1
|
Negi S, Bhatia P, Kaur A, Das J, Bhatia T, Aggarwal R, Sankhyan N, Singhi P, Sahu JK. Evaluation of burden of SCN1A pathogenicity in North Indian children with Dravet syndrome. Seizure 2024; 122:10-18. [PMID: 39299018 DOI: 10.1016/j.seizure.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy with limited data on the frequency of SCN1A in Indian children. The study aimed to identify and characterize the burden of SCN1A pathogenic variants associated with the Dravet syndrome phenotype through genetic testing in the North Indian population. METHOD In this prospective, cross-sectional study from March 2015 to February 2019, we enrolled 52 children with Dravet syndrome phenotype who underwent genetic testing for SCN1A gene pathogenicity. We assessed variant effect using multiple algorithms, and genetic test results were reported based on recommendations from the American College of Medical Genetics and Genomics guidelines. Additionally, we performed multiplex-ligation dependent probe amplification (MLPA) to detect copy number variations of the SCN1A gene in children without identified genetic pathogenicity (n = 22) and analysed the results using Coffalyser.net. RESULTS Of the 52 probands studied, pathogenic variants in the SCN1A gene were identified in 30 children. Among these variants, 11 truncating variants (3 frame-shift variants, 3 intronic variants in splice site regions, and 5 nonsense variants) in 12 unrelated probands, and 17 missense variants in 18 unrelated probands were found. The genetic yield of SCN1A pathogenicity in our cohort (n = 52) was 58 %. Additionally, two of the identified variants were novel. Furthermore, MLPA analysis of the SCN1A gene in 22 children without pathogenic variants yielded no results. CONCLUSION This work represents a genetic analysis of a Dravet syndrome cohort, revealing a 58 % burden of SCN1A variants in children with the Dravet syndrome phenotype from the North Indian population.
Collapse
Affiliation(s)
- Sandeep Negi
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Prateek Bhatia
- Molecular Hematology laboratory, Advanced Pediatrics Centre, PGIMER, Chandigarh, India.
| | - Anupriya Kaur
- Genetic-Metabolic Unit, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| | - Jhumki Das
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Tanvi Bhatia
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritu Aggarwal
- Department of Immunopathology, PGIMER, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pratibha Singhi
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India; Amrita Hospital, Faridabad, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
2
|
He Z, Li Y, Zhao X, Li B. Dravet Syndrome: Advances in Etiology, Clinical Presentation, and Treatment. Epilepsy Res 2022; 188:107041. [DOI: 10.1016/j.eplepsyres.2022.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
|
3
|
Genetics and gene therapy in Dravet syndrome. Epilepsy Behav 2022; 131:108043. [PMID: 34053869 DOI: 10.1016/j.yebeh.2021.108043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022]
Abstract
Dravet syndrome is a well-established electro-clinical condition first described in 1978. A main genetic cause was identified with the discovery of a loss-of-function SCN1A variant in 2001. Mechanisms underlying the phenotypic variations have subsequently been a main topic of research. Various genetic modifiers of clinical severities have been elucidated through many rigorous studies on genotype-phenotype correlations and the recent advances in next generation sequencing technology. Furthermore, a deeper understanding of the regulation of gene expression and remarkable progress on genome-editing technology using the CRISPR-Cas9 system provide significant opportunities to overcome hurdles of gene therapy, such as enhancing NaV1.1 expression. This article reviews the current understanding of genetic pathology and the status of research toward the development of gene therapy for Dravet syndrome. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
|
4
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhiyong Li
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application. Dev Med Child Neurol 2020; 62:784-792. [PMID: 32227486 DOI: 10.1111/dmcn.14519] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Genetic variants in brain-expressed voltage-gated sodium channels (SCNs) have emerged as one of the most frequent causes of Mendelian forms of epilepsy and neurodevelopmental disorders (NDDs). This review explores the biological concepts that underlie sodium channel NDDs, explains their phenotypic heterogeneity, and appraises how this knowledge may inform clinical practice. We observe that excitatory/inhibitory neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain development, homeostasis, and neurological diseases. We hypothesize that a detailed understanding of gene expression, variant tolerance, location, and function, as well as timing of seizure onset can aid the understanding of how variants in SCN1A, SCN2A, SCN3A, and SCN8A contribute to seizure aetiology and inform treatment choice. We propose a model in which variant type, development-specific gene expression, and functions of SCNs explain the heterogeneity of sodium channel associated NDDs. Understanding of basic disease mechanisms and detailed knowledge of variant characteristics have increasing influence on clinical decision making, enabling us to stratify treatment and move closer towards precision medicine in sodium channel epilepsy and NDDs. WHAT THIS PAPER ADDS: Sodium-channel disorder heterogeneity is explained by variant-specific gene expression timing and function. Gene tolerance and location analyses aid sodium channel variant interpretation. Sodium-channel variant characteristics can contribute to clinical decision making.
