1
|
Mickelsson N, Hirvonen J, Martikainen MH. Clinical features and treatment of stroke-like episodes in mitochondrial disease: a cohort-based study. J Neurol 2024; 272:47. [PMID: 39666093 PMCID: PMC11638336 DOI: 10.1007/s00415-024-12745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Stroke-like episode (SLE) is a subacute evolving brain syndrome in patients with primary mitochondrial diseases. Despite previous research, the understanding of the clinical spectrum, treatment, and outcomes of mitochondrial SLEs is far from complete. In this single centre study, we report the clinical symptoms and radiological findings as well as the medical treatment and outcomes of SLEs in patients with mitochondrial disease. METHODS This retrospective, observational study during years 2000-2023 was based on a cohort of patients diagnosed with mitochondrial disease at Turku University Hospital (TUH; Turku, Finland) in the region of Southwest Finland. Data were obtained from the hospital electronic medical record system. RESULTS The investigated cohort consisted of 76 patients (37 men, 39 women) with a diagnosis of mitochondrial disease. Among these, 12 patients had a history of at least one SLE; the total number of SLEs was 20. The most common genetic aetiology among patients with SLEs was m.3243A > G (N = 7). The mean age at first SLE was 40 years (range: 5-66 years), and the mean interval between episodes was 4.8 years (range: 4 months-10 years). The duration of episodes varied between 1 and 193 days (median 14 days, mean 37 days); 10 patients needed intensive care unit (ICU) treatment. The mean survival time between the first SLE and death was 3.6 years (range: 0-16 years). CONCLUSION Our study highlights the importance of early recognition and prompt management of SLE symptoms, especially epileptic seizures, in this life-threatening entity.
Collapse
Affiliation(s)
- Nora Mickelsson
- Clinical Neurosciences, Department of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, Turku University Hospital, Turku, Finland
- Department of Radiology, Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Mika H Martikainen
- Clinical Neurosciences, Department of Clinical Medicine, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland.
- Faculty of Medicine, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.
| |
Collapse
|
2
|
Kang Y, Hepojoki J, Maldonado RS, Mito T, Terzioglu M, Manninen T, Kant R, Singh S, Othman A, Verma R, Uusimaa J, Wartiovaara K, Kareinen L, Zamboni N, Nyman TA, Paetau A, Kipar A, Vapalahti O, Suomalainen A. Ancestral allele of DNA polymerase gamma modifies antiviral tolerance. Nature 2024; 628:844-853. [PMID: 38570685 PMCID: PMC11041766 DOI: 10.1038/s41586-024-07260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Age of Onset
- Alleles
- COVID-19/immunology
- COVID-19/virology
- COVID-19/genetics
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/immunology
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/immunology
- DNA, Mitochondrial/metabolism
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Founder Effect
- Gene Knock-In Techniques
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interferon Type I/immunology
- Mitochondrial Diseases/enzymology
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/immunology
- Mutation
- RNA, Mitochondrial/immunology
- RNA, Mitochondrial/metabolism
- SARS-CoV-2/immunology
Collapse
Affiliation(s)
- Yilin Kang
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Rocio Sartori Maldonado
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takayuki Mito
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mügen Terzioglu
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Sachin Singh
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Alaa Othman
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Rohit Verma
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine and Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Unit of Child Neurology, Oulu University Hospital, Oulu, Finland
| | - Kirmo Wartiovaara
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Safety Authority, Helsinki, Finland
| | - Nicola Zamboni
- Swiss Multi-Omics Center, ETH Zürich, Zürich, Switzerland
| | - Tuula Anneli Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Anders Paetau
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, HUS Diagnostics, Helsinki, Finland.
- HiLife, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Harju T, Hurme-Niiranen A, Suo-Palosaari M, Nygaard Nielsen S, Hinttala R, Schmiegelow K, Uusimaa J, Harila A, Niinimäki R. DNA polymerase gamma variants and hepatotoxicity during maintenance therapy of childhood acute lymphoblastic leukemia: is there a causal relationship? THE PHARMACOGENOMICS JOURNAL 2023; 23:105-111. [PMID: 37138020 PMCID: PMC10506908 DOI: 10.1038/s41397-023-00303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Hepatotoxicity is a frequent complication during maintenance therapy of acute lymphoblastic leukemia (ALL) with 6-mercaptopurine and methotrexate. Elevated levels of methylated 6-mercaptopurine metabolites (MeMP) are associated with hepatotoxicity. However, not all mechanisms are known that lead to liver failure in patients with ALL. Variants in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma (POLG1), have been related to drug-induced hepatotoxicity, for example, by sodium valproate. The association of common POLG variants with hepatotoxicity during maintenance therapy was studied in 34 patients with childhood ALL. Of the screened POLG variants, four different variants were detected in 12 patients. One patient developed severe hepatotoxicity without elevated MeMP levels and harbored a heterozygous POLG p.G517V variant, which was not found in the other patients.
Collapse
Affiliation(s)
- Tekla Harju
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Anri Hurme-Niiranen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Maria Suo-Palosaari
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
- Research Unit of Health Sciences and Technology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Stine Nygaard Nielsen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Reetta Hinttala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kjeld Schmiegelow
- Pediatric Oncology Laboratory, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Arja Harila
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Riitta Niinimäki
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
4
|
Kanduc D. Exposure to SARS-CoV-2 and Infantile Diseases. Glob Med Genet 2023; 10:72-78. [PMID: 37144240 PMCID: PMC10154082 DOI: 10.1055/s-0043-1768699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Background and Aim Immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in newborns and children after prophylactic immunization is currently a relevant research topic. The present study analyzes the issue by examining the possibility that the anti-SARS-CoV-2 immune responses are not uniquely directed against the virus but can-via molecular mimicry and the consequent cross-reactivity-also hit human proteins involved in infantile diseases. Methods Human proteins that-if altered-associate with infantile disorders were searched for minimal immune pentapeptide determinants shared with SARS-CoV-2 spike glycoprotein (gp). Then, the shared pentapeptides were analyzed for immunologic potential and immunologic imprinting phenomena. Results Comparative sequence analysis shows that: (1) numerous pentapeptides (namely, 54) are common to SARS-CoV-2 spike gp and human proteins that, when altered, are linked to infantile diseases; (2) all the shared peptides have an immunologic potential since they are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes; and (3) many of the shared peptides are also hosted in infectious pathogens to which children can have already been exposed, thus making immunologic imprint phenomena feasible. Conclusion Molecular mimicry and the consequent cross-reactivity can represent the mechanism that connects exposure to SARS-CoV-2 and various pediatric diseases, with a fundamental role of the immunologic memory and the history of the child's infections in determining and specifying the immune response and the pathologic autoimmune sequela.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Address for correspondence Darja Kanduc, PhD Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari70126 BariItaly
| |
Collapse
|
5
|
Distelmaier F, Klopstock T. Neuroimaging in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:173-185. [PMID: 36813312 DOI: 10.1016/b978-0-12-821751-1.00016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.
