1
|
Shi W, Sun H, Peng W, Chen Z, Wang Q, Lin W, Ding M, Sun H, Wang X, Wang T, Wang X, Liu Y, Chen Y, Zhu G, Zhou D, Li J. A cross-sectional, multicenter survey of the prevalence and influencing factors for migraine in epilepsy. Epilepsia Open 2024; 9:1406-1415. [PMID: 38808742 PMCID: PMC11296102 DOI: 10.1002/epi4.12977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVES Epilepsy and migraine are common chronic neurological disease. Epidemiologic studies and shared pathophysiology and treatment suggest that these two diseases overlap. However, migraine is often underestimated among patients with epilepsy. This study aimed to evaluate the prevalence of migraine and identify the related influencing factors among adult patients with epilepsy. METHODS Adult patients with epilepsy were recruited at the outpatient epilepsy clinic of 13 tertiary hospitals in China from February to September 2022. ID Migraine questionnaire was applied to evaluate for migraine. Both univariable and multivariable logistic regression models were used to explore the influencing factors of migraine. RESULTS A total of 1326 patients with epilepsy were enrolled in this study. The prevalence of migraine among patients with epilepsy was 19.2% (254/1326). In the multivariable analysis, being female (OR = 1.451, 95% CI: 1.068-1.975; p = 0.018), focal and focal to bilateral tonic-clonic seizures (OR = 1.583, 95% CI: 1.090-2.281; p = 0.015), and current seizure attack in the last 3 months (OR = 1.967, 95% CI: 1.282-3.063; p = 0.002) were the influencing factors for migraine. However, <10% of patients with epilepsy received analgesics for migraine. SIGNIFICANCE Approximately 20% of patients with epilepsy screened positive for migraine. Being female, focal and focal to bilateral tonic-clonic seizures, and current seizure attack in the last 3 months were the influencing factors for migraine. Neurologists should pay more attention to the screening and management of the migraine among patients with epilepsy in China. PLAIN LANGUAGE SUMMARY Epilepsy and migraine are common chronic neurological disease with shared pathophysiological mechanisms and therapeutic options. However, migraine is often underestimated among patients with epilepsy. This multicenter study aimed to evaluate the prevalence of migraine and current status of treatment. In this study, approximately 20% of patients with epilepsy screened positive for migraine. Female, focal and focal to bilateral tonic-clonic seizures, and current seizure attack in the last 3 months were identified as independent influencing factors for migraine. Despite the high prevalence, the treatment for migraine was not optimistic, neurologists should pay more attention to the screening and management of migraine.
Collapse
Affiliation(s)
- Wenyan Shi
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Hanlin Sun
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Wei Peng
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Ziyi Chen
- Department of Neurology, the First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Qun Wang
- Department of NeurologyBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Weihong Lin
- Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Meiping Ding
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang UniversityHangzhouChina
| | - Hongbin Sun
- Department of NeurologySichuan Provincial People's HospitalChengduChina
| | - Xiangqing Wang
- Department of NeurologyChinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Tiancheng Wang
- Department of NeurologyLanzhou University Second HospitalLanzhouChina
| | - Xuefeng Wang
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yonghong Liu
- Department of NeurologyAir Force Medical University Xijing HospitalXi'AnChina
| | - Yangmei Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Guoxing Zhu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Dong Zhou
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| | - Jinmei Li
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Wang Q, Qin B, Yu H, Hu Y, Yu H, Zhong J, Liu J, Yao C, Zeng J, Fan J, Diao L. Advances in Circular RNA in the Pathogenesis of Epilepsy. Neuroscience 2024; 551:246-253. [PMID: 38843987 DOI: 10.1016/j.neuroscience.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.
Collapse
Affiliation(s)
- Qin Wang
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, 6 Seventh Branch Road, Panxi, Jiangbei District, Chongqing 400021, China
| | - Haichun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi 30007, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Han Yu
- Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Jie Zhong
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jinwen Liu
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Chunyuan Yao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jiawei Zeng
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Jingjing Fan
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China
| | - Limei Diao
- Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Qingxiu District, Nanning, Guangxi 530001, China; Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, 89-9 Dongge Road, Qingxiu District, Nanning, Guangxi 530023, China.
| |
Collapse
|
3
|
Córdoba NM, Lince-Rivera I, Gómez JLR, Rubboli G, De la Rosa SO. ATP1A2-related epileptic encephalopathy and movement disorder: Clinical features of three novel patients. Epileptic Disord 2024; 26:332-340. [PMID: 38512072 DOI: 10.1002/epd2.20220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Variants in the ATP1A2 gene exhibit a wide clinical spectrum, ranging from familial hemiplegic migraine to childhood epilepsies and early infantile developmental epileptic encephalopathy (EIDEE) with movement disorders. This study aims to describe the epileptology of three unpublished cases and summarize epilepsy features of the other 17 published cases with ATP1A2 variants and EIDEE. METHODS Medical records of three novel patients with pathogenic ATP1A2 variants were retrospectively reviewed. Additionally, the PUBMED, EMBASE, and Cochrane databases were searched until December 2023 for articles on EIDEE with ATP1A2 variants, without language or publication year restrictions. RESULTS Three female patients, aged 6 months-10 years, were investigated. Epilepsy onset occurred between 5 days and 2 years, accompanied by severe developmental delay, intellectual disability, drug-resistant epilepsy, severe movement disorder, and recurrent status epilepticus. All individuals had pathogenic variants of the ATP1A2 gene (ATP1A2 c.720_721del (p.Ile240MetfsTer9), ATP1A2c.3022C > T (p.Arg1008Trp), ATP1A2 c.1096G > T (p.Gly366Cys), according to ACMG criteria. Memantine was p) rescribed to three patients, one with a reduction in ictal frequency, one with improvement in gait pattern, coordination, and attention span, and another one in alertness without significant side effects. SIGNIFICANCE This study reinforces the association between ATP1A2 variants and a severe phenotype. All patients had de novo variants, focal motor seizures with impaired awareness as the primary type of seizure; of the 11 EEGs recorded, 10 presented a slow background rhythm, 7 multifocal interictal epileptiform discharges (IED), predominantly temporal IEDs, followed by frontal IED, as well as ten ictal recordings, which showed ictal onset from the same regions mentioned above. Treatment with antiseizure medication was generally ineffective, but memantine showed moderate improvement. Prospective studies are needed to enlarge the phenotype and assess the efficacy of NMDA receptor antagonist therapies in reducing seizure frequency and improving quality of life.
Collapse
Affiliation(s)
| | | | | | - Guido Rubboli
- Danish Epilepsy Center, Member of ERN EpiCARE, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sebastián Ortiz De la Rosa
- Instituto Roosevelt, Bogotá, Colombia
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
5
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Kohansal M, Alghanimi YK, Banoon SR, Ghasemian A, Afkhami H, Daraei A, Wang Z, Nekouian N, Xie J, Deng X, Tang H. CircRNA-associated ceRNA regulatory networks as emerging mechanisms governing the development and biophysiopathology of epilepsy. CNS Neurosci Ther 2024; 30:e14735. [PMID: 38676299 PMCID: PMC11053249 DOI: 10.1111/cns.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The etiology of epilepsy is ascribed to the synchronized aberrant neuronal activity within the brain. Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their circular structures and covalent linkage, exert a substantial influence on this phenomenon. CircRNAs possess stereotyped replication, transience, repetitiveness, and paroxysm. Additionally, MicroRNA (miRNA) plays a crucial role in the regulation of diverse pathological processes, including epilepsy. CircRNA is of particular significance due to its ability to function as a competing endogenous RNA, thereby sequestering or inhibiting miRNA activity through binding to target mRNA. Our review primarily concentrates on elucidating the pathological and functional roles, as well as the underlying mechanisms, of circRNA-miRNA-mRNA networks in epilepsy. Additionally, it explores the potential utility of these networks for early detection and therapeutic intervention.
Collapse
Affiliation(s)
- Maryam Kohansal
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
- Department of BiologyPayame Noor UniversityTehranIran
| | | | - Shaimaa R. Banoon
- Department of Biology, College of ScienceUniversity of MisanAmarahIraq
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Hamed Afkhami
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
- Cellular and Molecular Research CenterQom University of Medical SciencesQomIran
- Faculty of MedicineShahed UniversityTehranIran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Najmeh Nekouian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
7
|
Gosalia H, Karsan N, Goadsby PJ. Genetic Mechanisms of Migraine: Insights from Monogenic Migraine Mutations. Int J Mol Sci 2023; 24:12697. [PMID: 37628876 PMCID: PMC10454024 DOI: 10.3390/ijms241612697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a disabling neurological disorder burdening patients globally. Through the increasing development of preclinical and clinical experimental migraine models, advancing appreciation of the extended clinical phenotype, and functional neuroimaging studies, we can further our understanding of the neurobiological basis of this highly disabling condition. Despite increasing understanding of the molecular and chemical architecture of migraine mechanisms, many areas require further investigation. Research over the last three decades has suggested that migraine has a strong genetic basis, based on the positive family history in most patients, and this has steered exploration into possibly implicated genes. In recent times, human genome-wide association studies and rodent genetic migraine models have facilitated our understanding, but most migraine seems polygenic, with the monogenic migraine mutations being considerably rarer, so further large-scale studies are required to elucidate fully the genetic underpinnings of migraine and the translation of these to clinical practice. The monogenic migraine mutations cause severe aura phenotypes, amongst other symptoms, and offer valuable insights into the biology of aura and the relationship between migraine and other conditions, such as vascular disease and sleep disorders. This review will provide an outlook of what is known about some monogenic migraine mutations, including familial hemiplegic migraine, familial advanced sleep-phase syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.