Collapse
Affiliation(s)
- Andreas Brunklaus
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Cologne Center for Genomics, University Hospital Cologne, University of Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
6
|
Zhao F, Mao B, Geng X, Ren X, Wang Y, Guan Y, Li S, Li L, Zhang S, You Y, Cao Y, Yang T, Zhao X. Molecular genetic analysis in 21 Chinese families with congenital insensitivity to pain with or without anhidrosis. Eur J Neurol 2020; 27:1697-1705. [PMID: 32219930 DOI: 10.1111/ene.14234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE Hereditary sensory and autonomic neuropathies (HSANs) are a group of clinically and genetically heterogeneous neurological disorders characterized by sensory dysfunctions. Here, 21 affected Chinese families are reported, including 19 with congenital insensitivity to pain with anhidrosis (CIPA; namely HSAN IV) and two with congenital insensitivity to pain (CIP; namely HSAN IID) caused by biallelic variations in NTRK1 and SCN9A, respectively, aiming to identify causative variants in these families and compare how different variants in NTRK1 affect the function of tropomyosin receptor kinase A (TrkA). METHODS Recombinant plasmids harboring the wild-type and six mutant alleles (p.Gln216*, p.Glu584Lys, p.Leu595Arg, p.Pro684Leu, p.Val709Leu and p.Arg765Cys) of NTRK1 cDNA were constructed and transfected into HEK293 cells. RESULTS The results suggested that the five missense variants only presented a subtle influence on the expression level and glycosylation of TrkA but compromised the receptor phosphorylation. Our findings also suggested that a synonymous variant c.219C>T in NTRK1 may cause aberrant splicing, indicating a potential novel pathogenic mechanism of CIPA. Furthermore, gross deletion of SCN9A was first associated with CIP. CONCLUSIONS This study identified multiple forms of variants responsible for CIPA/CIP in the Chinese population and might provide new insights into the pathogenesis of CIPA.
Collapse
Affiliation(s)
- F Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - B Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - X Geng
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - X Ren
- Department of Orthopedic Surgery, People's Hospital of Wuqing District, Tianjin, China
| | - Y Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Y Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - S Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - L Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - S Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Y You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Y Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - T Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - X Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
8
|
Fernández-Marmiesse A, Roca I, Díaz-Flores F, Cantarín V, Pérez-Poyato MS, Fontalba A, Laranjeira F, Quintans S, Moldovan O, Felgueroso B, Rodríguez-Pedreira M, Simón R, Camacho A, Quijada P, Ibanez-Mico S, Domingno MR, Benito C, Calvo R, Pérez-Cejas A, Carrasco ML, Ramos F, Couce ML, Ruiz-Falcó ML, Gutierrez-Solana L, Martínez-Atienza M. Rare Variants in 48 Genes Account for 42% of Cases of Epilepsy With or Without Neurodevelopmental Delay in 246 Pediatric Patients. Front Neurosci 2019; 13:1135. [PMID: 31780880 PMCID: PMC6856296 DOI: 10.3389/fnins.2019.01135] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
In order to characterize the genetic architecture of epilepsy in a pediatric population from the Iberian Peninsula (including the Canary Islands), we conducted targeted exome sequencing of 246 patients with infantile-onset seizures with or without neurodevelopmental delay. We detected 107 variants in 48 different genes, which were implicated in neuronal excitability, neurodevelopment, synaptic transmission, and metabolic pathways. In 104 cases (42%) we detected variant(s) that we classified as pathogenic or likely pathogenic. Of the 48 mutated genes, 32 were dominant, 8 recessive and 8 X-linked. Of the patients for whom family studies could be performed and in whom pathogenic variants were identified in dominant or X-linked genes, 82% carried de novo mutations. The involvement of small copy number variations (CNVs) is 9%. The use of progressively updated custom panels with high mean vertical coverage enabled establishment of a definitive diagnosis in a large proportion of cases (42%) and detection of CNVs (even duplications) with high fidelity. In 10.5% of patients we detected associations that are pending confirmation via functional and/or familial studies. Our findings had important consequences for the clinical management of the probands, since a large proportion of the cohort had been clinically misdiagnosed, and their families were subsequently able to avail of genetic counseling. In some cases, a more appropriate treatment was selected for the patient in question, or an inappropriate treatment discontinued. Our findings suggest the existence of modifier genes that may explain the incomplete penetrance of some epilepsy-related genes. We discuss possible reasons for non-diagnosis and future research directions. Further studies will be required to uncover the roles of structural variants, epimutations, and oligogenic inheritance in epilepsy, thereby providing a more complete molecular picture of this disease. In summary, given the broad phenotypic spectrum of most epilepsy-related genes, efficient genomic tools like the targeted exome sequencing panel described here are essential for early diagnosis and treatment, and should be implemented as first-tier diagnostic tools for children with epilepsy without a clear etiologic basis.