Collapse
Affiliation(s)
- Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Network for mitochondrial disorders (mitoNET), Munich, Germany
| |
Collapse
|
6
|
Malyshev SM, Popov KD, Simakov KV, Marichev AO, Topuzova MP, Smirnova AY, Ryzhkov AV, Basek IV, Yanishevskij SN, Alekseeva TM, Schlyakhto EV. [Status epilepticus in a pregnant patient with a previously unrecognized POLG-associated disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:129-135. [PMID: 37966452 DOI: 10.17116/jnevro2023123101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
POLG-associated diseases are rare causes of pharmacoresistant epilepsy and status epilepticus, especially in adult patients. Phenotypic and genotypic variability in these conditions causes the complexity of their diagnosis. In the study, we report a case of a 33-year-old female patient who developed recurrent convulsive status epilepticus with focal clonic onset at the week 22/23 of pregnancy. Intensive anti-seizure therapy was administered, including the use of valproic acid, as well as the treatment of somatic complications. Given the acute onset, the semiology of seizures, the presence of psychopathological symptoms, autoimmune etiology of the disease was initially suspected. A month after the withdrawal of valproic acid, the patient began to show signs of toxic hepatitis, which eventually led to death. According to the results of whole-exome sequencing obtained later, the patient was a carrier of a pathogenic homozygous variant c.2243G>C (p.W748S) in the POLG gene. The presented case highlights the importance of molecular genetic testing and the risk associated with valproic acid hepatotoxicity in patients with cryptogenic epileptic status.
Collapse
Affiliation(s)
- S M Malyshev
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - K D Popov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - K V Simakov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A O Marichev
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - M P Topuzova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A Yu Smirnova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A V Ryzhkov
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - I V Basek
- Almazov National Medical Research Centre, St Petersburg, Russia
| | | | - T M Alekseeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - E V Schlyakhto
- Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
7
|
Carriers of POLG1 variants require investigations for multisystem disease and for mtDNA variations. Neurol Res Pract 2022; 4:33. [PMID: 35811315 PMCID: PMC9272553 DOI: 10.1186/s42466-022-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
|
8
|
Uusimaa J, Kettunen J, Varilo T, Järvelä I, Kallijärvi J, Kääriäinen H, Laine M, Lapatto R, Myllynen P, Niinikoski H, Rahikkala E, Suomalainen A, Tikkanen R, Tyynismaa H, Vieira P, Zarybnicky T, Sipilä P, Kuure S, Hinttala R. The Finnish genetic heritage in 2022 – from diagnosis to translational research. Dis Model Mech 2022; 15:278566. [PMID: 36285626 PMCID: PMC9637267 DOI: 10.1242/dmm.049490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype–phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Johannes Kettunen
- Computational Medicine, Center for Life Course Health Research, University of Oulu 3 , 90014 Oulu , Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| | - Teppo Varilo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center 7 , 00014 Helsinki , Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
| | - Helena Kääriäinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki 9 , 00029 Helsinki , Finland
| | - Risto Lapatto
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital 10 , 00029 Helsinki , Finland
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital 11 , 90029 Oulu , Finland
| | - Harri Niinikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku 13 , 20014 Turku , Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital 14 , 20014 Turku , Finland
- Department of Pediatrics, Turku University Hospital 15 , 20014 Turku , Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Department of Clinical Genetics, Oulu University Hospital 16 , 90029 Oulu , Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- HUS Diagnostics, Helsinki University Hospital 17 , 00014 Helsinki , Finland
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen 18 , D-35392 Giessen , Germany
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki 19 , 00014 Helsinki , Finland
| | - Päivi Vieira
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Tomas Zarybnicky
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki 20 , 00014 Helsinki , Finland
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku 21 , 20014 Turku , Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki 22 , 00014 Helsinki , Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| |
Collapse
|
9
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
10
|
Li H, Wang W, Han X, Zhang Y, Dai L, Xu M, Deng J, Ding C, Wang X, Chen C, Yang X, Fang F. Clinical Attributes and Electroencephalogram Analysis of Patients With Varying Alpers' Syndrome Genotypes. Front Pharmacol 2021; 12:669516. [PMID: 34690748 PMCID: PMC8526534 DOI: 10.3389/fphar.2021.669516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alpers' syndrome is an early inceptive neurodegenerative disorder with a poor prognosis, characterized by developmental regression, intractable epilepsy, and hepatic dysfunction. Candidate genes, such as POLG, PARS2, CARS2, FARS2, NARS2, and GABRB2 are distinguished and registered following research on large cohorts that portray the clinical phenotype in such patients using expanded access to whole-exome sequencing (WES). In this study, we aimed to better understand the electroencephalogram (EEG) characteristics and clinical phenotype of different genotypes of the Alpers' syndrome, which are currently insufficiently studied. We conducted a study on seven patients with Alpers' syndrome who received treatment in Beijing Children's Hospital and had a detailed clinical EEG. Furthermore, a substantial literature search of the Chinese Biomedical Literature Database, PubMed, and Cochrane Central Register of Controlled Trials EMBASE was also conducted, which revealed a total of 22 reported cases between January 2008 to January 2021. We analyzed 29 cases of Alpers' syndrome caused by different gene variants, of which 22 cases were related to POLG gene mutation and 7 cases were related to PARS2, CARS2, FARS2, NARS2, and GABRB2 gene mutation, and found that patients with distinctive pathogenic variants exhibited comparable phenotypes and similar EEG patterns. And we defined EEG characteristics found specifically in Alpers' syndrome. Rhythmic high-amplitude delta with superimposed (poly) spikes (RHADS) is a characteristic EEG finding in the early stages of Alpers' syndrome and is a kind of epileptic phenomenon, which can provide clues for the early diagnosis of the disease.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Wei Wang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaodi Han
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Yujia Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Manting Xu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Jie Deng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Xiaohui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Chunhong Chen
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| | - Xiaofeng Yang
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center For Children's Health, Beijing, China
| |
Collapse
|
11
|
POLG1-Related Epilepsy: Review of Diagnostic and Therapeutic Findings. Brain Sci 2020; 10:brainsci10110768. [PMID: 33113942 PMCID: PMC7690674 DOI: 10.3390/brainsci10110768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Abstract
Background: The clinical spectrum associated with POLG1 gene mutations ranges from non-syndromic epilepsy or mild isolated neurological signs to neurodegenerative disorders. Our aim was to review diagnostic findings, therapeutic approaches and outcomes of reported cases of epilepsy related to POLG1 mutation. Methods: The articles for review were identified through a systematic research on PubMed and EMBASE databases from January 2003 to April 2020, searching for the terms “Epilepsy AND POLG OR polymerase gamma,” OR “POLG1”. Results: Forty-eight articles were selected for review, which included 195 patients. Two main peaks of age at epilepsy onset were found: at ages 1 and 13 years. The most frequent seizure type was myoclonic. The occurrence of Status Epilepticus was reported in 46.4% of cases. Epileptiform and slow abnormalities were most frequently seen over occipital regions. Brain Magnetic Resonance Imaging (MRI) revealed increased T2 signal intensities in thalamic regions. Genetic analysis revealed a prevalence of A467T, W748S and G848S (74.2% of patients) mutations. Survival at 5 years was estimated at very low levels (30.2% of patients). Conclusion: In this review, we included cases with both pediatric and adult epilepsy onset. The analysis of data regarding prognosis showed that survival is related to age at onset of epilepsy.
