for AD biomarkers are analyzed, together with the biological fluids used. In addition to positron emission tomography and magnetic resonance imaging, MALDI-TOF mass spectrometry is widely used to identify proteins and peptides involved in AD. The use of protein chips in SELDI technology and electroblotting chips for peptides makes feasible small amounts (L) of samples for analysis.
Results:
Suitable biomarkers are related to AD pathology, such as intracellular neurofibrillary tangles; extraneuronal senile plaques; neuronal and axonal degeneration; inflammation and oxidative stress. Recently, peptides were added to the candidate list, which are not amyloid-b or tau fragments, but are related to coagulation, brain plasticity, and complement/neuroinflammation systems involving the neurovascular unit.
Conclusion:
The progress made in the application of mass spectrometry and recent chip techniques is promising for discriminating between AD, mild cognitive impairment, and matched healthy controls. The application of this technique to blood samples from patients with AD has shown to be less invasive and fast enough to determine the diagnosis, stage of the disease, prognosis, and follow-up of the therapeutic response.
Collapse
Affiliation(s)
- Alicia B. Pomilio
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Arturo A. Vitale
- Departamento de Bioquímica Clínica, Área Hematología, Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Av. Córdoba 2351, C1120AAF Buenos Aires, Argentina
| | - Alberto J. Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Córdoba 2351, C1120AAF Buenos Aires, Argentina
| |
Collapse
|
24
|
Bacillus subtilis Plays a Role in the Inhibition of Transporter ABCB1 in Caco-2 Cells. Epilepsy Res 2022; 183:106925. [DOI: 10.1016/j.eplepsyres.2022.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
25
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
26
|
Fonseca-Barriendos D, Pérez-Pérez D, Fuentes-Mejía M, Orozco-Suárez S, Alonso-Vanegas M, Martínez-Juárez IE, Guevara-Guzmán R, Castañeda-Cabral JL, Rocha L. Protein expression of P-glycoprotein in neocortex from patients with frontal lobe epilepsy. Epilepsy Res 2022; 181:106892. [DOI: 10.1016/j.eplepsyres.2022.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
|
27
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
28
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
30
|
Merelli A, Repetto M, Lazarowski A, Auzmendi J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J Alzheimers Dis 2021; 82:S109-S126. [PMID: 33325385 DOI: 10.3233/jad-201074] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cerebral hypoxia-ischemia can induce a wide spectrum of biologic responses that include depolarization, excitotoxicity, oxidative stress, inflammation, and apoptosis, and result in neurodegeneration. Several adaptive and survival endogenous mechanisms can also be activated giving an opportunity for the affected cells to remain alive, waiting for helper signals that avoid apoptosis. These signals appear to help cells, depending on intensity, chronicity, and proximity to the central hypoxic area of the affected tissue. These mechanisms are present not only in a large list of brain pathologies affecting commonly older individuals, but also in other pathologies such as refractory epilepsies, encephalopathies, or brain trauma, where neurodegenerative features such as cognitive and/or motor deficits sequelae can be developed. The hypoxia inducible factor 1α (HIF-1α) is a master transcription factor driving a wide spectrum cellular response. HIF-1α may induce erythropoietin (EPO) receptor overexpression, which provides the therapeutic opportunity to administer pharmacological doses of EPO to rescue and/or repair affected brain tissue. Intranasal administration of EPO combined with other antioxidant and anti-inflammatory compounds could become an effective therapeutic alternative, to avoid and/or slow down neurodegenerative deterioration without producing adverse peripheral effects.