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Genomes & Disease Group, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), Santiago de Compostela University-IDIS, Santiago de Compostela, Spain
| | - Iria Roca
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Genomes & Disease Group, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), Santiago de Compostela University-IDIS, Santiago de Compostela, Spain
| | - Felícitas Díaz-Flores
- Molecular Genetics Unit, Clinical University Hospital of Canarias, Santa Cruz de Tenerife, Spain
| | - Verónica Cantarín
- Neuropediatrics Unit, Niño Jesús Clinical University Hospital, Madrid, Spain
| | | | - Ana Fontalba
- Genetics Unit, Marqués de Valdecilla Clinical University Hospital, Santander, Spain
| | - Francisco Laranjeira
- Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Do Porto, Porto, Portugal
| | - Sofia Quintans
- Neuropediatrics Unit, Santa María Hospital, Lisbon, Portugal
| | - Oana Moldovan
- Genetics Unit, Santa María Hospital, Lisbon, Portugal
| | - Blanca Felgueroso
- Neuropediatrics Unit, Teresa Herrera Child's Hospital, A Coruña, Spain
| | | | - Rogelio Simón
- Neuropediatrics Unit, 12 de Octubre Clinical University Hospital, Madrid, Spain
| | - Ana Camacho
- Neuropediatrics Unit, 12 de Octubre Clinical University Hospital, Madrid, Spain.,Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pilar Quijada
- Metabolic Disorders Unit, 12 de Octubre Clinical University Hospital, Madrid, Spain
| | - Salvador Ibanez-Mico
- Neuropediatrics Unit, Virgen de la Arrixaca Clinical University Hospital, Murcia, Spain
| | - Mª Rosario Domingno
- Neuropediatrics Unit, Virgen de la Arrixaca Clinical University Hospital, Murcia, Spain
| | - Carmen Benito
- Genetics Unit, Clinical University Hospital of Málaga, Málaga, Spain
| | - Rocío Calvo
- Neuropediatrics Unit, Clinical University Hospital of Málaga, Málaga, Spain
| | - Antonia Pérez-Cejas
- Molecular Genetics Unit, Clinical University Hospital of Canarias, Santa Cruz de Tenerife, Spain
| | - Mª Llanos Carrasco
- Neuropediatrics Unit, Clinical University Hospital Severo Ochoa, Leganés, Madrid, Spain
| | - Feliciano Ramos
- Clinical Genetics Unit, Pediatrics, Clinical University Hospital of Zaragoza, Zaragoza, Spain
| | - Mª Luz Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mª Luz Ruiz-Falcó
- Neuropediatrics Unit, Niño Jesús Clinical University Hospital, Madrid, Spain
| | | | - Margarita Martínez-Atienza
- Genomes & Disease Group, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), Santiago de Compostela University-IDIS, Santiago de Compostela, Spain.,Molecular Genetics Unit, Clinical University Hospital of Canarias, Santa Cruz de Tenerife, Spain.,Molecular Genetics Unit, Virgen de las Nieves Clinical University Hospital, Granada, Spain
| |
Collapse
|
9
|
Abstract
Dravet syndrome (DS) is a medically refractory epilepsy that onsets in the first year of life with prolonged seizures, often triggered by fever. Over time, patients develop other seizure types (myoclonic, atypical absences, drops), intellectual disability, crouch gait and other co-morbidities (sleep problems, autonomic dysfunction). Complete seizure control is generally not achievable with current therapies, and the goals of treatment are to balance reduction of seizure burden with adverse effects of therapies. Treatment of co-morbidities must also be addressed, as they have a significant impact on the quality of life of patients with DS. Seizures are typically worsened with sodium-channel agents. Accepted first-line agents include clobazam and valproic acid, although these rarely provide adequate seizure control. Benefit has also been noted with stiripentol, topiramate, levetiracetam, the ketogenic diet and vagal nerve stimulation. Several agents presently in development, specifically fenfluramine and cannabidiol, have shown efficacy in clinical trials. Status epilepticus is a recurring problem for patients with DS, particularly in their early childhood years. All patients should be prescribed a home rescue therapy (usually a benzodiazepine) but should also have a written seizure action plan that outlines when rescue should be given and further steps to take in the local hospital if the seizure persists despite home rescue therapy.