Collapse
|
12
|
Abstract
The POLG gene encodes the mitochondrial DNA polymerase that is responsible for replication of the mitochondrial genome. Mutations in POLG can cause early childhood mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial disorders, with as many as 2% of the population carrying these mutations. POLG-related disorders comprise a continuum of overlapping phenotypes with onset from infancy to late adulthood. The six leading disorders caused by POLG mutations are Alpers-Huttenlocher syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external ophthalmoplegia; and autosomal dominant progressive external ophthalmoplegia. This Review describes the clinical features, pathophysiology, natural history and treatment of POLG-related disorders, focusing particularly on the neurological manifestations of these conditions.
Collapse
|
13
|
Lim A, Thomas RH. The mitochondrial epilepsies. Eur J Paediatr Neurol 2020; 24:47-52. [PMID: 31973983 DOI: 10.1016/j.ejpn.2019.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023]
Abstract
Mitochondria are vital organelles within cells that undertake many important metabolic roles, the most significant of which is to generate energy to support organ function. Dysfunction of the mitochondrion can lead to a wide range of clinical features, predominantly affecting organs with a high metabolic demand such as the brain. One of the main neurological manifestations of mitochondrial disease is metabolic epilepsies. These epileptic seizures are more frequently of posterior quadrant and occipital lobe onset, more likely to present with non-convulsive status epilepticus which may last months and be more resistant to treatment from the onset. The onset of can be of any age. Childhood onset epilepsy is a major phenotypic feature in mitochondrial disorders such as Alpers-Huttenlocher syndrome, pyruvate dehydrogenase complex deficiencies, and Leigh syndrome. Meanwhile, adults with classical mitochondrial disease syndrome such as MELAS, MERFF or POLG-related disorders could present with either focal or generalised seizures. There are no specific curative treatments for mitochondrial epilepsy. Generally, the epileptic seizures should be managed by specialist neurologist with appropriate use of anticonvulsants. As a general rule, especially in disorders associated with mutation in POLG, sodium valproate is best avoided because hepato-toxicity can be fulminant and fatal.
Collapse
Affiliation(s)
- Albert Lim
- Department of Paediatrics, Great Northern Children's Hospital, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom
| | - Rhys H Thomas
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom; Department of Neurology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle-Upon-Tyne, NE1 4LP, United Kingdom; Institute of Neuroscience, Henry Wellcome Building, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
14
|
Finsterer J, Zarrouk-Mahjoub S. Headache in mitochondrial disorders. Clin Neurol Neurosurg 2019; 166:44-49. [PMID: 29408771 DOI: 10.1016/j.clineuro.2018.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/03/2023]
Abstract
Headache is a prominent feature in mitochondrial disorders (MIDs) but no comprehensive overview is currently available. This review aims at summarising and discussing findings concerning type, frequency, pathogenesis, and treatment of headache in MIDs. The most frequent headache types in MIDs are migraine and migraine-like headache (MLH). MLH is classified as secondary headache. More rarely, tension-type headache, trigemino-autonomic headache, or different secondary headaches can be found. Migraine or MLH may manifest with or without aura. MLH is frequently associated with an ongoing or previous stroke-like episode (SLE) or a seizure but may also occur independently of other neurological features. MLH may be associated with prolonged aura or visual phenomena after headache. Except for MLH, treatment of headache in MIDs is not at variance from other causes of headache. Beyond the broadly accepted subtype-related headache treatment, diet, cofactors, vitamins, and antioxidants may provide a supplementary benefit. Midazolam, l-arginine, or l-citrulline may be beneficial for MLH. The pathogenesis of headache in MIDs largely remains unsolved. However, since migraine and MLH respond both to triptanes, a shared pathomechanism is likely. In conclusion, migraine and MLH are the prominent headache types in MIDs. MLH may or may not be associated with current or previous SLEs. MLH is pathophysiologically different from migraine and requires treatment at variance from that of migraine with aura.
Collapse
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
15
|
Phillips J, Courel S, Rebelo AP, Bis-Brewer DM, Bardakjian T, Dankwa L, Hamedani AG, Züchner S, Scherer SS. POLG mutations presenting as Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2019; 24:213-218. [PMID: 30843307 DOI: 10.1111/jns.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
We report on two patients, with different POLG mutations, in whom axonal neuropathy dominated the clinical picture. One patient presented with late onset sensory axonal neuropathy caused by a homozygous c.2243G>C (p.Trp748Ser) mutation that resulted from uniparental disomy of the long arm of chromosome 15. The other patient had a complex phenotype that included early onset axonal Charcot-Marie-Tooth disease (CMT) caused by compound heterozygous c.926G>A (p.Arg309His) and c.2209G>C (p.Gly737Arg) mutations.
Collapse
Affiliation(s)
- Jade Phillips
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve Courel
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Adriana P Rebelo
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Dana M Bis-Brewer
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali G Hamedani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Saneto RP. An update on Alpers-Huttenlocher syndrome: pathophysiology of disease and rational treatment designs. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Russell P. Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Neuroscience Institute, Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
17
|
Hynynen J, Pokka T, Komulainen-Ebrahim J, Myllynen P, Kärppä M, Pylvänen L, Kälviäinen R, Sokka A, Jyrkilä A, Lähdetie J, Haataja L, Mäkitalo A, Ylikotila P, Eriksson K, Haapala P, Ansakorpi H, Hinttala R, Vieira P, Majamaa K, Rantala H, Uusimaa J. Variants p.Q1236H and p.E1143G in mitochondrial DNA polymerase gamma POLG1 are not associated with increased risk for valproate-induced hepatotoxicity or pancreatic toxicity: A retrospective cohort study of patients with epilepsy. Epilepsia 2018; 59:2125-2136. [PMID: 30255931 DOI: 10.1111/epi.14568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Previous studies have suggested that heterozygous variants p.Q1236H and p.E1143G in mitochondrial DNA polymerase gamma (POLG1) increase the risk for liver injury for patients on valproate (VPA) therapy. We assessed the prevalence of these common variants and seven other pathogenic mutations in POLG1 and determined the occurrence of VPA-induced hepatotoxicity (VHT) or pancreatic toxicity in a cohort of patients with epilepsy. METHODS Patients with epilepsy (N = 367) were retrospectively identified from medical record files and screened for mutations in POLG1. Patients who had received VPA monotherapy and carried either of the two variants, p.Q1236H or p.E1143G, without other pathogenic mutations in POLG1 (n = 33, variant group) and patients without these variants (n = 28, nonvariant group) were included in the study. Clinical data on epilepsy, characteristics of VPA treatment, risk factors for VHT, laboratory data on liver and pancreas functions, and adverse effects were collected. RESULTS A total of 122 patients had either the POLG1 p.Q1236H (n = 99) or p.E1143G (n = 24) variant in the heterozygous or homozygous state. Transient liver dysfunction was identified in three (n = 33, 9.1%) variant group patients and in one (n = 28, 3.6%) nonvariant group patient (P = 0.62). Mild to moderate elevations in liver enzymes were encountered in both groups. Furthermore, two patients on VPA polytherapy developed acute pancreatitis, and two pediatric patients with heterozygous p.Q1236H variants and mutations in IQSEC2 and GLDC, respectively, had elevated levels of VPA metabolites in urine, elevated plasma glycine, and/or increased acylglycine excretion. SIGNIFICANCE POLG1 p.Q1236H and p.E1143G variants could not be identified as statistically significant risk factors for VHT or pancreatic toxicity. We suggest that VPA treatment could be suitable for patients who harbor these common variants in the absence of other pathogenic mutations in POLG1.