Collapse
Affiliation(s)
- Helin Gosalia
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Nazia Karsan
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
| | - Peter J. Goadsby
- Headache Group, The Wolfson Sensory, Pain and Rehabilitation Centre, NIHR King’s Clinical Research Facility, & SLaM Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (H.G.); (N.K.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Kanduc D. Exposure to SARS-CoV-2 and Infantile Diseases. Glob Med Genet 2023; 10:72-78. [PMID: 37144240 PMCID: PMC10154082 DOI: 10.1055/s-0043-1768699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Background and Aim Immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in newborns and children after prophylactic immunization is currently a relevant research topic. The present study analyzes the issue by examining the possibility that the anti-SARS-CoV-2 immune responses are not uniquely directed against the virus but can-via molecular mimicry and the consequent cross-reactivity-also hit human proteins involved in infantile diseases. Methods Human proteins that-if altered-associate with infantile disorders were searched for minimal immune pentapeptide determinants shared with SARS-CoV-2 spike glycoprotein (gp). Then, the shared pentapeptides were analyzed for immunologic potential and immunologic imprinting phenomena. Results Comparative sequence analysis shows that: (1) numerous pentapeptides (namely, 54) are common to SARS-CoV-2 spike gp and human proteins that, when altered, are linked to infantile diseases; (2) all the shared peptides have an immunologic potential since they are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes; and (3) many of the shared peptides are also hosted in infectious pathogens to which children can have already been exposed, thus making immunologic imprint phenomena feasible. Conclusion Molecular mimicry and the consequent cross-reactivity can represent the mechanism that connects exposure to SARS-CoV-2 and various pediatric diseases, with a fundamental role of the immunologic memory and the history of the child's infections in determining and specifying the immune response and the pathologic autoimmune sequela.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Address for correspondence Darja Kanduc, PhD Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari70126 BariItaly
| |
Collapse
|
9
|
Crespo M, León-Navarro DA, Martín M. Na +/K +- and Mg 2+-ATPases and Their Interaction with AMPA, NMDA and D 2 Dopamine Receptors in an Animal Model of Febrile Seizures. Int J Mol Sci 2022; 23:ijms232314638. [PMID: 36498965 PMCID: PMC9737571 DOI: 10.3390/ijms232314638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Febrile seizures (FS) are one of the most common seizure disorders in childhood which are classified into short and prolonged, depending on their duration. Short FS are usually considered as benign. However, epidemiological studies have shown an association between prolonged FS and temporal lobe epilepsy. The development of animal models of FS has been very useful to investigate the mechanisms and the consequences of FS. One of the most used, the "hair dryer model", has revealed that prolonged FS may lead to temporal lobe epilepsy by altering neuronal function. Several pieces of evidence suggest that Na+/ K+-ATPase and Mg2+-ATPase may play a role in this epileptogenic process. In this work, we found that hyperthermia-induced seizures (HIS) significantly increased the activity of Na+/ K+-ATPase and Mg2+-ATPase five and twenty days after hyperthermic insult, respectively. These effects were diminished in response to AMPA, D2 dopamine A1 and A2A receptors activation, respectively. Furthermore, HIS also significantly increased the protein level of the AMPA subunit GluR1. Altogether, the increased Na+/ K+-ATPase and Mg2+-ATPase agree well with the presence of protective mechanisms. However, the reduction in ATPase activities in the presence of NMDA and AMPA suggest an increased propensity for epileptic events in adults.
Collapse
Affiliation(s)
- María Crespo
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: ; Tel.: +34-926-052-114
| | - Mairena Martín
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
10
|
Start Me Up: How Can Surrounding Gangliosides Affect Sodium-Potassium ATPase Activity and Steer towards Pathological Ion Imbalance in Neurons? Biomedicines 2022; 10:biomedicines10071518. [PMID: 35884824 PMCID: PMC9313118 DOI: 10.3390/biomedicines10071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gangliosides, amphiphilic glycosphingolipids, tend to associate laterally with other membrane constituents and undergo extensive interactions with membrane proteins in cis or trans configurations. Studies of human diseases resulting from mutations in the ganglioside biosynthesis pathway and research on transgenic mice with the same mutations implicate gangliosides in the pathogenesis of epilepsy. Gangliosides are reported to affect the activity of the Na+/K+-ATPase, the ubiquitously expressed plasma membrane pump responsible for the stabilization of the resting membrane potential by hyperpolarization, firing up the action potential and ion homeostasis. Impaired Na+/K+-ATPase activity has also been hypothesized to cause seizures by several mechanisms. In this review we present different epileptic phenotypes that are caused by impaired activity of Na+/K+-ATPase or changed membrane ganglioside composition. We further discuss how gangliosides may influence Na+/K+-ATPase activity by acting as lipid sorting machinery providing the optimal stage for Na+/K+-ATPase function. By establishing a distinct lipid environment, together with other membrane lipids, gangliosides possibly modulate Na+/K+-ATPase activity and aid in “starting up” and “turning off” this vital pump. Therefore, structural changes of neuronal membranes caused by altered ganglioside composition can be a contributing factor leading to aberrant Na+/K+-ATPase activity and ion imbalance priming neurons for pathological firing.
Collapse
|
11
|
Sun J, Zheng Y, Chen Z, Wang Y. The role of Na + -K + -ATPase in the epileptic brain. CNS Neurosci Ther 2022; 28:1294-1302. [PMID: 35751846 PMCID: PMC9344081 DOI: 10.1111/cns.13893] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Na+-K+-ATPase, a P-type ATP-powered ion transporter on cell membrane, plays a vital role in cellular excitability. Cellular hyperexcitability, accompanied by hypersynchronous firing, is an important basis for seizures/epilepsy. An increasing number of studies point to a significant contribution of Na+-K+-ATPase to epilepsy, although discordant results exist. In this review, we comprehensively summarize the structure and physiological function of Na+-K+-ATPase in the central nervous system and critically evaluate the role of Na+-K+-ATPase in the epileptic brain. Importantly, we further provide perspectives on some possible research directions and discuss its potential as a therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jinyi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Duan R, Li HM, Hu WB, Hong CG, Chen ML, Cao J, Wang ZX, Chen CY, Yin F, Hu ZH, Li JD, Xie H, Liu ZZ. Recurrent de novo single point variant on the gene encoding Na +/K + pump results in epilepsy. Prog Neurobiol 2022; 216:102310. [PMID: 35724808 DOI: 10.1016/j.pneurobio.2022.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
The etiology of epilepsy remains undefined in two-thirds of patients. Here, we identified a de novo variant of ATP1A2 (c.2426 T > G, p.Leu809Arg), which encodes the α2 subunit of Na+/K+-ATPase, from a family with idiopathic epilepsy. This variant caused epilepsy with hemiplegic migraine in the study patients. We generated the point variant mouse model Atp1a2L809R, which recapitulated the epilepsy observed in the study patients. In Atp1a2L809R/WT mice, convulsions were observed and cognitive and memory function was impaired. This variant affected the potassium binding function of the protein, disabling its ion transport ability, thereby increasing the frequency of nerve impulses. Valproate (VPA) and Carbamazepine (CBZ) have limited therapeutic efficacy in ameliorating the epileptic syndromes of Atp1a2L809R/WT mice. Our work revealed that ATP1A2L809R variants cause a predisposition to epilepsy. Moreover, we provide a point variant mouse model for epilepsy research and drug screening.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wen-Bao Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhong-Hua Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Zheng-Zhao Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Atalar AÇ, Türk BG, Ekizoğlu E, Kurt Gök D, Baykan B, Özge A, Ayta S, Erdoğan FF, Yeni SN, Taşdelen B, Velioğlu SK. Headache in idiopathic/genetic epilepsies: Cluster analysis in a large cohort. Epilepsia 2022; 63:1516-1529. [PMID: 35188224 DOI: 10.1111/epi.17205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The link between headache and epilepsy is more prominent in patients with idiopathic/genetic epilepsy (I/GE). We aimed to investigate the prevalence of headache and to cluster patients with regard to their headache and epilepsy features. METHODS Patients aged 6-40 years, with a definite diagnosis of I/GE, were consecutively enrolled. The patients were interviewed using standardized epilepsy and headache questionnaires and their headache characteristics were investigated by experts in headache. Demographic and clinical variables were analyzed and patients were clustered according to their epilepsy and headache characteristics using an unsupervized K-means algorithm. RESULTS Among 809 patients, 508 (62.8%) reported having any type of headache; 87.4% had interictal headache and 41.2% had migraine. Cluster analysis revealed two distinct groups for both adults and children/adolescents. In adults, having a family history of headache, ≥5 headache attacks, duration of headache ≥24 months, headaches lasting ≥ 1 hour, and visual analog scale scores >5 were grouped in one cluster, and juvenile myoclonic epilepsy (JME), myoclonic, and generalized tonic-clonic seizures (GTCS) were clustered in this group (cluster 1). Self-limited epilepsy with centro-temporal spikes and epilepsy with GTCS alone were clustered in cluster 2 with the opposite characteristics. For children/adolescents, the same features as in adult cluster 1 were clustered in a separate group, except for the presence of JME syndrome and GTCS alone as a seizure type. Focal seizures were clustered in another group with the opposite characteristics. In the entire group, the model revealed an additional cluster, including patients with the syndrome of GTCS-alone (50.51%), with ≥ 5 attacks, headache lasting >4 hours, and throbbing headache; 65.66% of patients had a family history of headache in this third cluster (n=99). SIGNIFICANCE Patients with I/GE can be clustered into distinct groups according to headache features along with seizures. Our findings may help in management and planning for future studies.