Collapse
|
10
|
Nakayama T, Ishii A, Yoshida T, Nasu H, Shimojima K, Yamamoto T, Kure S, Hirose S. Somatic mosaic deletions involving SCN1A
cause Dravet syndrome. Am J Med Genet A 2018; 176:657-662. [DOI: 10.1002/ajmg.a.38596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Tojo Nakayama
- Department of Pediatrics; Tohoku University School of Medicine; Sendai Japan
| | - Atsushi Ishii
- Department of Pediatrics; School of Medicine; Fukuoka University; Fukuoka Japan
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy; Fukuoka University; Fukuoka Japan
| | - Takeshi Yoshida
- Department of Pediatrics; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Hirosato Nasu
- National Epilepsy Center; Shizuoka Institute of Epilepsy and Neurological Disorders; Shizuoka Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Shigeo Kure
- Department of Pediatrics; Tohoku University School of Medicine; Sendai Japan
| | - Shinichi Hirose
- Department of Pediatrics; School of Medicine; Fukuoka University; Fukuoka Japan
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy; Fukuoka University; Fukuoka Japan
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article summarizes the emerging landscape of pediatric epilepsy, highlighting genetic contributions, and reviews approaches to genetic evaluation for pediatric epilepsy in this context. RECENT FINDINGS Advances in understanding the genetic basis for epilepsy over the last several years have been due in large part to the identification of de novo genetic variation underlying sporadic severe epilepsy in children; the genetic underpinnings of the more common epilepsies remain largely unknown. Next-generation sequencing approaches have been added to the repertoire of clinical tests for the evaluation of pediatric epilepsy, improving our ability to make positive diagnoses. Yields of over 50% are now being reported in selected groups of patients. Genetic variation contributing to the risk for pediatric epilepsy spans continua of scale and influence. The highest yield of genetic testing is currently in children with sporadic severe epilepsy caused by de novo variation. The approach to genetic evaluation and interpretation of results requires an understanding of (1) the epilepsy phenotype and (2) the particular advantages and limitations of the different genetic tests available. Our understanding of genetic variation will continue to improve over time and "negative" results are best conceptualized as "unresolved" or "negative for now."
Collapse
Affiliation(s)
- Tristan T Sands
- Division of Child Neurology, Columbia University Medical Center, 180 Fort Washington Avenue, New York, NY, 10032, USA.
| | - Hyunmi Choi
- Division of Child Neurology, Columbia University Medical Center, 180 Fort Washington Avenue, New York, NY, 10032, USA
| |
Collapse
|
12
|
Gürsoy S, Erçal D. Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. J Child Neurol 2016; 31:523-32. [PMID: 26271793 DOI: 10.1177/0883073815599262] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Epileptic encephalopathies are characterized by recurrent clinical seizures and prominent interictal epileptiform discharges seen during the early infantile period. Although epileptic encephalopathies are mostly associated with structural brain defects and inherited metabolic disorders, pathogenic gene mutations may also be involved in the development of epileptic encephalopathies even when no clear genetic inheritance patterns or consanguinity exist. The most common epileptic encephalopathies are Ohtahara syndrome, early myoclonic encephalopathy, epilepsy of infancy with migrating focal seizures, West syndrome and Dravet syndrome, which are usually unresponsive to traditional antiepileptic medication. Many of the diagnoses describe the phenotype of these electroclinical syndromes, but not the underlying causes. To date, approximately 265 genes have been defined in epilepsy and several genes including STXBP1, ARX, SLC25A22, KCNQ2, CDKL5, SCN1A, and PCDH19 have been found to be associated with early-onset epileptic encephalopathies. In this review, we aimed to present a diagnostic approach to primary genetic causes of early-onset epileptic encephalopathies.