Collapse
Affiliation(s)
- Johanna Hynynen
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Jonna Komulainen-Ebrahim
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | | | - Mikko Kärppä
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Laura Pylvänen
- Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Reetta Kälviäinen
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arja Sokka
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Pediatric Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Aino Jyrkilä
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Department of Pediatric Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana Lähdetie
- Department of Child Neurology, University of Turku and Turku University Central Hospital, Turku, Finland
| | - Leena Haataja
- Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna Mäkitalo
- Department of Child Neurology, University of Turku and Turku University Central Hospital, Turku, Finland.,Department of Geriatric Medicine, University of Turku, Turku, Finland
| | - Pauli Ylikotila
- Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Kai Eriksson
- Tampere Center for Child Health Research and Pediatric Neurology, Tampere University Hospital, Tampere, Finland
| | - Piia Haapala
- Outpatient Intellectual Disabilities Clinic, Tampere University Hospital, Tampere, Finland
| | - Hanna Ansakorpi
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Päivi Vieira
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Heikki Rantala
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Johanna Uusimaa
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
18
|
Hikmat O, Naess K, Engvall M, Klingenberg C, Rasmussen M, Tallaksen CME, Brodtkorb E, Fiskerstrand T, Isohanni P, Uusimaa J, Darin N, Rahman S, Bindoff LA. Elevated cerebrospinal fluid protein inPOLG-related epilepsy: Diagnostic and prognostic implications. Epilepsia 2018; 59:1595-1602. [DOI: 10.1111/epi.14459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Omar Hikmat
- Department of Pediatrics; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine (K1); University of Bergen; Bergen Norway
| | - Karin Naess
- Center for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
- Department of Medical Biochemistry and Biophysics; Karolinska Institute; Stockholm Sweden
| | - Martin Engvall
- Center for Inherited Metabolic Diseases; Karolinska University Hospital; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Karolinska Institute; Stockholm Sweden
| | - Claus Klingenberg
- Department of Pediatric and Adolescent Medicine; University Hospital of North Norway; Tromso Norway
- Pediatric Research Group; Department of Clinical Medicine; UiT-Arctic University of Norway; Tromso Norway
| | - Magnhild Rasmussen
- Women and Children's Division; Department of Clinical Neurosciences for Children; Oslo University Hospital; Oslo Norway
- Unit for Congenital and Hereditary Neuromuscular Disorders; Department of Neurology; Oslo University Hospital; Oslo Norway
| | - Chantal M. E. Tallaksen
- Department of Neurology; Oslo University Hospital; Oslo Norway
- Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - Eylert Brodtkorb
- Department of Neuroscience; Norwegian University of Science and Technology; Trondheim Norway
- Department of Neurology and Clinical Neurophysiology; St. Olav's University Hospital; Trondheim Norway
| | - Torunn Fiskerstrand
- Department of Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
- Department of Clinical Science (K2); University of Bergen; Bergen Norway
| | - Pirjo Isohanni
- Department of Pediatric Neurology; Children's Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
- Research Programs Unit; Molecular Neurology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit and Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Medical Research Center; Oulu University Hospital; Oulu Finland
| | - Niklas Darin
- Department of Pediatrics; Queen Silvia Children's Hospital; University of Gothenburg; Gothenburg Sweden
| | - Shamima Rahman
- Mitochondrial Research Group; University College London Great Ormond Street Institute of Child Health; London UK
- Metabolic Unit; Great Ormond Street Hospital for Children; National Health Service Foundation Trust; London UK
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1); University of Bergen; Bergen Norway
- Department of Neurology; Haukeland University Hospital; Bergen Norway
| |
Collapse
|
19
|
Vantroys E, Smet J, Vanlander AV, Vergult S, De Bruyne R, Roels F, Stepman H, Roeyers H, Menten B, Van Coster R. Severe hepatopathy and neurological deterioration after start of valproate treatment in a 6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency. Orphanet J Rare Dis 2018; 13:80. [PMID: 29783990 PMCID: PMC5963168 DOI: 10.1186/s13023-018-0822-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Background The first subjects with deficiency of mitochondrial tryptophanyl-tRNA synthetase (WARS2) were reported in 2017. Their clinical characteristics can be subdivided into three phenotypes (neonatal phenotype, severe infantile onset phenotype, Parkinson-like phenotype). Results Here, we report on a subject who presented with early developmental delay, motor weakness and intellectual disability and who was considered during several years as having a non-progressive encephalopathy. At the age of six years, she had an epileptic seizure which was treated with sodium valproate. In the months after treatment was started, she developed acute liver failure and severe progressive encephalopathy. Although valproate was discontinued, she died six months later. Spectrophotometric analysis of the oxidative phosphorylation complexes in liver revealed a deficient activity of complex III and low normal activities of the complexes I and IV. Activity staining in the BN-PAGE gel confirmed the low activities of complex I, III and IV and, in addition, showed the presence of a subcomplex of complex V. Histochemically, a mosaic pattern was seen in hepatocytes after cytochrome c oxidase staining. Using Whole Exome Sequencing two known pathogenic variants were detected in WARS2 (c.797delC, p.Pro266ArgfsTer10/ c.938 A > T, p.Lys313Met). Conclusion This is the first report of severe hepatopathy in a subject with WARS2 deficiency. The hepatopathy occurred soon after start of sodium valproate treatment. In the literature, valproate-induced hepatotoxicity was reported in the subjects with pathogenic mutations in POLG and TWNK. This case report illustrates that the course of the disease in the subjects with a mitochondrial defect can be non-progressive during several years. The subject reported here was first diagnosed as having cerebral palsy. Only after a mitochondriotoxic medication was started, the disease became progressive, and the diagnosis of a mitochondrial defect was made.