Collapse
Affiliation(s)
- Arife Çimen Atalar
- University of Health Sciences, Istanbul Education and Research Hospital, Department of Neurology, Istanbul, Turkey
| | - Bengi Gül Türk
- Istanbul University-Cerrahpasa, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Istanbul, Turkey
| | - Esme Ekizoğlu
- Istanbul University, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Istanbul, Turkey
| | - Duygu Kurt Gök
- Erciyes University, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Kayseri, Turkey
| | - Betül Baykan
- Istanbul University, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Istanbul, Turkey
| | - Aynur Özge
- Mersin University School of Medicine, Department of Neurology, Algology and Clinical Neurophysiology, Mersin, Turkey
| | - Semih Ayta
- University of Health Sciences, Haseki Training and Research Hospital, Department of Pediatrics, Child Neurology Unit, Istanbul, Turkey
| | - Füsun Ferda Erdoğan
- Erciyes University, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Kayseri, Turkey
| | - Seher Naz Yeni
- Istanbul University-Cerrahpasa, Faculty of Medicine, Department of Neurology and Clinical Neurophysiology, Istanbul, Turkey
| | - Bahar Taşdelen
- Mersin University School of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Mersin, Turkey
| | - Sibel K Velioğlu
- Karadeniz Technical University Medical Faculty, Department of Neurology, Clinical Neurophysiology Unit, Trabzon, Turkey
| | | |
Collapse
|
14
|
Li Y, Tang W, Kang L, Kong S, Dong Z, Zhao D, Liu R, Yu S. Functional correlation of ATP1A2 mutations with phenotypic spectrum: from pure hemiplegic migraine to its variant forms. J Headache Pain 2021; 22:92. [PMID: 34384358 PMCID: PMC8359390 DOI: 10.1186/s10194-021-01309-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Mutations in ATP1A2, the gene encoding the α2 subunit of Na+/K+-ATPase, are the main cause of familial hemiplegic migraine type 2 (FHM2). The clinical presentation of FHM2 with mutations in the same gene varies from pure FHM to severe forms with epilepsy and intellectual disability, but the correlation of these symptoms with different ATP1A2 mutations is still unclear. Methods Ten ATP1A2 missense mutations were selected according to different phenotypes of FHM patients. They caused pure FHM (FHM: R65W, R202Q, R593W, G762S), FHM with epilepsy (FHME: R548C, E825K, R938P), or FHM with epilepsy and intellectual disability (FHMEI: T378N, G615R, D718N). After ouabain resistance and fluorescence modification, plasmids carrying those mutations were transiently transfected into HEK293T and HeLa cells. The biochemical functions were studied including cell survival assays, membrane protein extraction, western blotting, and Na+/K+-ATPase activity tests. The electrophysiological functions of G762S, R938P, and G615R mutations were investigated in HEK293T cells using whole-cell patch-clamp. Homology modeling was performed to determine the locational distribution of ATP1A2 mutations. Results Compared with wild-type pumps, all mutations showed a similar level of protein expression and decreased cell viability in the presence of 1 µM ouabain, and there was no significant difference among the mutant groups. The changes in Na+/K+-ATPase activity were correlated with the severity of FHM phenotypes. In the presence of 100 µM ouabain, the Na+/K+-ATPase activity was FHM > FHME > FHMEI. The ouabain-sensitive Na+/K+-ATPase activity of each mutant was significantly lower than that of the wild-type protein, and there was no significant difference among all mutant groups. Whole-cell voltage-clamp recordings in HEK293T cells showed that the ouabain-sensitive pump currents of G615R were significantly reduced, while those of G762S and R938P were comparable to those of the wild-type strain. Conclusions ATP1A2 mutations cause phenotypes ranging from pure FHM to FHM with epilepsy and intellectual disability due to varying degrees of deficits in biochemical and electrophysiological properties of Na+/K+-ATPase. Mutations associated with intellectual disability presented with severe impairment of Na+/K+-ATPase. Whether epilepsy is accompanied, or the type of epilepsy did not seem to affect the degree of impairment of pump function. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-021-01309-4.
Collapse
Affiliation(s)
- Yingji Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Li Kang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China.,School of Medicine, Nankai University, 300071, Tianjin, China
| | - Shanshan Kong
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Dengfa Zhao
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, 100853, Beijing, China.
| |
Collapse
|
15
|
Biondo ED, Spontarelli K, Ababioh G, Méndez L, Artigas P. Diseases caused by mutations in the Na +/K + pump α1 gene ATP1A1. Am J Physiol Cell Physiol 2021; 321:C394-C408. [PMID: 34232746 DOI: 10.1152/ajpcell.00059.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human cell survival requires function of the Na+/K+ pump; the heteromeric protein that hydrolyzes ATP to extrude Na+ and import K+ across the plasmalemma, thereby building and maintaining these ions' electrochemical gradients. Numerous dominant diseases caused by mutations in genes encoding for Na+/K+ pump catalytic (α) subunit isoforms highlight the importance of this protein. Here, we review literature describing disorders caused by missense mutations in ATP1A1, the gene encoding the ubiquitously expressed α1 isoform of the Na+/K+ pump. These various maladies include primary aldosteronism with secondary hypertension, an endocrine syndrome, Charcot-Marie-Tooth disease, a peripheral neuropathy, complex spastic paraplegia, another neuromuscular disorder, as well as hypomagnesemia accompanied by seizures and cognitive delay, a condition affecting the renal and central nervous systems. This article focuses on observed commonalities among these mutations' functional effects, as well as on the special characteristics that enable each particular mutation to exclusively affect a certain system, without affecting others. In this respect, it is clear how somatic mutations localized to adrenal adenomas increase aldosterone production without compromising other systems. However, it remains largely unknown how and why some but not all de novo germline or familial mutations (where the mutant must be expressed in numerous tissues) produce a specific disease and not the other diseases. We propose hypotheses to explain this observation and the approaches that we think will drive future research on these debilitating disorders to develop novel patient-specific treatments by combining the use of heterologous protein-expression systems, patient-derived pluripotent cells, and gene-edited cell and mouse models.