Collapse
Affiliation(s)
- Semra Gürsoy
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| | - Derya Erçal
- Faculty of Medicine, Department of Pediatric Genetics, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
13
|
Shi XY, Tomonoh Y, Wang WZ, Ishii A, Higurashi N, Kurahashi H, Kaneko S, Hirose S. Efficacy of antiepileptic drugs for the treatment of Dravet syndrome with different genotypes. Brain Dev 2016; 38:40-6. [PMID: 26183863 DOI: 10.1016/j.braindev.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Evaluation of the efficacy of antiepileptic drugs (AEDs) used in the treatment of Dravet syndrome (DS) with different genotypes. METHODS Patients with DS were recruited from different tertiary hospitals. Using a direct sequencing method and Multiplex Ligation-Dependent Probe Amplification (MLPA), genetic abnormalities were assessed within the exons and flanking introns of SCN1A gene, which encodes the α1 subunit of neuronal sodium channels. Patients were divided into SCN1A-positive and SCN1A-negative groups according to the results of genetic tests. Medical records, including detailed treatment information, were surveyed to compare the effect of different AEDs on clonic or tonic-clonic seizures (GTCS). Efficacy variable was responder rate with regard to seizure reduction. RESULTS One hundred and sixty of 276 (57.97%) patients had mutation in SCN1A gene (only 128 of them had provided detailed medical records). Among the 116 patients without SCN1A mutations, 87 had provided detailed medical records. Both older AEDs (valproate, phenobarbital, bromide, carbamazepine, clonazepam, and clobazam) and newer AEDs such as zonisamide were used in these patients. Valproate was the most frequently used AED (86.72% in the SCN1A-positive group, 78.16% in the SCN1A-negative group), with 52.25% and 41.18% responder rates in SCN1A-positive and SCN1A-negative patients, respectively (P=0.15). Bromide was used in 40.63% of the SCN1A-positive patients and 20.69% of the SCN1A-negative patients, and its responder rates were 71.15% and 94.44% in SCN1A-positive and SCN1A-negative patients, respectively (P=0.05). Efficacy rates of clonazepam, clobazam, phenobarbital, and zonisamide ranged from 30% to 50%, and these rates were not correlated with different genotypes (P>0.05). Carbamazepine had either no effect or aggravated seizures in all SCN1A-positive patients. SIGNIFICANCE Bromide is most effective and is a well-tolerated drug among DS patients, especially among SCN1A-negative patients. Carbamazepine should be avoided in patients with SCN1A mutations.
Collapse
Affiliation(s)
- Xiu-Yu Shi
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pediatrics, Chinese PLA General Hospital, Beijing, China
| | - Yuko Tomonoh
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Wen-Ze Wang
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan; Department of Pediatrics, Jikei University School of Medicine, Tokyo, Japan
| | - Hirokazu Kurahashi
- Department of Pediatric Neurology, Central Hospital of Aichi Welfare Center for Persons with Developmental Disabilities, Kasugai, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
14
|
Wu YW, Sullivan J, McDaniel SS, Meisler MH, Walsh EM, Li SX, Kuzniewicz MW. Incidence of Dravet Syndrome in a US Population. Pediatrics 2015; 136:e1310-5. [PMID: 26438699 PMCID: PMC4621800 DOI: 10.1542/peds.2015-1807] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE De novo mutations of the gene sodium channel 1α (SCN1A) are the major cause of Dravet syndrome, an infantile epileptic encephalopathy. US incidence of DS has been estimated at 1 in 40 000, but no US epidemiologic studies have been performed since the advent of genetic testing. METHODS In a retrospective, population-based cohort of all infants born at Kaiser Permanente Northern California during 2007-2010, we electronically identified patients who received ≥2 seizure diagnoses before age 12 months and who were also prescribed anticonvulsants at 24 months. A child neurologist reviewed records to identify infants who met 4 of 5 criteria for clinical Dravet syndrome: normal development before seizure onset; ≥2 seizures before age 12 months; myoclonic, hemiclonic, or generalized tonic-clonic seizures; ≥2 seizures lasting >10 minutes; and refractory seizures after age 2 years. SCN1A gene sequencing was performed as part of routine clinical care. RESULTS Eight infants met the study criteria for clinical Dravet syndrome, yielding an incidence of 1 per 15 700. Six of these infants (incidence of 1 per 20 900) had a de novo SCN1A missense mutation that is likely to be pathogenic. One infant had an inherited SCN1A variant that is unlikely to be pathogenic. All 8 experienced febrile seizures, and 6 had prolonged seizures lasting >10 minutes by age 1 year. CONCLUSIONS Dravet syndrome due to an SCN1A mutation is twice as common in the United States as previously thought. Genetic testing should be considered in children with ≥2 prolonged febrile seizures by 1 year of age.