Collapse
Affiliation(s)
- Elise Vantroys
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud V Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Frank Roels
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Hedwig Stepman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
20
|
Ng YS, van Ruiten H, Lai HM, Scott R, Ramesh V, Horridge K, Taylor RW, Turnbull DM, Gorman GS, McFarland R, Baker MR. The adjunctive application of transcranial direct current stimulation in the management of de novo refractory epilepsia partialis continua in adolescent-onset POLG-related mitochondrial disease. Epilepsia Open 2018; 3:103-108. [PMID: 29588995 PMCID: PMC5839316 DOI: 10.1002/epi4.12094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Focal status epilepticus in POLG-related mitochondrial disease is highly refractory to pharmacological agents, including general anesthesia. We report the challenges in managing a previously healthy teenager who presented with de novo epilepsia partialis continua and metabolic stroke resulting from the homozygous p.Ala467Thr POLG mutation, the most common pathogenic variant identified in the Caucasian population. We applied transcranial direct current stimulation (tDCS; 2 mA; 20 min) daily as an adjunctive therapy because her focal seizures failed to respond to five antiepileptic drugs at maximal doses. The electrical and clinical seizures stopped after 3 days of tDCS. The second course of tDCS was administered for 14 days when the focal seizures re-emerged a month later. The patient tolerated the procedure well. Following 4 months of hospitalization and prolonged community rehabilitation, our patient has now returned to full-time education with support, and there is no report of cognitive deficit. We have demonstrated the safety and efficacy of tDCS in treating refractory focal motor seizures caused by mitochondrial disease.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial ResearchInstitute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Henriette van Ruiten
- Department of Paediatric NeurologyRoyal Victoria InfirmaryNewcastle upon TyneUnited Kingdom
| | - H. Ming Lai
- Department of Clinical NeurophysiologyRoyal Victoria InfirmaryNewcastleUnited Kingdom
| | - Rebecca Scott
- Department of Paediatric NeurologyRoyal Victoria InfirmaryNewcastle upon TyneUnited Kingdom
| | - Venkateswaran Ramesh
- Department of Paediatric NeurologyRoyal Victoria InfirmaryNewcastle upon TyneUnited Kingdom
| | - Karen Horridge
- Department of PaediatricsCity Hospitals Sunderland NHS Foundation TrustSunderlandUnited Kingdom
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial ResearchInstitute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Doug M. Turnbull
- Wellcome Centre for Mitochondrial ResearchInstitute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial ResearchInstitute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial ResearchInstitute of NeuroscienceNewcastle UniversityNewcastleUnited Kingdom
- Department of Paediatric NeurologyRoyal Victoria InfirmaryNewcastle upon TyneUnited Kingdom
| | - Mark R. Baker
- Department of Clinical NeurophysiologyRoyal Victoria InfirmaryNewcastleUnited Kingdom
- Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUnited Kingdom
| |
Collapse
|
21
|
Finsterer J, Scorza FA. Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 2017; 136:5-11. [PMID: 28732239 DOI: 10.1016/j.eplepsyres.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Antiepileptic drugs (AEDs) exhibit adverse and beneficial effects on mitochondria, which have a strong impact on the treatment of patients with a mitochondrial disorder (MID) with epilepsy (mitochondrial epilepsy). This review aims at summarizing and discussing recent findings concerning the effect of AEDs on mitochondrial functions and the clinical consequences with regard to therapy of mitochondrial epilepsy and of MIDs in general. METHODS Literature review. RESULTS AEDs may interfere with the respiratory chain, with non-respiratory chain enzymes, carrier proteins, or mitochondrial biogenesis, with carrier proteins, membrane-bound channels or receptors and the membrane potential, with anti-oxidative defense mechanisms, with morphology, dynamics and survival of mitochondria, and with the mtDNA. There are AEDs of which adverse effects outweigh beneficial effects, such as valproic acid, carbamazepine, phenytoin, or phenobarbital and there are AEDs in which beneficial effects dominate over mitochondrial toxic effects, such as lamotrigine, levetiracetam, gabapentin, or zonisamide. However, from most AEDs only little is known about their interference with mitochondria. CONCLUSIONS Mitochondrial epilepsy might be initially treated with AEDs with low mitochondrial toxic potential. Only in case mitochondrial epilepsy is refractory to these AEDs, AEDs with higher mitochondrial toxic potential might be tried. In patients carrying POLG1 mutations AEDs with high mitochondrial toxic potential are contraindicated.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, (EPM/UNIFESP), São Paulo, Brazil.
| |
Collapse
|
22
|
London F, Hadhoum N, Outteryck O, Vermersch P, Zéphir H. Late-onset of Alpers-Huttenlocher syndrome: an unusual cause of refractory epilepsy and liver failure. Acta Neurol Belg 2017; 117:399-401. [PMID: 27422324 DOI: 10.1007/s13760-016-0672-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
23
|
Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG)
gene: A clinical and molecular genetic review. Epilepsia 2016; 57:1531-1545. [DOI: 10.1111/epi.13508] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Maria-Eleni Anagnostou
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
24
|
Saneto RP. Alpers-Huttenlocher syndrome: the role of a multidisciplinary health care team. J Multidiscip Healthc 2016; 9:323-33. [PMID: 27555780 PMCID: PMC4968991 DOI: 10.2147/jmdh.s84900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alpers–Huttenlocher syndrome (AHS) is a mitochondrial DNA-depletion syndrome. Age of onset is bimodal: early onset at 2–4 years and later adolescent onset at 17–24 years of age. Early development is usually normal, with epilepsy heralding the disorder in ~50% of patients. The onset of seizures is coupled with progressive cognitive decline. Hepatopathy is variable, and when present is a progressive dysfunction leading to liver failure in many cases. These features of seizures, cognitive degeneration, and hepatopathy represent the “classic triad” of AHS. However, most patients develop other system involvement. Therefore, although AHS is ultimately a lethal disorder, medical care is required for sustained quality of life. Frequently, additional organ systems – gastrointestinal, respiratory, nutritional, and psychiatric – abnormalities appear and need treatment. Rarely, cardiovascular dysfunction and even pregnancy complicate medical treatment. Optimal care requires a team of physicians and caretakers to make sure quality of life is optimized. The care team, together with the family and palliative care specialists, need to be in communication as the disease progresses and medical changes occur. Although the unpredictable losses of function challenge medical care, the team approach can foster the individual quality-of-life care needed for the patient and family.
Collapse
Affiliation(s)
- Russell P Saneto
- Department of Neurology, University of Washington; Division of Pediatric Neurology, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
25
|
Finsterer J, Zarrouk-Mahjoub S. Mitochondrial vasculopathy. World J Cardiol 2016; 8:333-339. [PMID: 27231520 PMCID: PMC4877362 DOI: 10.4330/wjc.v8.i5.333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/16/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.
Collapse
|
26
|
Abstract
Some of the side and beneficial effects of antiepileptic drugs (AEDs) are mediated via the influence on mitochondria. This is of particular importance in patients requiring AED treatment for mitochondrial epilepsy. AED treatment in patients with mitochondrial disorders should rely on the known influences of AEDs on these organelles. AEDs may influence various mitochondrial functions or structures in a beneficial or detrimental way. There are AEDs in which the toxic effect outweighs the beneficial effect, such as valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHT), or phenobarbital (PB). There are, however, also AEDs in which the beneficial effect on mitochondria outweighs the mitochondrion-toxic effect, such as gabapentin (GBT), lamotrigine (LTG), levetiracetam (LEV), or zonisamide (ZNS). In the majority of the AEDs, however, information about their influence of mitochondria is lacking. In clinical practice mitochondrial epilepsy should be initially treated with AEDs with low mitochondrion-toxic potential. Only in cases of ineffectivity or severe mitochondrial epilepsy, mitochondrion-toxic AEDs should be given. This applies for AEDs given orally or intravenously.