Collapse
Affiliation(s)
- Elisa D Biondo
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kerri Spontarelli
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Giovanna Ababioh
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lois Méndez
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
16
|
Chaudhuri T, Chintalapati J, Hosur MV. Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients. PLoS One 2021; 16:e0252475. [PMID: 34086756 PMCID: PMC8177469 DOI: 10.1371/journal.pone.0252475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/16/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic influence in epilepsy, characterized by unprovoked and recurrent seizures, is through variants in genes critical to brain development and function. We have carried out variant calling in Mesial Temporal Lobe Epilepsy (MTLE) patients by mapping the RNA-Seq data available at SRA, NCBI, USA onto human genome assembly hg-19. We have identified 1,75,641 SNVs in patient samples. These SNVs are distributed over 14700 genes of which 655 are already known to be associated with epilepsy. Large number of variants occur in the 3'-UTR, which is one of the regions involved in the regulation of protein translation through binding of miRNAs and RNA-binding proteins (RBP). We have focused on studying the structure-function relationship of the 3'-UTR SNVs that are common to at-least 10 of the 35 patient samples. For the first time we find SNVs exclusively in the 3'-UTR of FGF12, FAR1, NAPB, SLC1A3, SLC12A6, GRIN2A, CACNB4 and FBXO28 genes. Structural modelling reveals that the variant 3'-UTR segments possess altered secondary and tertiary structures which could affect mRNA stability and binding of RBPs to form proper ribonucleoprotein (RNP) complexes. Secondly, these SNVs have either created or destroyed miRNA-binding sites, and molecular modeling reveals that, where binding sites are created, the additional miRNAs bind strongly to 3'-UTR of only variant mRNAs. These two factors affect protein production thereby creating an imbalance in the amounts of select proteins in the cell. We suggest that in the absence of missense and nonsense variants, protein-activity imbalances associated with MTLE patients can be caused through 3'-UTR variants in relevant genes by the mechanisms mentioned above. 3'-UTR SNV has already been identified as causative variant in the neurological disorder, Tourette syndrome. Inhibition of these miRNA-mRNA bindings could be a novel way of treating drug-resistant MTLE patients. We also suggest that joint occurrence of these SNVs could serve as markers for MTLE. We find, in the present study, SNV-mediated destruction of miRNA binding site in the 3'-UTR of the gene encoding glutamate receptor subunit, and, interestingly, overexpression of one of this receptor subunit is also associated with Febrile Seizures.
Collapse
Affiliation(s)
- Tanusree Chaudhuri
- Department of Natural Sciences and Engineering, National Institute of Advanced Studies, IISc campus, Bangalore, India
| | - Janaki Chintalapati
- CDAC-Centre for Development of Advanced Computing, Byappanahalli, Bangalore, India
| | | |
Collapse
|
17
|
Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed Pharmacother 2021; 139:111557. [PMID: 34243621 DOI: 10.1016/j.biopha.2021.111557] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Migraine is a neurological ailment that is characterized by severe throbbing unilateral headache and associated with nausea, photophobia, phonophobia and vomiting. A full and clear mechanism of the pathogenesis of migraine, though studied extensively, has not been established yet. The current available information indicates an intracranial network activation that culminates in the sensitization of the trigemino-vascular system, release of inflammatory markers, and initiation of meningeal-like inflammatory reaction that is sensed as headache. Genetic factors might play a significant role in deciding an individual's susceptibility to migraine. Twin studies have revealed that a single gene polymorphism can lead to migraine in individuals with a monogenic migraine disorder. In this review, we describe recent advancements in the genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. We also discuss the potential roles of genetic and abnormal factors, including some of the metabolic triggering factors that result in migraine attacks. This review will help to accumulate current knowledge about migraine and understanding of its pathophysiology, and provides up-to-date prevention strategies.
Collapse
|
18
|
Vetro A, Nielsen HN, Holm R, Hevner RF, Parrini E, Powis Z, Møller RS, Bellan C, Simonati A, Lesca G, Helbig KL, Palmer EE, Mei D, Ballardini E, Van Haeringen A, Syrbe S, Leuzzi V, Cioni G, Curry CJ, Costain G, Santucci M, Chong K, Mancini GMS, Clayton-Smith J, Bigoni S, Scheffer IE, Dobyns WB, Vilsen B, Guerrini R. ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria. Brain 2021; 144:1435-1450. [PMID: 33880529 DOI: 10.1093/brain/awab052] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/20/2023] Open
Abstract
Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
Collapse
Affiliation(s)
- Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Hang N Nielsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rikke Holm
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Zoe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine Danish Epilepsy Centre, Filadelfia, Denmark.,Department of Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Cristina Bellan
- Department of Neonatal Intensive Care Unit, Bolognini Hospital, ASST-Bergamo Est, Seriate, Italy
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Gaétan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth E Palmer
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elisa Ballardini
- Neonatal Intensive Care Unit, Pediatric Section, Department of Medical Sciences, Ferrara University, Ferrara, Italy
| | - Arie Van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California, San Francisco/Fresno, CA, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margherita Santucci
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy.,DIBINEM, University of Bologna, Bologna, Italy
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Stefania Bigoni
- Medical Genetics Unit, Department of Mother and Child, Ferrara University Hospital, Ferrara, Italy
| | - Ingrid E Scheffer
- University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, Minneapolis, MN, USA
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | | |
Collapse
|
19
|
Epilepsy and Migraine Shared Genetic and Molecular Mechanisms: Focus on Therapeutic Strategies. Mol Neurobiol 2021; 58:3874-3883. [PMID: 33856647 DOI: 10.1007/s12035-021-02386-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy and migraine are both episodic disorders and share clinical as well as pathophysiological mechanisms. The prevalence of epilepsy in migraine patients is generally higher than normal as compared to general population and vice versa. Various environmental risk factors and genetic factors have been reported to be associated with susceptibility of these comorbid diseases. Specific genes have been implicated in the pathogenesis of the two diseases. However, the shared genetic susceptibility has not been explored extensively. Previous studies have reported that the alterations in the genes encoding ion channel proteins are common risk factors for both the diseases. The alterations in ion channel-encoding genes CACNAIA (T666M) and SCNIA (Q1489K and L1649Q) have been found to be involved in the development of familial hemiplegic migraine (FHM) as well as generalized epilepsy and some cases of focal epilepsy as well. The fact that both these disorders are treated with anti-epileptic drugs (AEDs) strongly supports common underlying mechanisms. This review has been compiled with an aim to explore the alterations in common genes involved in various pathways regulating neuronal hyperexcitability, a common risk factor for both these conditions. The avenue for future treatment strategies targeting common genes and molecular mechanisms has also been discussed.
Collapse
|
20
|
Hasırcı Bayır BR, Tutkavul K, Eser M, Baykan B. Epilepsy in patients with familial hemiplegic migraine. Seizure 2021; 88:87-94. [PMID: 33839563 DOI: 10.1016/j.seizure.2021.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The coexistence of epilepsy in familial hemiplegic migraine (FHM) has not been reviewed systematically. We investigated the associations of epilepsy in patients with FHM with CACNA1A, ATP1A2, SCN1A or PRRT2 mutations along with clinical and genetic data. MATERIALS AND METHODS We performed a search in the PubMed bibliographic database and the Cochrane Library was screened for eligible studies, from April 1997 to December 2020. Additionally, Online Mendelian Inheritance in Man (OMIM) was searched for mutations in the CACNA1A, ATP1A2, SCN1A and PRRT2 genes. Brief reports, letters, and original articles about FHM and epilepsy were included in the review if their mutations and clinical course of diseases were identified. RESULTS Of the included patients with FHM whose information could be accessed, there were 28 families and 195 individuals, 78 of whom had epilepsy; 30 patients had focal epilepsy and 30 patients had generalized epilepsy. All mutations except ATP1A2, which could not be evaluated due to insufficient data, revealed first epilepsy then HM. In 60 patients for whom the epilepsy prognosis was evaluated, only 3.5% of patients were drug-resistant, and the remainder had a self-limited course or responded to anti-epileptic drug treatment. CONCLUSION Mutations in all three and possibly four FHM genes can cause epilepsy. Contrary to our expectations, the well-known epilepsy gene SCN1A mutations are not the leading cause; the highest number of cases associated with epilepsy belongs to the ATP1A2 mutation. Drug-resistant forms of epilepsy are rare in all FHM mutations, and this information is important for counseling patients.
Collapse
Affiliation(s)
- Buse Rahime Hasırcı Bayır
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Kemal Tutkavul
- Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Metin Eser
- Department of Medical Genetics, Ümraniye Research and Training Hospital, Istanbul, Turkey.
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
21
|
Moya-Mendez ME, Mueller DM, Pratt M, Bonner M, Elliott C, Hunanyan A, Kucera G, Bock C, Prange L, Jasien J, Keough K, Shashi V, McDonald M, Mikati MA. Early onset severe ATP1A2 epileptic encephalopathy: Clinical characteristics and underlying mutations. Epilepsy Behav 2021; 116:107732. [PMID: 33493807 PMCID: PMC7940561 DOI: 10.1016/j.yebeh.2020.107732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/09/2020] [Accepted: 12/20/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND ATP1A2 mutations cause hemiplegic migraine with or without epilepsy or acute reversible encephalopathy. Typical onset is in adulthood or older childhood without subsequent severe long-term developmental impairments. AIM We aimed to describe the manifestations of early onset severe ATP1A2-related epileptic encephalopathy and its underlying mutations in a cohort of seven patients. METHODS A retrospective chart review of a cohort of seven patients was conducted. Response to open-label memantine therapy, used off-label due to its NMDA receptor antagonist effects, was assessed by the Global Rating Scale of Change (GRSC) and Clinical Global Impression Scale of Improvement (CGI-I) methodologies. Molecular modeling was performed using PyMol program. RESULTS Patients (age 2.5-20 years) had symptom onset at an early age (6 days-1 year). Seizures were either focal or generalized. Common features were: drug resistance, recurrent status epilepticus, etc., severe developmental delay with episodes of acute severe encephalopathy often with headaches, dystonias, hemiplegias, seizures, and developmental regression. All had variants predicted to be disease causing (p.Ile293Met, p.Glu1000Lys, c.1017+5G>A, p.Leu809Arg, and 3 patients with p.Met813Lys). Modeling revealed that mutations interfered with ATP1A2 ion binding and translocation sites. Memantine, given to five, was tolerated in all (mean treatment: 2.3 years, range 6 weeks-4.8 years) with some improvements reported in all five. CONCLUSIONS Our observations describe a distinctive clinical profile of seven unrelated probands with early onset severe ATP1A2-related epileptic encephalopathy, provide insights into structure-function relationships of ATP1A2 mutations, and support further studies of NMDAR antagonist therapy in ATP1A2-encephalopathy.