Collapse
Affiliation(s)
- Yvonne W. Wu
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | - Joseph Sullivan
- Departments of Neurology and,Pediatrics, University of California, San Francisco, San Francisco, California
| | | | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | | | | | - Michael W. Kuzniewicz
- Research, and,Neonatology, Kaiser Permanente Northern California, Oakland, California; and
| |
Collapse
|
15
|
Lim BC, Hwang H, Kim H, Chae JH, Choi J, Kim KJ, Hwang YS, Yum MS, Ko TS. Epilepsy phenotype associated with a chromosome 2q24.3 deletion involving SCN1A: Migrating partial seizures of infancy or atypical Dravet syndrome? Epilepsy Res 2015; 109:34-9. [DOI: 10.1016/j.eplepsyres.2014.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/07/2014] [Accepted: 10/18/2014] [Indexed: 01/03/2023]
|
16
|
Olson H, Shen Y, Avallone J, Sheidley BR, Pinsky R, Bergin AM, Berry GT, Duffy FH, Eksioglu Y, Harris DJ, Hisama FM, Ho E, Irons M, Jacobsen CM, James P, Kothare S, Khwaja O, Lipton J, Loddenkemper T, Markowitz J, Maski K, Megerian JT, Neilan E, Raffalli PC, Robbins M, Roberts A, Roe E, Rollins C, Sahin M, Sarco D, Schonwald A, Smith SE, Soul J, Stoler JM, Takeoka M, Tan WH, Torres AR, Tsai P, Urion DK, Weissman L, Wolff R, Wu BL, Miller DT, Poduri A. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; 75:943-58. [PMID: 24811917 DOI: 10.1002/ana.24178] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate the role of copy number abnormalities detectable using chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. METHODS We identified patients with International Classification of Diseases, ninth revision (ICD-9) codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children's Hospital. We reviewed medical records and included patients who met criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. RESULTS Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1-4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18kb to 142Mb, and 34% were >500kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or "hotspots." We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. INTERPRETATION Copy number abnormalities play an important role in patients with epilepsy. Because the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy.
Collapse
Affiliation(s)
- Heather Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology and Neurogenetics Program, Department of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hirose S, Scheffer IE, Marini C, De Jonghe P, Andermann E, Goldman AM, Kauffman M, Tan NCK, Lowenstein DH, Sisodiya SM, Ottman R, Berkovic SF. SCN1Atesting for epilepsy: Application in clinical practice. Epilepsia 2013; 54:946-52. [DOI: 10.1111/epi.12168] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics and Research Institute for the Molecular Pathomechanisms of Epilepsy; Fukuoka University; Fukuoka; Japan
| | - Ingrid E. Scheffer
- Florey Institute; Departments of Medicine and Paediatrics; Austin Health and Royal Children's Hospital; University of Melbourne; Melbourne; Victoria; Australia
| | - Carla Marini
- Epilepsy, Neurophysiology and Neurogenetics Unit; Division of Child Neurology and Psychiatry; University of Pisa and Research Institute Stella Maris Foundation; Pisa; Italy
| | | | - Eva Andermann
- Neurogenetics Unit; Montreal Neurological Hospital & Institute; Montreal; Quebec; Canada
| | - Alica M. Goldman
- Department of Neurology; Baylor College of Medicine; Houston; Texas; U.S.A
| | - Marcelo Kauffman
- Neurogenetics Clinic Hospital JM Ramos Mejia; University of Buenos Aires-CONICET; Buenos Aires; Argentina
| | - Nigel C. K. Tan
- Department of Neurology; National Neuroscience Institute; Singapore; Singapore
| | - Daniel H. Lowenstein
- Department of Neurology; University of California; San Francisco; California; U.S.A
| | | | - Ruth Ottman
- Sergievsky Center and Departments of Epidemiology and Neurology; Columbia University; New York; New York; U.S.A
| | - Samuel F. Berkovic
- Epilepsy Research Centre; University of Melbourne, Austin Health; Melbourne; Victoria; Australia
| | | |
Collapse
|
18
|
Nicholl J, Waters W, Suwalski S, Brown S, Hull Y, Harbord MG, Entwistle J, Thompson S, Clark D, Pridmore C, Haan E, Barnett C, McGregor L, Liebelt J, Thompson EM, Friend K, Bain SM, Yu S, Mulley JC. Epilepsy with cognitive deficit and autism spectrum disorders: prospective diagnosis by array CGH. Am J Med Genet B Neuropsychiatr Genet 2013. [PMID: 23184456 DOI: 10.1002/ajmg.b.32114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The clinical significance of chromosomal microdeletions and microduplications was predicted based on their gene content, de novo or familial inheritance and accumulated knowledge recorded on public databases. A patient group comprised of 247 cases with epilepsy and its common co-morbidities of developmental delay, intellectual disability, autism spectrum disorders, and congenital abnormalities was reviewed prospectively in a diagnostic setting using a standardized oligo-array CGH platform. Seventy-three (29.6%) had copy number variations (CNVs) and of these 73 cases, 27 (37.0%) had CNVs that were likely causative. These 27 cases comprised 10.9% of the 247 cases reviewed. The range of pathogenic CNVs associated with seizures was consistent with the existence of many genetic determinants for epilepsy.