Collapse
|
27
|
Hynynen J, Komulainen T, Tukiainen E, Nordin A, Arola J, Kälviäinen R, Jutila L, Röyttä M, Hinttala R, Majamaa K, Mäkisalo H, Uusimaa J. Acute liver failure after valproate exposure in patients with POLG1 mutations and the prognosis after liver transplantation. Liver Transpl 2014; 20:1402-12. [PMID: 25065347 DOI: 10.1002/lt.23965] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/12/2023]
Abstract
Patients with mutations in the POLG1 gene encoding mitochondrial DNA polymerase gamma have an increased risk of valproate-induced liver failure. POLG1 mutations are common, and these patients often suffer from intractable seizures. The role of liver transplantation in the treatment of patients with mitochondrial diseases has been controversial. We studied valproate-induced liver failure associated with POLG1 mutations and the prognosis for these patients after liver transplantation. POLG1 was analyzed in blood DNA, mitochondrial DNA (mtDNA) was quantified in liver samples, and clinical data were collected. Five patients with valproate-induced liver failure associated with POLG1 mutations were retrospectively identified. Three patients were previously suspected to have Wilson's disease. Four patients with homozygous p.W748S and p.E1143G mutations had mtDNA depletion in the liver. One of these patients died before anticipated transplantation; the other 3 patients with liver transplantation have survived 4 to 19 years. Two patients have presented with occasional epileptic seizures, and 1 patient has been seizure-free for 11 years. One patient with a heterozygous p.Q1236H mutation (but without mtDNA depletion in the liver) died suddenly 2 years after liver transplantation. In conclusion, the POLG1 mutation status and the age at presentation of valproate-induced liver failure can affect the prognosis after liver transplantation. A heterozygous POLG1 p.Q1236H mutation was related to valproate-induced liver failure without mtDNA depletion, whereas patients homozygous for POLG1 p.W748S and p.E1143G mutations had mtDNA depletion. An analysis of the POLG1 gene should be performed for all patients with suspected mitochondrial disease before the introduction of valproate therapy, and treatment with valproic acid should be avoided in these patients.
Collapse
Affiliation(s)
- Johanna Hynynen
- Institute of Clinical Medicine, Department of Pediatrics, University of Oulu, Oulu, Finland; Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
McKiernan P. Acute liver failure after valproate exposure: Liver transplantation may be indicated beyond childhood. Liver Transpl 2014; 20:1287-9. [PMID: 25179873 DOI: 10.1002/lt.23988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Patrick McKiernan
- Liver Unit, Birmingham Children's Hospital, Birmingham, United Kingdom
| |
Collapse
|
29
|
Tzoulis C, Tran GT, Coxhead J, Bertelsen B, Lilleng PK, Balafkan N, Payne B, Miletic H, Chinnery PF, Bindoff LA. Molecular pathogenesis of polymerase γ-related neurodegeneration. Ann Neurol 2014; 76:66-81. [PMID: 24841123 PMCID: PMC4140551 DOI: 10.1002/ana.24185] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/17/2014] [Accepted: 05/18/2014] [Indexed: 12/20/2022]
Abstract
Objective Polymerase gamma (POLG) mutations are a common cause of mitochondrial disease and have also been linked to neurodegeneration and aging. We studied the molecular mechanisms underlying POLG-related neurodegeneration using postmortem tissue from a large number of patients. Methods Clinical information was available from all subjects. Formalin-fixed and frozen brain tissue from 15 patients and 23 controls was studied employing a combination of histopathology, immunohistochemistry, and molecular studies of microdissected neurons. Results The primary consequence of POLG mutation in neurons is mitochondrial DNA depletion. This was already present in infants with little evidence of neuronal loss or mitochondrial dysfunction. With longer disease duration, we found an additional, progressive accumulation of mitochondrial DNA deletions and point mutations accompanied by increasing numbers of complex I–deficient neurons. Progressive neurodegeneration primarily affected the cerebellar systems and dopaminergic cells of the substantia nigra. Superimposed on this chronic process were acute, focal cortical lesions that correlated with epileptogenic foci and that showed massive neuronal loss. Interpretation POLG mutations appear to compromise neuronal respiration via a combination of early and stable depletion and a progressive somatic mutagenesis of the mitochondrial genome. This leads to 2 distinct but overlapping biological processes: a chronic neurodegeneration reflected clinically by progressive ataxia and cognitive impairment, and an acute focal neuronal necrosis that appears to be related to the presence of epileptic seizures. Our findings offer an explanation of the acute-on-chronic clinical course of this common mitochondrial encephalopathy. ANN NEUROL 2014;76:66–81
Collapse
Affiliation(s)
- Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol 2014; 16:292. [PMID: 24700433 DOI: 10.1007/s11940-014-0292-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT While numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.
Collapse
Affiliation(s)
- Sreenivas Avula
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
31
|
Farnum GA, Nurminen A, Kaguni LS. Mapping 136 pathogenic mutations into functional modules in human DNA polymerase γ establishes predictive genotype-phenotype correlations for the complete spectrum of POLG syndromes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1113-21. [PMID: 24508722 DOI: 10.1016/j.bbabio.2014.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/21/2023]
Abstract
We establish the genotype-phenotype correlations for the complete spectrum of POLG syndromes by refining our previously described protocol for mapping pathogenic mutations in the human POLG gene to functional clusters in the catalytic core of the mitochondrial replicase, Pol γ (1). We assigned 136 mutations to five clusters and identify segments of primary sequence that can be used to delimit the boundaries of each cluster. We report that compound heterozygotes with two mutations from different clusters manifested more severe, earlier-onset POLG syndromes, whereas two mutations from the same cluster are less common and generally are associated with less severe, later onset POLG syndromes. We also show that specific cluster combinations are more severe than others and have a higher likelihood to manifest at an earlier age. Our clustering method provides a powerful tool to predict the pathogenic potential and predicted disease phenotype of novel variants and mutations in POLG, the most common nuclear gene underlying mitochondrial disorders. We propose that such a prediction tool would be useful for routine diagnostics for mitochondrial disorders. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Gregory A Farnum
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Anssi Nurminen
- Institute of Biosciences and Medical Technology, University of Tampere, 33014 Tampere, Finland
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA; Institute of Biosciences and Medical Technology, University of Tampere, 33014 Tampere, Finland
| |
Collapse
|
32
|
Abstract
To highlight differences between early-onset and adult mitochondrial depletion syndromes (MDS) concerning etiology and genetic background, pathogenesis, phenotype, clinical presentation and their outcome. MDSs most frequently occur in neonates, infants, or juveniles and more rarely in adolescents or adults. Mutated genes phenotypically presenting with adult-onset MDS include POLG1, TK2, TyMP, RRM2B, or PEO1/twinkle. Adult MDS manifest similarly to early-onset MDS, as myopathy, encephalo-myopathy, hepato-cerebral syndrome, or with chronic progressive external ophthalmoplegia (CPEO), fatigue, or only minimal muscular manifestations. Diagnostic work-up or treatment is not at variance from early-onset cases. Histological examination of muscle may be normal but biochemical investigations may reveal multiple respiratory chain defects. The outcome appears to be more favorable in adult than in early-onset forms. Mitochondrial depletion syndromes is not only a condition of neonates, infants, or juveniles but rarely also occurs in adults, presenting with minimal manifestations or manifestations like in the early-onset forms. Outcome of adult-onset MDS appears more favorable than early-onset MDS.
Collapse
|
33
|
Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem 2013; 46:1323-38. [PMID: 23792104 DOI: 10.1016/j.clinbiochem.2013.06.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity.