Collapse
Affiliation(s)
- Mary E. Moya-Mendez
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - David M. Mueller
- Center for Genetic Diseases, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL, United States
| | - Milton Pratt
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Melanie Bonner
- Department of Psychiatry, Duke University, Durham, NC, United States
| | - Courtney Elliott
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Arsen Hunanyan
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Gary Kucera
- Duke Cancer Institute Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC, United States
| | - Cheryl Bock
- Duke Cancer Institute Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC, United States
| | - Lyndsey Prange
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Joan Jasien
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States
| | - Karen Keough
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Vandana Shashi
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Marie McDonald
- Dell Medical School at the University of Texas, Austin TX, United States
| | - Mohamad A. Mikati
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Medicine, Duke University, Durham, NC, United States,Department of Neurobiology, Duke University, Durham, NC, United States,Corresponding Author: Mohamad Mikati, MD, Children Health Center, T913J, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710, Phone: 919-668-4073, Fax: 919-681-8943,
| |
Collapse
|
22
|
Birk D, Noachtar S, Kaufmann E. Kopfschmerz bei Parietal- und Okzipitallappenepilepsien. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2021; 34:86-92. [DOI: 10.1007/s10309-020-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 08/30/2023]
Abstract
ZusammenfassungEpilepsiepatienten leiden überdurchschnittlich häufig unter Kopfschmerzen. Dies gilt insbesondere für Patienten mit idiopathisch generalisierten und parietookzipitalen Epilepsien. Die Häufigkeit des gemeinsamen Auftretens von Kopfschmerzen und Epilepsie überschreitet dabei die rechnerische Koinzidenz, sodass von einer Komorbidität beider Syndrome auszugehen ist. Bestärkt wird diese Hypothese durch überlappende genetische Veränderungen sowie gemeinsame pathophysiologische Mechanismen. Bis zu 62 % der Patienten mit z. B. Parietal- und Okzipitallappenepilepsie (POLE) geben Kopfschmerzen an. Diese treten v. a. nach dem Anfall (postiktal) auf und manifestieren sich am häufigsten als Migräne-ähnlicher Kopfschmerz oder Spannungskopfschmerz. Seltener kommt es zu Kopfschmerzen vor (periiktal), während (iktal) oder zwischen (interiktal) epileptischen Anfällen. Bei transienten neurologischen Ausfallsymptomen mit begleitenden Kopfschmerzen ist differenzialdiagnostisch neben der Migräne an vaskuläre Ereignisse wie Synkopen oder eine transiente ischämische Attacke zu denken.
Collapse
|
23
|
CircRNAs: A new perspective of biomarkers in the nervous system. Biomed Pharmacother 2020; 128:110251. [DOI: 10.1016/j.biopha.2020.110251] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
|
24
|
Sugimoto H, Sato M, Nakai J, Kawakami K. Astrocytes in Atp1a2-deficient heterozygous mice exhibit hyperactivity after induction of cortical spreading depression. FEBS Open Bio 2020; 10:1031-1043. [PMID: 32237043 PMCID: PMC7262908 DOI: 10.1002/2211-5463.12848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 01/17/2023] Open
Abstract
The ATP1A2 coding α2 subunit of Na,K‐ATPase, which is predominantly located in astrocytes, is a causative gene of familial hemiplegic migraine type 2 (FHM2). FHM2 model mice (Atp1a2tmCKwk/+) are susceptible to cortical spreading depression (CSD), which is profoundly related to migraine aura and headache. However, astrocytic properties during CSD have not been examined in FHM2 model mice. Using Atp1a2tmCKwk/+ crossed with transgenic mice expressing G‐CaMP7 in cortical neurons and astrocytes (Atp1a2+/−), we analyzed the changes in Ca2+ concentrations during CSD. The propagation speed of Ca2+ waves and the percentages of astrocytes with elevated Ca2+ concentrations in Atp1a2+/− were higher than those in wild‐type mice. Increased percentages of astrocytes with elevated Ca2+ concentrations in Atp1a2+/− may contribute to FHM2 pathophysiology.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masaaki Sato
- Graduate School of Science and Engineering, Saitama University, Japan.,Brain and Body System Science Institute, Saitama University, Japan.,Laboratory for Mental Biology, RIKEN Center for Brain Science, Saitama, Japan
| | - Junichi Nakai
- Graduate School of Science and Engineering, Saitama University, Japan.,Brain and Body System Science Institute, Saitama University, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
25
|
Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y, Liu K, Lisota B, Jones JR, Petersen A, Bhattacharyya A, Palecek SP, Shusta EV, Kendziorski C, Zhang SC. Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 2019; 146:dev.170910. [PMID: 31189664 DOI: 10.1242/dev.170910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Astrocytes display diverse morphologies in different regions of the central nervous system. Whether astrocyte diversity is attributable to developmental processes and bears functional consequences, especially in humans, is unknown. RNA-seq of human pluripotent stem cell-derived regional astrocytes revealed distinct transcript profiles, suggesting differential functional properties. This was confirmed by differential calcium signaling as well as effects on neurite growth and blood-brain barrier formation. Distinct transcriptional profiles and functional properties of human astrocytes generated from regionally specified neural progenitors under the same conditions strongly implicate the developmental impact on astrocyte diversity. These findings provide a rationale for renewed examination of regional astrocytes and their role in the pathogenesis of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Robert A Bradley
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA.,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jack Shireman
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Caya McFalls
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeea Choi
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University - Terre Haute, IN 47885, USA
| | - Yi Dong
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Katie Liu
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Brianne Lisota
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeffery R Jones
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Andrew Petersen
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Su-Chun Zhang
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA .,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI 53705, USA.,Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
26
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
27
|
Germline De Novo Mutations in ATP1A1 Cause Renal Hypomagnesemia, Refractory Seizures, and Intellectual Disability. Am J Hum Genet 2018; 103:808-816. [PMID: 30388404 DOI: 10.1016/j.ajhg.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Over the last decades, a growing spectrum of monogenic disorders of human magnesium homeostasis has been clinically characterized, and genetic studies in affected individuals have identified important molecular components of cellular and epithelial magnesium transport. Here, we describe three infants who are from non-consanguineous families and who presented with a disease phenotype consisting of generalized seizures in infancy, severe hypomagnesemia, and renal magnesium wasting. Seizures persisted despite magnesium supplementation and were associated with significant intellectual disability. Whole-exome sequencing and conventional Sanger sequencing identified heterozygous de novo mutations in the catalytic Na+, K+-ATPase α1 subunit (ATP1A1). Functional characterization of mutant Na+, K+-ATPase α1 subunits in heterologous expression systems revealed not only a loss of Na+, K+-ATPase function but also abnormal cation permeabilities, which led to membrane depolarization and possibly aggravated the effect of the loss of physiological pump activity. These findings underline the indispensable role of the α1 isoform of the Na+, K+-ATPase for renal-tubular magnesium handling and cellular ion homeostasis, as well as maintenance of physiologic neuronal activity.
Collapse
|
28
|
Jancic J, Djuric V, Hencic B, van den Anker JN, Samardzic J. Comorbidity of Migraine and Epilepsy in Pediatrics: A Review. J Child Neurol 2018; 33:801-808. [PMID: 30095015 DOI: 10.1177/0883073818788942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Migraine and epilepsy are classified as chronic paroxysmal neurologic disorders sharing many clinical features, as well as possible treatment options. This review highlights the similarities between migraine and epilepsy in pediatrics, focusing on epidemiologic, pathophysiological, genetic, clinical, and pharmacologic aspects. Despite the fact that several syndromes share symptoms of both migraine and epilepsy, further research is needed to clarify the pathophysiological and genetic basis of their comorbidity. Drugs used for prophylactic therapy of migraine and epilepsy have similar pharmacologic properties. The role of epileptic pharmacotherapy in the prophylaxis of migraine is assessed, including the use of conventional antiepileptic drugs, calcium channel blockers, and nonpharmacologic methods such as dietary therapy, supplements, and vagal nerve stimulation. Further randomized, controlled clinical trials assessing pharmacologic and nonpharmacologic methods for the treatment of both disorders are essential, in order to initiate new therapeutic approaches.