Collapse
Affiliation(s)
- Jillian Nicholl
- Department of Genetic Medicine, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang JW, Shi XY, Kurahashi H, Hwang SK, Ishii A, Higurashi N, Kaneko S, Hirose S. Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res 2012. [DOI: 10.1016/j.eplepsyres.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Michelucci R, Pasini E, Riguzzi P, Volpi L, Dazzo E, Nobile C. Genetics of epilepsy and relevance to current practice. Curr Neurol Neurosci Rep 2012; 12:445-55. [PMID: 22618127 DOI: 10.1007/s11910-012-0281-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic factors are likely to play a major role in many epileptic conditions, spanning from classical idiopathic (genetic) generalized epilepsies to epileptic encephalopathies and focal epilepsies. In this review we describe the genetic advances in progressive myoclonus epilepsies, which are strictly monogenic disorders, genetic generalized epilepsies, mostly exhibiting complex genetic inheritance, and SCN1A-related phenotypes, namely genetic generalized epilepsy with febrile seizure plus and Dravet syndrome. Particular attention is devoted to a form of familial focal epilepsies, autosomal-dominant lateral temporal epilepsy, which is a model of non-ion genetic epilepsies. This condition is associated with mutations of the LGI1 gene, whose protein is secreted from the neurons and exerts its action on a number of targets, influencing cortical development and neuronal maturation.
Collapse
Affiliation(s)
- Roberto Michelucci
- Unit of Neurology, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Via Altura 3, 40139, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
On the likelihood of SCN1A microdeletions or duplications in Dravet syndrome with missense mutation. Brain Dev 2012; 34:617-9. [PMID: 22206733 DOI: 10.1016/j.braindev.2011.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/04/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022]
Abstract
This study examines whether microdeletions and duplications of the gene encoding α1 subunit of the sodium channel (SCN1A) are underlying causes in Dravet syndrome (DS) with SCN1A missense mutation. Multiple exonic deletions were identified in 8/84 patients without mutation and 0/41 patients with missense mutations. Our findings indicate that while microdeletions are not rare in SCN1A-negative patients, they are not likely to be present simultaneously with other SCN1A mutations.
Collapse
|
22
|
Higurashi N, Shi X, Yasumoto S, Oguni H, Sakauchi M, Itomi K, Miyamoto A, Shiraishi H, Kato T, Makita Y, Hirose S. PCDH19 mutation in Japanese females with epilepsy. Epilepsy Res 2012; 99:28-37. [DOI: 10.1016/j.eplepsyres.2011.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/10/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
23
|
Petrelli C, Passamonti C, Cesaroni E, Mei D, Guerrini R, Zamponi N, Provinciali L. Early clinical features in Dravet syndrome patients with and without SCN1A mutations. Epilepsy Res 2012; 99:21-7. [DOI: 10.1016/j.eplepsyres.2011.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
24
|
Marini C, Mantegazza M. Na+ channelopathies and epilepsy: recent advances and new perspectives. Expert Rev Clin Pharmacol 2012; 3:371-84. [PMID: 22111617 DOI: 10.1586/ecp.10.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations of ion channel genes have a major role in the pathogenesis of several epilepsies, confirming that some epilepsies are disorders due to the impairment of ion channel function (channelopathies). Voltage-gated Na(+) channels (VGSCs) play an essential role in neuronal excitability; it is, therefore, not surprising that most mutations associated with epilepsy have been identified in genes coding for VGSCs subunits. Epilepsies linked to VGSCs mutations range in severity from mild disorders, such as benign neonatal-infantile familial seizures and febrile seizures, to severe and drug-resistant epileptic encephalopathies. SCN1A is the most clinically relevant of all of the known epilepsy genes, several hundred mutations have been identified in this gene. This review will summarize recent advances and new perspectives on Na(+) channels and epilepsy. A better understanding of the genetic basis and of how gene defects cause seizures is mandatory to direct future research for newer selective and more efficacious treatments.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology Unit, Pediatric Hospital A. Meyer, University of Firenze, Viale Pieraccini, Florence, Italy.