Collapse
Affiliation(s)
- Radu M Nanau
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 2013; 5:a011395. [PMID: 23545419 DOI: 10.1101/cshperspect.a011395] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
35
|
Abstract
Alpers-Huttenlocher syndrome is an uncommon mitochondrial disease most often associated with mutations in the mitochondrial DNA replicase, polymerase-γ. Alterations in enzyme activity result in reduced levels or deletions in mitochondrial DNA. Phenotypic manifestations occur when the functional content of mitochondrial DNA reaches a critical nadir. The tempo of disease progression and onset varies among patients, even in identical genotypes. The classic clinical triad of seizures, liver degeneration, and progressive developmental regression helps define the disorder, but a wide range of clinical expression occurs. The majority of patients are healthy before disease onset, and seizures herald the disorder in most patients. Seizures can rapidly progress to medical intractability, with frequent episodes of epilepsia partialis continua or status epilepticus. Liver involvement may precede or occur after seizure onset. Regardless, eventual liver failure is common. Both the tempo of disease progression and range of organ involvement vary from patient to patient, and are only partly explained by pathogenic effects of genetic mutations. Diagnosis involves the constellation of organ involvement, not the sequence of signs. This disorder is relentlessly progressive and ultimately fatal.
Collapse
|
36
|
Uusimaa J, Gowda V, McShane A, Smith C, Evans J, Shrier A, Narasimhan M, O'Rourke A, Rajabally Y, Hedderly T, Cowan F, Fratter C, Poulton J. Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features. Epilepsia 2013; 54:1002-11. [PMID: 23448099 PMCID: PMC3757309 DOI: 10.1111/epi.12115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 11/30/2022]
Abstract
Purpose To assess the frequency and clinical features of childhood-onset intractable epilepsy caused by the most common mutations in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma. Methods Children presenting with nonsyndromic intractable epilepsy of unknown etiology but without documented liver dysfunction at presentation were eligible for this prospective, population-based study. Blood samples were analyzed for the three most common POLG mutations. If any of the three tested mutations were found, all the exons and the exon–intron boundaries of the POLG gene were sequenced. In addition, we retrospectively reviewed the notes of patients presenting with intractable epilepsy in which we had found POLG mutations. All available clinical data were collected by questionnaire and by reviewing the medical records. Key Findings We analyzed 213 blood DNA samples from patients fulfilling the inclusion criteria of the prospective study. Among these, five patients (2.3%) were found with one of the three common POLG mutations as homozygous or compound heterozygous states. In addition, three patients were retrospectively identified. Seven of the eight patients had either raised cerebrospinal fluid (CSF) lactate (n = 3) or brain magnetic resonance imaging (MRI) changes (n = 4) at presentation with intractable epilepsy. Three patients later developed liver dysfunction, progressing to fatal liver failure in two without previous treatment with sodium valproate (VPA). Furthermore, it is worth mentioning that one patient presented first with an autism spectrum disorder before seizures emerged. Significance Mutations in POLG are an important cause of early and juvenile onset nonsyndromic intractable epilepsy with highly variable associated manifestations including autistic features. This study emphasizes that genetic testing for POLG mutations in patients with nonsyndromic intractable epilepsies is very important for clinical diagnostics, genetic counseling, and treatment decisions because of the increased risk for VPA-induced liver failure in patients with POLG mutations. We recommend POLG gene testing for patients with intractable seizures and at least one elevated CSF lactate or suggestive brain MRI changes (predominantly abnormal T2-weighted thalamic signal) with or without status epilepticus, epilepsia partialis continua, or liver manifestations typical for Alpers disease, especially when the disease course is progressive.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Nuffield Department of Obstetrics and Gynaecology, The Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Buler M, Aatsinki SM, Izzi V, Hakkola J. Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS One 2012; 7:e49863. [PMID: 23166782 PMCID: PMC3500349 DOI: 10.1371/journal.pone.0049863] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023] Open
Abstract
Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin.
Collapse
Affiliation(s)
- Marcin Buler
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Sanna-Mari Aatsinki
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Center for Cell-Matrix Research and Biocenter Oulu, Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Abstract
Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| |
Collapse
|
39
|
Finsterer J, Mahjoub SZ. Primary mitochondrial arteriopathy. Nutr Metab Cardiovasc Dis 2012; 22:393-399. [PMID: 22520486 DOI: 10.1016/j.numecd.2012.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/27/2011] [Accepted: 01/05/2012] [Indexed: 12/28/2022]
Abstract
AIM Whether arteries are affected in mitochondrial disorders (MIDs) was under debate for years but meanwhile there are strong indications that large and small arteries are primarily or secondarily affected in MIDs. DATA SYNTHESIS When reviewing the literature for appropriate studies it turned out that vascular involvement in MIDs includes primary or secondary micro- or macroangiopathy of the cerebral, cervical, and retinal arteries, the aorta, the iliac arteries, the brachial arteries, or the muscular arteries. Arteriopathy in MIDs manifests as atherosclerosis, stenosis, occlusion, dissection, ectasia, aneurysm formation, or arteriovenous malformation. Direct evidence for primary cerebral microangiopathy comes from histological studies and indirect evidence from imaging and perfusion studies of the brain. Microangiopathy of the retina is highly prevalent in Leber's hereditary optic neuropathy. Macroangiopathy of the carotid arteries may be complicated by stroke. Arteriopathy of the aorta may result in ectasia, aneurysm formation, or even rupture. Further evidence for arteriopathy in MIDs comes from the frequent association of migraine with MIDs and the occurrence of premature atherosclerosis in MID patients without classical risk factors. CONCLUSIONS Mitochondrial arteriopathy most frequently concerns the cerebral arteries and may result from the underlying metabolic defect or secondary from associated vascular risk factors. Vascular involvement in MIDs has a strong impact on the prognosis and outcome of these patients.
Collapse
Affiliation(s)
- J Finsterer
- Danube University Krems, Krems, Postfach 20, 1180 Vienna, Austria.
| | | |
Collapse
|
40
|
Affiliation(s)
- Felix Rosenow
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.
| | | |
Collapse
|
41
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol 2011; 8:71-9. [DOI: 10.1517/17425255.2012.644535] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Naess K, Barbaro M, Bruhn H, Wibom R, Nennesmo I, von Döbeln U, Larsson NG, Nemeth A, Lesko N. Complete Deletion of a POLG1 Allele in a Patient with Alpers Syndrome. JIMD Rep 2011; 4:67-73. [PMID: 23430898 DOI: 10.1007/8904_2011_73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 12/23/2022] Open
Abstract
Mutations in the gene encoding the catalytic subunit of polymerase γ (POLG1) are a major cause of human mitochondrial disease. More than 150 different point mutations in the gene have been reported to be disease causing, resulting in a large range of clinical symptoms. Depending on the mutation or combination of mutations, disease onset can occur in early infancy or late in adult life. Here, we describe the use of multiplex ligation-dependent probe amplification (MLPA) analysis to detect deletions within POLG1, which could otherwise go undetected by solely sequencing of the gene. We present a case where an entire POLG1 allele is deleted, with a known pathogenic mutation (W748S) on the remaining allele. The deletion was found in a boy with Alpers syndrome, presenting at 18 months of age with slightly retarded motor development, balance problems, and seizures. Administration of valproic acid (VPA) led to rapidly progressive fatal liver failure in our patient, and we would like to highlight the need to carry out complete POLG1 gene analysis before administration of VPA in cases of pediatric seizure disorders of unknown origin. Debut and severity of the disease in this patient was unique when compared to homozygous or heterozygous patients with the W748S mutation, leading to the conclusion that gene dosage plays a role in the clinical phenotype of this disease.