Collapse
Affiliation(s)
- Jasna Jancic
- 1 Clinic of Neurology and Psychiatry for Children and Youth, Medical Faculty, University of Belgrade, Serbia
| | - Vesna Djuric
- 2 Medical Faculty, University of Belgrade, Serbia
| | - Boris Hencic
- 2 Medical Faculty, University of Belgrade, Serbia
| | - John N van den Anker
- 3 Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,4 Division of Pediatric Clinical Pharmacology, Children's National Medical Center, Washington, DC, USA.,5 Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Janko Samardzic
- 3 Division of Paediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland.,6 Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, Serbia
| |
Collapse
|
29
|
Hope KA, LeDoux MS, Reiter LT. Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na +/K + pump ATPα. Neurobiol Dis 2017; 108:238-248. [PMID: 28888970 PMCID: PMC5675773 DOI: 10.1016/j.nbd.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Duplication 15q syndrome (Dup15q) is an autism-associated disorder co-incident with high rates of pediatric epilepsy. Additional copies of the E3 ubiquitin ligase UBE3A are thought to cause Dup15q phenotypes, yet models overexpressing UBE3A in neurons have not recapitulated the epilepsy phenotype. We show that Drosophila endogenously expresses Dube3a (fly UBE3A homolog) in glial cells and neurons, prompting an investigation into the consequences of glial Dube3a overexpression. Here we expand on previous work showing that the Na+/K+ pump ATPα is a direct ubiquitin ligase substrate of Dube3a. A robust seizure-like phenotype was observed in flies overexpressing Dube3a in glial cells, but not neurons. Glial-specific knockdown of ATPα also produced seizure-like behavior, and this phenotype was rescued by simultaneously overexpressing ATPα and Dube3a in glia. Our data provides the basis of a paradigm shift in Dup15q research given that clinical phenotypes have long been assumed to be due to neuronal UBE3A overexpression.
Collapse
Affiliation(s)
- Kevin A Hope
- Department of Neurology, UTHSC, Memphis, TN, United States; Integrated Biomedical Science Program, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States
| | - Mark S LeDoux
- Department of Neurology, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States
| | - Lawrence T Reiter
- Department of Neurology, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States; Department of Pediatrics, UTHSC, Memphis, TN, United States.
| |
Collapse
|
30
|
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: Similarities and differences. Neurosci Lett 2017; 667:92-102. [PMID: 29129678 DOI: 10.1016/j.neulet.2017.11.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy are episodic disorders with distinct features, but they have some clinical and pathophysiological overlaps. We review here clinical overlaps between seizures and migraine attacks, activities of neuronal networks observed during seizures and migraine attacks, and molecular and cellular mechanisms of migraine identified in genetic forms, focusing on genetic variants identified in hemiplegic migraine and their functional effects. Epilepsy and migraine can be generated by dysfunctions of the same neuronal networks, but these dysfunctions can be disease-specific, even if pathogenic mutations target the same protein. Studies of rare monogenic forms have allowed the identification of some molecular/cellular dysfunctions that provide a window on pathological mechanisms: we have begun to disclose the tip of the iceberg.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France.
| | - Sandrine Cestèle
- Université Côte d'Azur (UCA), 660 route des Lucioles, 06560 Valbonne, Sophia Antipolis, France; Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 660 Route des Lucioles, 06560 Valbonne, Sophia Antipolis, France
| |
Collapse
|
31
|
Abstract
Headache and seizures are two of the most common complaints seen in the field of pediatric neurology with headache being number one. Both these conditions may coexist. Where the difficulty begins is when the symptoms are not clear cut in making a diagnosis, and conditions are possible as either an atypical seizure or migraine variant. What further complicates matters is the fact that there are many underlying neurologic conditions that carry with them a higher likelihood of developing both headaches and seizures, making each a distinct possibility when obtaining a history from a parent about unusual spells. Although differentiating between seizure and headache may not be easy, with a focused yet thorough history and appropriate use of investigative tools, it can be done. Coming to the correct diagnosis is only the start; once seizures and or headaches have been appropriately diagnosed then the real challenge begins and that is finding a way to successfully treat the headaches and seizures. Within pediatric neurology, the acute options tend to be more diagnosis specific whereas the prophylactic ones may overlap and treat both headaches and seizures. In the following review, we will discuss the epidemiology of pediatric headaches and seizures, the overlap between these 2 conditions in diagnosis, as well as how to tell them apart, and the treatment options and prognosis of both common neurologic disorders in children.
Collapse
Affiliation(s)
- Christopher B Oakley
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Eric H Kossoff
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
32
|
Wilbur C, Buerki SE, Guella I, Toyota EB, Evans DM, McKenzie MB, Datta A, Michoulas A, Adam S, Van Allen MI, Nelson TN, Farrer MJ, Connolly MB, Demos M. An Infant With Epilepsy and Recurrent Hemiplegia due to Compound Heterozygous Variants in ATP1A2. Pediatr Neurol 2017; 75:87-90. [PMID: 28811059 DOI: 10.1016/j.pediatrneurol.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/17/2017] [Accepted: 06/04/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pathogenic heterozygous variants in the ATP1A2 gene have most commonly been associated with familial hemiplegic migraine. However, a wide spectrum of phenotypes that include alternating hemiplegia of childhood and epilepsy have been described. PATIENT DESCRIPTION We describe a boy who presented at age three months with a complex phenotype that included epilepsy, nonepileptic paroxysmal events, and recurrent hemiplegia. Magnetic resonance imaging demonstrated unilateral cortical edema during a severe episode of hemiplegia that was followed by a persistent mild hemiparesis. RESULTS Whole-exome sequencing identified a previously reported ATP1A2 missense variant (p.Arg548Cys) classified as pathogenic and a novel missense variant (p.Arg1008Trp) classified as a variant of uncertain significance. After this genetic diagnosis, treatment with flunarizine was initiated and no further episodes of hemiplegia have occurred. CONCLUSIONS This is only the second report of compound heterozygosity of the ATP1A2 gene. It demonstrates the spectrum of paroxysmal neurological events that can arise as a result of ATP1A2 variants, with unique features overlapping alternating hemiplegia of childhood, hemiplegic migraine, and epilepsy. This child illustrates the diagnostic challenges that these disorders can present and the importance of genetic diagnosis in guiding management.
Collapse
Affiliation(s)
- Colin Wilbur
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Sarah E Buerki
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Ilaria Guella
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric B Toyota
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Daniel M Evans
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, British Columbia, Canada
| | - Marna B McKenzie
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Datta
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Aspasia Michoulas
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Margot I Van Allen
- Department of Medical Genetics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Tanya N Nelson
- Department of Pathology, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada; Department of Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Matthew J Farrer
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary B Connolly
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
33
|
Prontera P, Sarchielli P, Caproni S, Bedetti C, Cupini LM, Calabresi P, Costa C. Epilepsy in hemiplegic migraine: Genetic mutations and clinical implications. Cephalalgia 2017; 38:361-373. [DOI: 10.1177/0333102416686347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective We performed a systematic review on the comorbidities of familial/sporadic hemiplegic migraine (F/SHM) with seizure/epilepsy in patients with CACNA1A, ATP1A2 or SCN1A mutations, to identify the genotypes associated and investigate for the presence of mutational hot spots. Methods We performed a search in MEDLINE and in the Human Gene Mutation and Leiden Open Variation Databases for mutations in the CACNA1A, ATP1A2 and SCN1A genes. After having examined the clinical characteristics of the patients, we selected those having HM and seizures, febrile seizures or epilepsy. For each gene, we determined both the frequency and the positions at protein levels of these mutations, as well as the penetrance of epilepsy within families. Results Concerning F/SHM-Epilepsy1 (F/SHME1) and F/SHME2 endophenotypes, we observed a prevalent involvement of the transmembrane domains, and a strong correlation in F/SHME1 when the positively charged amino acids were involved. The penetrance of epilepsy within the families was highest for patients carrying mutation in the CACNA1A gene (60%), and lower in those having SCN1A (33.3%) and ATP1A2 (30.9%) mutations. Conclusion Among the HM cases with seizure/epilepsy, we observed mutational hot spots in the transmembrane domains of CACNA1A and ATP1A2 proteins. These findings could lead to a better understanding of the pathological mechanisms underlying migraine and epilepsy, therein guaranteeing the most appropriate therapeutic approach.