Collapse
Affiliation(s)
- Amalia Merelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Marisa Repetto
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica; Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (IBIMOL, UBA-CONICET), Argentina
| | - Alberto Lazarowski
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina
| | - Jerónimo Auzmendi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioqummica, Departamento de Bioquímica Clínica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
31
|
Czornyj L, Auzmendi J, Lazarowski A. Transporter hypothesis in pharmacoresistant epilepsies Is it at the central or peripheral level? Epilepsia Open 2021; 7 Suppl 1:S34-S46. [PMID: 34542938 PMCID: PMC9340303 DOI: 10.1002/epi4.12537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The multidrug‐resistance (MDR) phenotype is typically observed in patients with refractory epilepsy (RE) whose seizures are not controlled despite receiving several combinations of more than two antiseizure medications (ASMs) directed against different ion channels or neurotransmitter receptors. Since the use of bromide in 1860, more than 20 ASMs have been developed; however, historically ~30% of cases of RE with MDR phenotype remains unchanged. Irrespective of metabolic biotransformation, the biodistribution of ASMs and their metabolites depends on the functional expression of some ATP‐binding cassette transporters (ABC‐t) in different organs, such as the blood‐brain barrier (BBB), bowel, liver, and kidney, among others. ABC‐t, such as P‐glycoprotein (P‐gp), multidrug resistance–associated protein (MRP‐1), and breast cancer–resistance protein (BCRP), are mainly expressed in excretory organs and play a critical role in the pharmacokinetics (PK) of all drugs. The transporter hypothesis can explain pharmacoresistance to a broad spectrum of ASMs, even when administered simultaneously. Since ABC‐t expression can be induced by hypoxia, inflammation, or seizures, a high frequency of uncontrolled seizures increases the risk of RE. These stimuli can induce ABC‐t expression in excretory organs and in previously non‐expressing (electrically responsive) cells, such as neurons or cardiomyocytes. In this regard, an alternative mechanism to the classical pumping function of P‐gp indicates that P‐gp activity can also produce a significant reduction in resting membrane potential (ΔΨ0 = −60 to −10 mV). P‐gp expression in neurons and cardiomyocytes can produce membrane depolarization and participate in epileptogenesis, heart failure, and sudden unexpected death in epilepsy. On this basis, ABC‐t play a peripheral role in controlling the PK of ASMs and their access to the brain and act at a central level, favoring neuronal depolarization by mechanisms independent of ion channels or neurotransmitters that current ASMs cannot control.
Collapse
Affiliation(s)
- Liliana Czornyj
- Neurology Service, "Juan P. Garrahan" National Children's Hospital, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
33
|
Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease. Seizure 2021; 90:34-50. [DOI: 10.1016/j.seizure.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
|
34
|
Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav 2021; 121:106590. [PMID: 31706919 DOI: 10.1016/j.yebeh.2019.106590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death that affects patients with epilepsy. The risk of SUDEP increases according to the frequency and severity of uncontrolled seizures; therefore, SUDEP risk is higher in patients with refractory epilepsy (RE), in whom most antiepileptic drugs (AEDs) are ineffective for both seizure control and SUDEP prevention. Consequently, RE and SUDEP share a multidrug resistance (MDR) phenotype, which is mainly associated with brain overexpression of ABC-transporters such as P-glycoprotein (P-gp). The activity of P-gp can also contribute to membrane depolarization and affect the normal function of neurons and cardiomyocytes. Other molecular regulators of membrane potential are the inwardly rectifying potassium channels (Kir), whose genetic variants have been related to both epilepsy and heart dysfunctions. Although it has been suggested that dysfunctions of the cardiac, respiratory, and brainstem arousal systems are the causes of SUDEP, the molecular basis for explaining its dysfunctions remain unknown. In rats, repetitive seizures or status epilepticus induced high expression of P-gp and loss Kir expression in the brain and heart, and promoted membrane depolarization, malignant bradycardia, and the high rate of mortality. Here we reviewed clinical and experimental evidences suggesting that abnormal expression of depolarizing/repolarizing factors as P-gp and Kir could favor persistent depolarization of membranes without any rapid functional recovery capacity. This condition induced by convulsive stress could be the molecular mechanism leading to acquired severe bradycardia, as an ineffective heart response generating the appropriate scenario for SUDEP development. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Erdoğan Akdağ Yerleşkesi, 66100 Yozgat, Turkey
| | - Alberto Lazarowski
- INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Rubio C, Taddei E, Acosta J, Custodio V, Paz C. Neuronal Excitability in Epileptogenic Zones Regulated by the Wnt/ Β-Catenin Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:2-11. [PMID: 31987027 DOI: 10.2174/1871527319666200120143133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is a neurological disorder that involves abnormal and recurrent neuronal discharges, producing epileptic seizures. Recently, it has been proposed that the Wnt signaling pathway is essential for the central nervous system development and function because it modulates important processes such as hippocampal neurogenesis, synaptic clefting, and mitochondrial regulation. Wnt/β- catenin signaling regulates changes induced by epileptic seizures, including neuronal death. Several genetic studies associate Wnt/β-catenin signaling with neuronal excitability and epileptic activity. Mutations and chromosomal defects underlying syndromic or inherited epileptic seizures have been identified. However, genetic factors underlying the susceptibility of an individual to develop epileptic seizures have not been fully studied yet. In this review, we describe the genes involved in neuronal excitability in epileptogenic zones dependent on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Jorge Acosta
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Carlos Paz
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| |
Collapse
|
36
|
Chaihu plus Longgu Muli Decoction Alleviated Brain Injury in Pentylenetetrazole-Kindled Epileptic Mice by Regulating Cyclooxygenase-2/Prostaglandin E2/Multidrug Transporter Pathway. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6652195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To evaluate the effect of CLMD administration on epileptic seizures and brain injury in pentylenetetrazole- (PZT-) kindled mice. Methods. The effect of pretreatment with CLMD (5, 10, and 20 ml/kg (mg/kg) by gavage) for seven days on PTZ-induced kindling, duration and grade of kindling-induced seizures, and pathological injury in the cortex and hippocampus was evaluated. Male BALB/c mice with adenosine A1 receptor knockout were subjected to intraperitoneal injection of PTZ (35 mg/kg) once every day until kindling was successfully induced. Quantitative reverse transcription polymerase chain reaction, immunofluorescence, and western blot were performed to assess the mRNA and protein levels of p-glycoprotein (PGP), multidrug resistance-associated protein 1 (MRP1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and adenylate kinase (ADK) in the cortex and hippocampus. Results. PTZ successfully induced kindling in mice after 21 days, wherein CLMD showed an obvious dose-dependent antiepileptic effect. High-dose CLMD significantly increased the latency of epileptic seizures, decreased the sustained time of epileptic seizures and the seizure grade, and ameliorated the histopathological changes in the cortex and hippocampus. Furthermore, PTZ kindling induced significantly higher levels of PGP, MRP1, COX-2, PGE2, and ADK, but this effect was inhibited by pretreatment with CLMD in a dose-dependent manner. Conclusion. Pretreatment with CLMD attenuates PTZ-kindled convulsions and brain injury in mice. The mechanism may be related to the cyclooxygenase-2/prostaglandin E2/multidrug transporter pathway.
Collapse
|
37
|
Lattanzi S, Rinaldi C, Cagnetti C, Foschi N, Norata D, Broggi S, Rocchi C, Silvestrini M. Predictors of Pharmaco-Resistance in Patients with Post-Stroke Epilepsy. Brain Sci 2021; 11:brainsci11040418. [PMID: 33810310 PMCID: PMC8066362 DOI: 10.3390/brainsci11040418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives: The study aimed to explore the clinical predictors of pharmaco-resistance in patients with post-stroke epilepsy (PSE). Methods: Patients with epilepsy secondary to cerebral infarct or spontaneous intracerebral hemorrhage were included. The study outcome was the occurrence of pharmaco-resistance defined as the failure of adequate trials of two tolerated and appropriately chosen and used antiseizure medication schedules, whether as monotherapies or in combination, to achieve sustained seizure freedom. Results: One-hundred and fifty-nine patients with PSE and a median follow-up of 5 (3–9) years were included. The mean age of the patients at stroke onset was 56.7 (14.9) years, and 104 (65.4%) were males. In the study cohort, 29 participants were pharmaco-resistant. Age at stroke onset [odds ratio (OR) 0.97, 95% confidence interval (CI) 0.93–0.99; p = 0.044], history of intracerebral hemorrhage (OR 2.95, 95% CI 1.06–8.24; p = 0.039), severe stroke (OR 5.43, 95% CI 1.82–16.16; p = 0.002), status epilepticus as initial presentation of PSE (OR 7.90, 1.66–37.55; p = 0.009), and focal to bilateral tonic-clonic seizures (OR 3.19, 95% CI 1.16–8.79; p = 0.025) were independent predictors of treatment refractoriness. Conclusions: Pharmaco-resistance developed in approximately 20% of patients with PSE and was associated with younger age at stroke onset, stroke type and severity, status epilepticus occurrence, and seizure types.