Collapse
Affiliation(s)
- Karin Naess
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institutet, CMMS C2-71 Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Craig AK, de Menezes MS, Saneto RP. Dravet syndrome: patients with co-morbid SCN1A gene mutations and mitochondrial electron transport chain defects. Seizure 2011; 21:17-20. [PMID: 21906962 DOI: 10.1016/j.seizure.2011.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/14/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To review our cohort of patients with Dravet syndrome and determine if patients with SCN1A mutations can also express mitochondrial disease due to electron transport chain dysfunction. METHODS A retrospective chart review was used to describe clinical manifestations and retrieve biochemical testing, neuroimaging, gene sequencing, and electroencephalographic results of patients expressing both mitochondrial disease and Dravet syndrome. RESULTS Two children were found to have pathological mutations in the SCN1A gene and defects in mitochondrial electron transport chain complex activity. Both developed early febrile and medically intractable afebrile seizures with resulting neurocognitive decline. In the first patient, a muscle biopsy demonstrated complex IV dysfunction and in the second patient, complex III dysfunction. Patient 1 had more difficult to control seizures, and had features consistent with severe autism. Patient 2, who had earlier control and less severe seizures, did not have features of autism. Patient 1 had SCN1A missense mutation, c. 3734 G>A and patient 2 had a mutation, c. 3733 C>T, which produces a truncation mutation. CONCLUSION Our two patients underscore the need to rule out possible co-morbid mitochondrial disease and Dravet syndrome. The treatment of seizures for each is different, with valproic acid being first line treatment in Dravet syndrome and contraindicated in many mitochondrial diseases, due to possible induction of liver failure and death. Failure to pursue complete diagnostic evaluation might influence medication choice, possible seizure control, and developmental outcomes.
Collapse
Affiliation(s)
- Alexa K Craig
- Division of Pediatric Neurology, Seattle Children's Hospital/University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| | | | | |
Collapse
|
44
|
Abstract
Individually rare, when taken as a whole, genetic inborn errors of metabolism (IEM) account for a significant proportion of early onset encephalopathy. Prompt diagnosis is crucial to assess appropriate investigation and can sometimes warrant successful therapy. Recent improvements in technology and expansion of knowledge on the biochemical and molecular basis of these disorders allow astute child neurologists and paediatricians to improve the early diagnosis of these genetically determined defects. However, because of rarity and heterogeneity of these disorders, IEM encephalopathies are still a formidable challenge for most physicians. The most frequent cause of childhood IEM encephalopathy is mitochondrial disease, whose biochemical 'signature' is faulty energy supply due to defects of the last component of the oxidative pathways residing within mitochondria, i.e. the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Graziella Uziel
- Unit of Child Neurology, The 'Carlo Besta' Neurological Institute Foundation (IRCCS), via Celoria 11, 20133 Milan, Italy
| | | | | |
Collapse
|
45
|
Roshal D, Glosser D, Zangaladze A. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype. Epilepsy Behav 2011; 21:206-10. [PMID: 21515089 DOI: 10.1016/j.yebeh.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/24/2022]
Abstract
We describe a 16-year-old woman with a rare POLG1 A467T/W748S genotype, with a wide range of neurological manifestations, including focal parieto-occipital lobe seizures, migraine headaches, cerebellar ataxia, sensory-motor axonal neuropathy, and impairment of visual perception and cognitive function. Treatment of epilepsy in patients with a POLG1 compound heterozygous A467T/W748S genotype is very challenging; the epilepsy may preferentially respond to sodium channel blockers. The POLG1-related syndrome has a variable clinical course, and disease morbidity and mortality may be correlated with the genotype.
Collapse
Affiliation(s)
- David Roshal
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | | |
Collapse
|
46
|
Magnesium treatment for patients with refractory status epilepticus due to POLG1-mutations. J Neurol 2010; 258:218-22. [PMID: 20803213 PMCID: PMC3036811 DOI: 10.1007/s00415-010-5721-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
Mutations in the gene encoding of the catalytic subunit of mtDNA polymerase gamma (POLG1) can cause typical Alpers' syndrome. Recently, a new POLG1 mutation phenotype was described, the so-called juvenile-onset Alpers' syndrome. This POLG1 mutation phenotype is characterized by refractory epilepsy with recurrent status epilepticus and episodes of epilepsia partialis continua, which often necessitate admission to the intensive care unit (ICU) and pose an important mortality risk. We describe two previously healthy unrelated teenage girls, who both were admitted with generalized tonic-clonic seizures and visual symptoms leading to a DNA-supported diagnosis of juvenile-onset Alpers' syndrome. Despite combined treatment with anti-epileptic drugs, both patients developed status epilepticus requiring admission to the ICU. Intravenous magnesium as anti-convulsant therapy was initiated, resulting in clinical and neurophysiological improvement and rapid extubation of both patients. Treating status epilepticus in juvenile-onset Alpers' syndrome with magnesium has not been described previously. Given the difficulties encountered while treating epilepsy in patients with this syndrome, magnesium therapy might be considered.
Collapse
|
47
|
Saneto RP, Naviaux RK. Polymerase gamma disease through the ages. ACTA ACUST UNITED AC 2010; 16:163-74. [DOI: 10.1002/ddrr.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Komulainen T, Hinttala R, Kärppä M, Pajunen L, Finnilä S, Tuominen H, Rantala H, Hassinen I, Majamaa K, Uusimaa J. POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype. BMC Neurol 2010; 10:29. [PMID: 20438629 PMCID: PMC2873323 DOI: 10.1186/1471-2377-10-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 05/03/2010] [Indexed: 11/23/2022] Open
Abstract
Background The c.2447G>A (p.R722H) mutation in the gene POLG1 of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease. Methods Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the POLG1, POLG2, ANT1 and Twinkle genes were sequenced. Results An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and 18F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the POLG1 gene revealed a homozygous c.2447G>A (p.R722H) mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in POLG2, ANT1 and Twinkle genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic. Conclusions The recessive c.2447G>A (p.R722H) mutation in the linker region of the POLG1 gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease can be earlier in compound heterozygotes.
Collapse
Affiliation(s)
- Tuomas Komulainen
- Department of Pediatrics, University of Oulu, Box 5000, FIN-90014, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Compound heterozygous polymerase gamma gene mutation in a patient with Alpers disease. Semin Pediatr Neurol 2010; 17:62-4. [PMID: 20434700 DOI: 10.1016/j.spen.2010.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alpers disease is a mitochondrial depletion syndrome characterized by psychomotor retardation, intractable epilepsy, and liver failure. Polymerase gamma (POLG) gene mutations are a known cause of the disease. We describe a case in which a 14-month-old female presented with epilepsia partialis continua evolving into generalized status epilepticus. Treatment with multiple antiepileptic medications and the ketogenic diet eliminated her seizures, but she remained severely encephalopathic. Magnetic resonance imaging showed diffuse atrophy of gray-matter structures. She ultimately developed liver failure and died. Mitochondrial analysis revealed compound heterozygosity for 3 POLG gene mutations, 2 of which were previously unreported.
Collapse
|
50
|
|