Collapse
Affiliation(s)
- P Prontera
- Centro di Riferimento Regionale di Genetica Medica, Ospedale S Maria della Misericordia, Perugia, Italy
| | - P Sarchielli
- Clinica Neurologica, Università degli Studi di Perugia, Dipartimento di Medicina, Ospedale S Maria della Misericordia, Perugia, Italy
| | - S Caproni
- Clinica Neurologica, Università degli Studi di Perugia, Dipartimento di Medicina, Ospedale S Maria della Misericordia, Perugia, Italy
| | - C Bedetti
- Clinica Neurologica, Università degli Studi di Perugia, Dipartimento di Medicina, Ospedale S Maria della Misericordia, Perugia, Italy
| | - LM Cupini
- Centro Cefalee, UOC Neurologia, Ospedale S Eugenio, Rome, Italy
| | - P Calabresi
- Clinica Neurologica, Università degli Studi di Perugia, Dipartimento di Medicina, Ospedale S Maria della Misericordia, Perugia, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - C Costa
- Clinica Neurologica, Università degli Studi di Perugia, Dipartimento di Medicina, Ospedale S Maria della Misericordia, Perugia, Italy
| |
Collapse
|
34
|
Marini S, Limongelli I, Rizzo E, Malovini A, Errichiello E, Vetro A, Da T, Zuffardi O, Bellazzi R. A Data Fusion Approach to Enhance Association Study in Epilepsy. PLoS One 2016; 11:e0164940. [PMID: 27984588 PMCID: PMC5161322 DOI: 10.1371/journal.pone.0164940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Among the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel. Our method allows integrating association information from multiple genomic sources and aims at highlighting the set of common and rare variants that are capable to trigger the occurrence of a complex disease. When compared to other approaches, our method shows better performances in classifying patients affected by epilepsy.
Collapse
Affiliation(s)
- Simone Marini
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- * E-mail: ,
| | - Ivan Limongelli
- Genomic Core Center, IRCCS Fondazione San Matteo, Pavia, Italy
- enGenome S.r.l., Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Ettore Rizzo
- enGenome S.r.l., Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Annalisa Vetro
- Genomic Core Center, IRCCS Fondazione San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Tan Da
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Orsetta Zuffardi
- Genomic Core Center, IRCCS Fondazione San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- IRCCS Fondazione S. Maugeri, Pavia, Italy
| |
Collapse
|
35
|
Atp1a2 contributes modestly to alcohol-related behaviors. Alcohol 2016; 56:29-37. [PMID: 27814792 DOI: 10.1016/j.alcohol.2016.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Atp1a2 has been previously studied for anxiety, learning and motor function disorders, and fear. Since Atp1a2 has been shown to be involved in anxiety and this behavior is a known risk factor for developing alcoholism, we have been investigating Atp1a2 for its potential role in responses to alcohol. This study utilized Atp1a2 knockout mice; Atp1a2 heterozygous mice, with half the amount of protein compared to wild-type mice, were used because Atp1a2 homozygous null mice die shortly after birth. The alcohol-related behavioral experiments performed were loss of righting reflex (LORR), acute alcohol withdrawal measured by handling-induced convulsions (HIC), drinking in the dark (DID), open-field activity (OFA), and elevated plus-maze (EPM). LORR was a 2-day test that measures acute alcohol sensitivity, and rapid and acute functional tolerance (AFT). HIC was a 3-day test to measure alcohol withdrawal, DID was a 4-day test which measures voluntary alcohol consumption, and OFA and EPM measured anxiety with alcohol exposure. The effect of genotype on alcohol metabolism was also examined. There was a genotype effect on rate of alcohol metabolism, but only in males. There was no effect on alcohol withdrawal severity. The Atp1a2 heterozygous mice consumed more alcohol than wild-type mice in the DID test, although only in males. In addition, only males were observed to show rapid tolerance in the LORR test while only female heterozygous mice showed a pretreatment effect on AFT. Alcohol exposure had a greater anxiolytic effect in the heterozygous mice compared to wild-type mice, although, again, there were sex effects with only males showing the effect in OFA and only females in the EPM. Although the behavioral results were mixed, there does appear to be a connection between anxiety and alcohol. Overall, the results suggest that Atp1a2 does contribute to alcohol-related behaviors, although the effect is modest with a clear dependence on sex.
Collapse
|
36
|
Saleh C, Pierquin G, Beyenburg S. Hemiplegic Migraine Presenting with Prolonged Somnolence: A Case Report. Case Rep Neurol 2016; 8:204-210. [PMID: 27790126 PMCID: PMC5075733 DOI: 10.1159/000448473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hemiplegic migraine is a rare and complex disease, characterized by migraine with a reversible motor aura. Hemiplegic migraine can be easily misdiagnosed at its first presentation with an atypical severe form of migraine, a stroke, multiple sclerosis, metabolic disorders, conversion disorder or an epilepsy. We present the case of a young 24-year-old male patient, who since the age of 4 years had been having multiple episodes of migraine associated with hemiparesis, paraesthesia, prolonged somnolence, aphasia and confusion. We review the literature and discuss important diagnostic findings in hemiplegic migraine to help establishing a prompt diagnosis.
Collapse
Affiliation(s)
- Christian Saleh
- Department of Neurology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Geneviève Pierquin
- Génétique et Cytogénétique (T3é1), Centre Hospitalier Universitaire de Liège (C.H.U.), Sart Tilman, Liège, Belgium; Department of Pediatrics, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Stefan Beyenburg
- Department of Neurology, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
37
|
Familial Hemiplegic Migraine with Severe Attacks: A New Report with ATP1A2 Mutation. Case Rep Neurol Med 2016; 2016:3464285. [PMID: 27818813 PMCID: PMC5081966 DOI: 10.1155/2016/3464285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Introduction. Familial hemiplegic migraine (FHM) is a rare disorder characterized by migraine attacks with motor weakness during the aura phase. Mutations in CACNA1A, ATP1A2, SCN1A, and PRRT2 genes have been described. Methods. To describe a mutation in ATP1A2 gene in a FHM case with especially severe and prolonged symptomatology. Results. 22-year-old woman was admitted due to migraine-type headache and sudden onset of right-sided weakness and aphasia; she had similar episodes in her childhood. Her mother was diagnosed with hemiplegic migraine without genetic confirmation. She presented with fever, decreased consciousness, left gaze preference, mixed aphasia, right facial palsy, right hemiplegia, and left crural paresis. Computed tomography (CT) showed no lesion and CT perfusion study evidenced oligohemia in left hemisphere. A normal brain magnetic resonance (MR) was obtained. Impaired consciousness and dysphasia began to improve three days after admission and mild dysphasia and right hemiparesis lasted for 10 days. No recurrences were reported during a follow-up of two years. We identified a variant in heterozygous state in ATP1A2 gene (p.Thr364Met), pathogenic according to different prediction algorithms (SIFT, PolyPhen2, MutationTaster, and Condel). Conclusion. Prolonged and severe attacks with diffuse hypoperfusion in a FHM seemed to be specially related to ATP1A2 mutations, and p.T364M should be considered.
Collapse
|
38
|
Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na +,K +-ATPase: Structural and functional perspectives and rescue of compromised function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1807-1828. [PMID: 27577505 DOI: 10.1016/j.bbabio.2016.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Na+,K+-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na+,K+-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na+,K+-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na+,K+-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na+ and K+ binding. In several cases the compromised function can be traced to disturbance of the Na+ specific binding site III. Recently, a secondary mutation was found to rescue the defective Na+ binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.
Collapse
Affiliation(s)
- Rikke Holm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Anja P Einholm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, Scavone C. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol 2016; 7:195. [PMID: 27313535 PMCID: PMC4890531 DOI: 10.3389/fphys.2016.00195] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
Decreased Na(+), K(+)-ATPase (NKA) activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β, and γ, with four distinct isoforms of the catalytic α subunit (α1-4). Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS), the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2), while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC), as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS) syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2∕3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG) pathway. Glutamate, through nitric oxide synthase (NOS), cGMP and PKG, stimulates brain α2∕3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA) receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid-β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.
Collapse
Affiliation(s)
- Paula F. Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Jacqueline A. Leite
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Ana Maria M. Orellana
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Luis E. M. Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Elisa M. Kawamoto
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São PauloSão Paulo, Brazil
| |
Collapse
|
40
|
Pelzer N, Blom DE, Stam AH, Vijfhuizen LS, Hageman A, van Vliet JA, Ferrari MD, van den Maagdenberg A, Haan J, Terwindt GM. Recurrent coma and fever in familial hemiplegic migraine type 2. A prospective 15-year follow-up of a large family with a novel ATP1A2 mutation. Cephalalgia 2016; 37:737-755. [PMID: 27226003 DOI: 10.1177/0333102416651284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Familial hemiplegic migraine (FHM) is a rare monogenic migraine subtype characterised by attacks associated with transient motor weakness. Clinical information is mainly based on reports of small families with only short follow-up. Here, we document a prospective 15-year follow-up of an extended family with FHM type 2. Patients and methods After diagnosing FHM in a patient with severe attacks associated with coma and fever, we identified eight more family members with FHM and one with possible FHM. All family members were prospectively followed for 15 years. In total 13 clinically affected and 21 clinically non-affected family members were genetically tested and repeatedly investigated. Results A novel p.Arg348Pro ATP1A2 mutation was found in 14 family members: 12 with clinical FHM, one with psychomotor retardation and possible FHM, and one without FHM features. In 9/12 (75%) family members with genetically confirmed FHM, attacks were severe, long-lasting, and often associated with impaired consciousness and fever. Such attacks were frequently misdiagnosed and treated as viral meningitis or stroke. Epilepsy was reported in three family members with FHM and in the one with psychomotor retardation and possible FHM. Ataxia was not observed. Conclusion FHM should be considered in patients with recurrent coma and fever.