Collapse
Affiliation(s)
- Simona Lattanzi
- Correspondence: ; Tel.: +39-071-5964438; Fax: +39-071-887262
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gómez CT, Lairion F, Repetto M, Ettcheto M, Merelli A, Lazarowski A, Auzmendi J. Cannabidiol (CBD) Alters the Functionality of Neutrophils (PMN). Implications in the Refractory Epilepsy Treatment. Pharmaceuticals (Basel) 2021; 14:ph14030220. [PMID: 33807975 PMCID: PMC8001508 DOI: 10.3390/ph14030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
Cannabidiol (CBD), a lipophilic cannabinoid compound without psychoactive effects, has emerged as adjuvant of anti-epileptic drugs (AEDs) in the treatment of refractory epilepsy (RE), decreasing the severity and/or frequency of seizures. CBD is considered a multitarget drug that could act throughout the canonical endocannabinoid receptors (CB1-CB2) or multiple non-canonical pathways. Despite the fact that the CBD mechanism in RE is still unknown, experiments carried out in our laboratory showed that CBD has an inhibitory role on P-glycoprotein excretory function, highly related to RE. Since CB2 is expressed mainly in the immune cells, we hypothesized that CBD treatment could alter the activity of polymorphonuclear neutrophils (PMNs) in a similar way that it does with microglia/macrophages and others circulating leukocytes. In vitro, CBD induced PMN cytoplasmatic vacuolization and proapoptotic nuclear condensation, associated with a significantly decreased viability in a concentration-dependent manner, while low CBD concentration decreased PMN viability in a time-dependent manner. At a functional level, CBD reduced the chemotaxis and oxygen consumption of PMNs related with superoxide anion production, while the singlet oxygen level was increased suggesting oxidative stress damage. These results are in line with the well-known CBD anti-inflammatory effect and support a potential immunosuppressor role on PMNs that could promote an eventual defenseless state during chronic treatment with CBD in RE.
Collapse
Affiliation(s)
- Claudia Taborda Gómez
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Fabiana Lairion
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Marisa Repetto
- Departamento de Química Analítica y Fisicoquímica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, (IBIMOL, UBA-CONICET), Buenos Aires C1113AAD, Argentina; (F.L.); (M.R.)
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institute of Neuroscience, University of Barcelona, 08193 Barcelona, Spain;
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Amalia Merelli
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
| | - Jerónimo Auzmendi
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Universidad de Buenos Aires, Buenos Aires C1120AAF, Argentina; (C.T.G.); (A.M.); (A.L.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQD, Argentina
- Correspondence:
| |
Collapse
|
39
|
Noninvasive transcranial focal stimulation affects the convulsive seizure-induced P-glycoprotein expression and function in rats. Epilepsy Behav 2021; 115:107659. [PMID: 33334719 DOI: 10.1016/j.yebeh.2020.107659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Transcranial focal stimulation (TFS) is a noninvasive neuromodulation strategy that reduces seizure activity in different experimental models. Nevertheless, there is no information about the effects of TFS in the drug-resistant phenotype associated with P-glycoprotein (Pgp) overexpression. The present study focused on determining the effects of TFS on Pgp expression after an acute seizure induced by 3-mercaptopropionic acid (MPA). P-glycoprotein expression was analyzed by western blot in the cerebral cortex and hippocampus of rats receiving 5 min of TFS (300 Hz, 50 mA, 200 μs, biphasic charge-balanced squared pulses) using a tripolar concentric ring electrode (TCRE) prior to administration of a single dose of MPA. An acute administration of MPA induced Pgp overexpression in cortex (68 ± 13.4%, p < 0.05 vs the control group) and hippocampus (48.5 ± 14%, p < 0.05, vs the control group). This effect was avoided when TFS was applied prior to MPA. We also investigated if TFS augments the effects of phenytoin in an experimental model of drug-resistant seizures induced by repetitive MPA administration. Animals with MPA-induced drug-resistant seizures received TFS alone or associated with phenytoin (75 mg/kg, i.p.). TFS alone did not modify the expression of the drug-resistant seizures. However, TFS combined with phenytoin reduced seizure intensity, an effect associated with a lower prevalence of major seizures (50%, p = 0.03 vs phenytoin alone). Our experiments demonstrated that TFS avoids the Pgp overexpression induced after an acute convulsive seizure. In addition, TFS augments the phenytoin effects in an experimental model of drug-resistant seizures. According with these results, it is indicated that TFS may represent a new neuromodulatory strategy to revert the drug-resistant phenotype.