Collapse
Affiliation(s)
- N Pelzer
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - D E Blom
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - A H Stam
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - L S Vijfhuizen
- 2 Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Atm Hageman
- 3 Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - J A van Vliet
- 4 Department of Neurology, Slingeland Hospital, Doetinchem, the Netherlands
| | - M D Ferrari
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Amjm van den Maagdenberg
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,2 Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Haan
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,5 Department of Neurology, Alrijne Hospital, Leiderdorp, the Netherlands
| | - G M Terwindt
- 1 Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
41
|
Abstract
Comorbid conditions frequently occur in pediatric headaches and may significantly affect their management. Comorbidities that have been associated with pediatric headaches include attention-deficit or hyperactivity disorder, autism, developmental disabilities, depression, anxiety, epilepsy, obesity, infantile colic, atopic disorders, inflammatory bowel disease, and irritable bowel syndrome. The goal of this article is to review these comorbidities associated with pediatric headache, thereby empowering child neurologists to identify common triggers and tailor management strategies that address headache and its comorbidities.
Collapse
|
42
|
Sowell MK, Youssef PE. The Comorbidity of Migraine and Epilepsy in Children and Adolescents. Semin Pediatr Neurol 2016; 23:83-91. [PMID: 27017028 DOI: 10.1016/j.spen.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine and epilepsy share a number of clinical attributes, including pathophysiology and clinical expression. Both are paroxysmal in nature and thus constitute episodic disorders, yet either may be chronic and/or recurrent. Epileptic seizures and migraine headaches may be mistaken one for the other and may even overlap. In particular, occipital lobe seizures may be misdiagnosed as migraine auras. In this article, we review the relationship between migraine and epilepsy, including the known genetic contributions to both conditions, prodromal, ictal, and postictal headache and shared pathophysiology and treatment options. We describe clinical conditions in which both migraine and epilepsy are prominent features. Lastly, we discuss electronecephaographic abnormalities that have been known to occur in individuals with migraine.
Collapse
Affiliation(s)
- Michael K Sowell
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY.
| | - Paul E Youssef
- Division of Child and Adolescent Neurology, Mayo Clinic Rochester, Rochester, MN
| |
Collapse
|
43
|
Funck V, Ribeiro L, Pereira L, de Oliveira C, Grigoletto J, Della-Pace I, Fighera M, Royes L, Furian A, Larrick J, Oliveira M. Contrasting effects of Na+, K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience 2015; 298:171-9. [DOI: 10.1016/j.neuroscience.2015.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/02/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
44
|
Qu J, Yang ZQ, Zhang Y, Mao CX, Wang ZB, Mao XY, Zhou BT, Yin JY, He H, Long HY, Gong JE, Xiao B, Zhou HH, Liu ZQ. Common variants of ATP1A3 but not ATP1A2 are associated with Chinese genetic generalized epilepsies. J Neurol Sci 2015; 354:56-62. [DOI: 10.1016/j.jns.2015.04.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
|
45
|
Cederlöf M, Karlsson R, Larsson H, Almqvist C, Magnusson PKE, Nordlind K, Landén M, Lichtenstein P. Intellectual disability and cognitive ability in Darier disease: Swedish nation-wide study. Br J Dermatol 2015; 173:155-8. [PMID: 25704118 DOI: 10.1111/bjd.13740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Darier disease is an autosomal dominant skin disorder caused by mutations in the ATP2A2 gene. Anecdotal reports suggest a relationship between Darier disease and intellectual disabilities, but these reports are based on small clinical samples and limited by absence of control populations. OBJECTIVES To examine the risk of intellectual disability and subclinical impairments in cognitive ability in Darier disease. METHODS We conducted a matched cohort study based on Swedish Population-, Patient- and Conscript Registers. The risk of being diagnosed with intellectual disability was estimated in 770 individuals with Darier disease, compared with matched comparison individuals without Darier disease. Associations were examined with risk ratios from conditional logistic regressions. In addition, we analysed test-based cognitive ability data (i.e. IQ data) from the Swedish conscript examination, for a subset of patients without diagnosed intellectual disability. RESULTS Individuals with Darier disease had a sixfold increased risk of being diagnosed with intellectual disability (risk ratio 6.2, 95% confidence interval 3.1-12.4). For conscripted individuals with Darier disease but no diagnosed intellectual disability, mean cognitive ability scores were about half a standard deviation lower than for comparison subjects. CONCLUSIONS Darier disease is associated with intellectual disability and subclinical impairments in cognitive ability. The Darier-causing mutations merit further attention in molecular genetic research on intellectual disability and cognitive ability.
Collapse
Affiliation(s)
- M Cederlöf
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - R Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - H Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - C Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Lung and Allergy Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - P K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - K Nordlind
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - P Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Funck VR, Ribeiro LR, Pereira LM, de Oliveira CV, Grigoletto J, Fighera MR, Royes LFF, Furian AF, Oliveira MS. Long-term decrease in Na+,K+-ATPase activity after pilocarpine-induced status epilepticus is associated with nitration of its alpha subunit. Epilepsy Res 2014; 108:1705-10. [PMID: 25311690 DOI: 10.1016/j.eplepsyres.2014.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 11/30/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy with about one third of TLE patients being refractory to antiepileptic drugs. Knowledge about the mechanisms underlying seizure activity is fundamental to the discovery of new drug targets. Brain Na(+),K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. In the present study we tested the hypothesis that decreased Na(+),K(+)-ATPase activity is associated with changes in the alpha subunit phosphorylation and/or redox state. Activity of Na(+),K(+)-ATPase decreased in the hippocampus of C57BL/6 mice 60 days after pilocarpine-induced status epilepticus (SE). In addition, the Michaelis-Menten constant for ATP of α2/3 isoforms increased at the same time point. Nitration of the α subunit may underlie decreased Na(+),K(+)-ATPase activity, however no changes in expression or phosphorylation state at Ser(943) were found. Further studies are necessary define the potential of nitrated Na(+),K(+)-ATPase as a new therapeutic target for seizure disorders.
Collapse
Affiliation(s)
- Vinícius Rafael Funck
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Letícia Meier Pereira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Jéssica Grigoletto
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ana Flávia Furian
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Program in Biological Sciences: Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
47
|
|
48
|
Russell MB. Management of sporadic and familial hemiplegic migraine. Expert Rev Neurother 2014; 10:381-7. [DOI: 10.1586/ern.09.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Addis L, Chiang T, Clarke T, Hardison H, Kugler S, Mandelbaum DE, Novotny E, Wolf S, Strug LJ, Pal DK. Evidence for linkage of migraine in Rolandic epilepsy to known 1q23 FHM2 and novel 17q22 genetic loci. GENES BRAIN AND BEHAVIOR 2013; 13:333-40. [PMID: 24286483 DOI: 10.1111/gbb.12110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022]
Abstract
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome-wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow-up in an additional 21 families at linked loci. We used two-point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12-22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1-23.2, centering over the FHM2 locus (two-point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine-affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12-22, and a second locus that may contribute to migraine in the general population at 1q23.1-23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine-mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy-associated migraine.
Collapse
Affiliation(s)
- L Addis
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Toustrup-Jensen MS, Einholm AP, Schack VR, Nielsen HN, Holm R, Sobrido MJ, Andersen JP, Clausen T, Vilsen B. Relationship between intracellular Na+ concentration and reduced Na+ affinity in Na+,K+-ATPase mutants causing neurological disease. J Biol Chem 2013; 289:3186-97. [PMID: 24356962 DOI: 10.1074/jbc.m113.543272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na(+),K(+)-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na(+),K(+)-ATPase mutations, extending the C terminus by either 28 residues ("+28" mutation) or an extra tyrosine ("+Y"), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na(+) and K(+) concentrations ([Na(+)]i and [K(+)]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na(+) affinity without disturbance of K(+) binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na(+)]i and reduction of [K(+)]i was detected in cells expressing mutants with reduced Na(+) affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na(+) affinity were found to reduce [Na(+)]i. It is concluded that the Na(+) affinity of the Na(+),K(+)-ATPase is an important determinant of [Na(+)]i.
Collapse
|