Collapse
|
40
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
41
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
42
|
Gonçalves J, Alves G, Fonseca C, Carona A, Bicker J, Falcão A, Fortuna A. Is intranasal administration an opportunity for direct brain delivery of lacosamide? Eur J Pharm Sci 2020; 157:105632. [PMID: 33152466 DOI: 10.1016/j.ejps.2020.105632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Lacosamide is well-known as an effective and safe anticonvulsant drug. Nevertheless, there is also evidence of anti-epileptogenic, neuroprotective and antinociceptive properties of lacosamide. It is currently available as oral and intravenous (IV) formulations, and its brain concentrations and therapeutic effects depend on its passage across the blood-brain barrier (BBB). Therefore, to circumvent the restrictive BBB, we herein evaluated the intranasal (IN) administration of lacosamide. Nasal thermoreversible gels were screened in vitro for their influence on the viability of human nasal septum (RPMI 2650) and lung adenocarcinoma (Calu-3) cells. According to the Alamar Blue test, the in situ gel composed of Pluronic F-127 (22.5%, w/v) and Carbopol 974P (0.2%, w/v) did not affect cell viability, which remained higher than 85%, within the concentration range of lacosamide. The in situ gel was intranasally administered to healthy male CD-1 mice (8.33 mg/kg) to describe the pharmacokinetic profiles of lacosamide in plasma, brain, lung and kidney and compare them with those obtained after IV administration of the same dose. Accordingly, IN administration allowed a fast (tmax in plasma: 5 min) and complete systemic absorption of lacosamide (absolute bioavailability: 120.46%). Interestingly, IN lacosamide demonstrated higher exposure (given by the AUCt) in the brain (425.44 µg.min/mL versus 274.49 µg.min/mL), but lower exposure in kidneys (357.56 µg.min/mL versus 762.61 µg.min/mL), in comparison to IV administration. These findings, together with the tmax in brain of 15 min, a drug targeting efficiency (DTE) of 128.67% and a direct transport percentage of 22.28%, evidence that part of lacosamide reaches the brain directly after nasal administration, even though penetration into the brain from the systemic circulation seems to be the major determinant of brain exposure. Importantly, lacosamide concentrations found in lungs following IN administration were considerably higher than those observed after IV injection, until 30 min post-dosing (p < 0.05). Nevertheless, attained drug concentrations were lower than those tested in vitro in the Calu-3 cell line (1-100 µM), indicating that adverse effects are unlikely to occur in vivo. Hence, it seems that the proposed IN route has potential to be a suitable and valuable strategy for the brain delivery of lacosamide in emergency conditions and for the chronic treatment of epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Joana Gonçalves
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Andreia Carona
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
43
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
44
|
Impact of ABCB1 Polymorphism on Levetiracetam Serum Concentrations in Epileptic Uygur Children in China. Ther Drug Monit 2020; 42:886-892. [PMID: 32890316 PMCID: PMC7664979 DOI: 10.1097/ftd.0000000000000805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Interindividual variations in the efficacy of antiseizure medications make epilepsy treatment challenging. This is due to genetic factors such as gene polymorphisms in Adenosine-triphosphate (ATP)-binding cassette sub-family B member 1 (ABCB1). In this article, the impact of polymorphisms in the P-glycoprotein-encoding gene, ABCB1 (C1236T, G2677T/A, and C3435T), on levetiracetam disposition was evaluated in Uygur Chinese children with epilepsy. METHODS MDR1 C3435T polymorphism was analyzed by polymerase chain reaction-fluorescence staining in situ hybridization. The χ test and Fisher exact test were used to analyze the allelic and genotypic distribution of ABCB1, C1236T, G2677T, and C3435T between the drug-resistant and drug-responsive groups. Differences in steady-state and dose-corrected levetiracetam serum concentrations between the different genotypes were analyzed using 1-way analysis of variance and Mann-Whitney test. RESULTS Total 245 Uygur children with epilepsy were analyzed [drug-resistant, n = 117 (males:females = 53:64) and drug-responsive, n = 128 (males:females = 76:52)]. The frequency of ABCB1 C1236T, G2677T/A, and ABCB1 C3435T genotypes, alleles, haplotypes, or diplotypes did not differ significantly between the 2 groups (P > 0.05). Significantly higher levetiracetam concentrations and serum concentration/body mass dose were seen in ABCB1 2677-GT, TT, GA, and AT genotypes and 3435-TT carriers compared with GG and CC carriers (P = 0.021 and P = 0.002 versus P = 0.001 and P = 0.000, respectively). CONCLUSIONS ABCB1 G2677T/A and C3435T may affect levetiracetam disposition and therapeutic efficacy in Uygur children with epilepsy. Genetic analysis could be a valuable tool for predicting the response to antiseizure medications before the start of treatment and could contribute to personalized medicine for Uygur children with epilepsy.
Collapse
|
45
|
The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020; 80:201-211. [DOI: 10.1016/j.seizure.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
|
46
|
Möhle L, Schwarzová B, Krohn M, Stefan SM, Pahnke J. Using a qPCR device to screen for modulators of ABC transporter activity: A step-by-step protocol. J Pharmacol Toxicol Methods 2020; 104:106882. [PMID: 32474136 DOI: 10.1016/j.vascn.2020.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are transmembrane proteins which actively transport a large variety of substrates across biological membranes. ABC transporter overexpression can be the underlying cause of multidrug resistance in oncology. Moreover, it has been revealed that increased ABCC1 transporter activity can ameliorate behavioural changes and Aβ pathology in a rodent model of Alzheimer's disease and it is currently tested in AD patients. METHODS Finding substances that modulate ABC transporter activity (inhibitors and activators) is of high relevance and thus, different methods have been developed to screen for potential modulators. For this purpose, we have developed a cell-based assay to measure the kinetics of ABCC1-mediated efflux of a fluorescent dye using a common qPCR device (Agilent AriaMx). RESULTS We validated the specificity of our method with vanadate and benzbromarone controls. Furthermore, we provide a step-by-step protocol including statistical analysis of the resulting data and suggestions how to modify the protocol specifically to screen for activators of ABCC1. DISCUSSION Our approach is biologically more relevant than cell-free assays. The continuous detection of kinetics allows for a more precise quantification compared with assays with single end-point measurements.
Collapse
Affiliation(s)
- Luisa Möhle
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany.
| | - Barbora Schwarzová
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Sven Marcel Stefan
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany; LIED, University of Lübeck, Germany; Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia
| |
Collapse
|
47
|
Harby SA, Nassra RA, Mekky JF, Ali SM, Ismail CA. Correlation of levetiracetam concentration in peripheral blood mononuclear cells with clinical efficacy: A sensitive monitoring biomarker in patients with epilepsy. Seizure 2020; 78:71-77. [DOI: 10.1016/j.seizure.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
|
48
|
Auzmendi J, Palestro P, Blachman A, Gavernet L, Merelli A, Talevi A, Calabrese GC, Ramos AJ, Lazarowski A. Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Front Behav Neurosci 2020; 14:32. [PMID: 32256321 PMCID: PMC7090129 DOI: 10.3389/fnbeh.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The “transporters hypothesis” indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Palestro
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Agustín Blachman
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Amalia Merelli
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Graciela Cristina Calabrese
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
49
|
Calapai F, Cardia L, Sorbara EE, Navarra M, Gangemi S, Calapai G, Mannucci C. Cannabinoids, Blood-Brain Barrier, and Brain Disposition. Pharmaceutics 2020; 12:pharmaceutics12030265. [PMID: 32183416 PMCID: PMC7150944 DOI: 10.3390/pharmaceutics12030265] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Potential therapeutic actions of the cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are based on their activity as analgesics, anti-emetics, anti-inflammatory agents, anti-seizure compounds. THC and CBD lipophilicity and their neurological actions makes them candidates as new medicinal approaches to treat central nervous system (CNS) diseases. However, they show differences about penetrability and disposition in the brain. The present article is an overview about THC and CBD crossing the blood-brain barrier (BBB) and their brain disposition. Several findings indicate that CBD can modify the deleterious effects on BBB caused by inflammatory cytokines and may play a pivotal role in ameliorating BBB dysfunction consequent to ischemia. Thus supporting the therapeutic potential of CBD for the treatment of ischemic and inflammatory diseases of CNS. Cannabinoids positive effects on cognitive function could be also considered through the aspect of protection of BBB cerebrovascular structure and function, indicating that they may purchase substantial benefits through the protection of BBB integrity. Delivery of these cannabinoids in the brain following different routes of administration (subcutaneous, oral, and pulmonary) is illustrated and commented. Finally, the potential role of cannabinoids in drug-resistance in the clinical management of neurological or psychiatric diseases such as epilepsy and schizophrenia is discussed on the light of their crossing the BBB.
Collapse
Affiliation(s)
- Fabrizio Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.C.); (E.E.S.); (C.M.)
| | - Luigi Cardia
- Anesthesia, Intensive Care and Pain Therapy, A.O.U.G. Martino Messina, University of Messina, 98125 Messina, Italy;
| | - Emanuela Elisa Sorbara
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.C.); (E.E.S.); (C.M.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.C.); (E.E.S.); (C.M.)
- Correspondence: ; Tel.: +39-0902213646
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.C.); (E.E.S.); (C.M.)
| |
Collapse
|
50
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|