| | | |
Collapse
|
25
|
Fendri-Kriaa N, Boujilbene S, Kammoun F, Mkaouar-Rebai E, Mahmoud AB, Hsairi I, Rebai A, Triki C, Fakhfakh F. A putative disease-associated haplotype within the SCN1A gene in Dravet syndrome. Biochem Biophys Res Commun 2011; 408:654-7. [DOI: 10.1016/j.bbrc.2011.04.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
|
26
|
Marini C, Scheffer IE, Nabbout R, Suls A, De Jonghe P, Zara F, Guerrini R. The genetics of Dravet syndrome. Epilepsia 2011; 52 Suppl 2:24-9. [DOI: 10.1111/j.1528-1167.2011.02997.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Wang W, Takashima S, Segawa Y, Itoh M, Shi X, Hwang SK, Nabeshima K, Takeshita M, Hirose S. The developmental changes of Na(v)1.1 and Na(v)1.2 expression in the human hippocampus and temporal lobe. Brain Res 2011; 1389:61-70. [PMID: 21377452 DOI: 10.1016/j.brainres.2011.02.083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 01/01/2023]
Abstract
Alterations of the genes encoding α1 and α2 subunits of voltage-gated sodium channels (SCN1A, SCN2A) have been reported as causes of various types of epilepsy, most of which occur during the first year of life; as yet, however, the detailed mechanisms are unclear. We suppose that developmental changes of SCN1A and SCN2A in the human brain, which are unknown yet, may play an important role. So here, we studied the developmental changes of their corresponding proteins (Na(v)1.1 and Na(v)1.2) in the human hippocampus and temporal lobe in 28 autopsy cases, which age from 13weeks of gestation (GW) to 63years of age (Y). Using comparative microscopic immunohistochemical (IHC) analysis, we found that Na(v)1.1 and Na(v)1.2 immunoreactivity first appeared at 19GW, simultaneously in the hippocampus and the white matter of temporal lobe. In nearly all age groups, Na(v)1.1 immunoreactivity was weak and relatively homogeneous. In general, Na(v)1.1 immunoreactive (IR) neurons and neurites increased during the late fetal and postnatal periods, reached their peaks 7-9months after birth (M), then decreased and remained stable at a relatively low level during childhood and adulthood. On the other hand, Na(v)1.2 immunoreactivity was strong and heterogeneous. In the hippocampus, Na(v)1.2 IR neurons increased gradually during the late fetal period, reached their peaks at 7-9M, sustained this high level during childhood, and then decreased slightly at adulthood. In the temporal lobe, Na(v)1.2 IR neurons reached a high level during the late fetal period, and maintained that level during subsequent developmental stages; Na(v)1.2 IR neurites also increased to a relatively high level during the late fetal period and continued to increase up to and during adulthood. Using double-staining IHC, we found that Na(v)1.1 and Na(v)1.2 had a relatively high colocalization rate with parvalbumin and showed distinct developmental changes. These findings extend our previous understanding of sodium channels and may help us discover the pathomechanisms of sodium channel-related age-dependent epilepsy.
Collapse
Affiliation(s)
- Wenze Wang
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Morse RP. Dravet syndrome: inroads into understanding epileptic encephalopathies. J Pediatr 2011; 158:354-9. [PMID: 21163495 DOI: 10.1016/j.jpeds.2010.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/17/2010] [Accepted: 10/21/2010] [Indexed: 12/17/2022]
Affiliation(s)
- Richard P Morse
- Section of Neurology and Development, Department of Pediatrics, Children's Hospital at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
29
|
Abstract
We set out to review the extent to which molecular karyotyping has overtaken conventional cytogenetics in applications related to epilepsy. Multiplex ligase-dependent probe amplification (MLPA) targeted to predetermined regions such as SCN1A and KCNQ2 has been effectively applied over the last half a decade, and oligonucleotide array comparative genome hybridization (array CGH) is now well established for genome-wide exploration of microchromosomal variation. Array CGH is applicable to the characterization of lesions present in both sporadic and familial epilepsy, especially where clinical features of affected cases depart from established syndromes. Copy number variants (CNVs) associated with epilepsy and a range of other syndromes and conditions can be recurrent due to nonallelic homologous recombination in regions of segmental duplication. The most common of the recurrent microdeletions associated with generalized epilepsy are typically seen at a frequency of ∼ 1% at 15q13.3, 16p13.11, and 15q11.2, sites that also confer susceptibility for intellectual disability, autism, and schizophrenia. Incomplete penetrance and variable expressivity confound the established rules of cytogenetics for determining the pathogenicity for novel CNVs; however, as knowledge is gained for each of the recurrent CNVs, this is translated to genetic counseling. CNVs play a significant role in the susceptibility profile for epilepsies, with complex genetics and their comorbidities both from the "hotspots" defined by segmental duplication and elsewhere in the genome where their location and size are often novel.
Collapse
Affiliation(s)
- John C Mulley
- Department of Genetic Medicine, Directorate of Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
30
|
Ebrahimi A, Houshmand M, Tonekaboni SH, Fallah Mahboob Passand MS, Zainali S, Moghadasi M. Two novel mutations in SCN1A gene in Iranian patients with epilepsy. Arch Med Res 2010; 41:207-14. [PMID: 20682179 DOI: 10.1016/j.arcmed.2010.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/26/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Epilepsy as a common chronic neurological disorder is characterized by recurrent unprovoked seizures. Febrile seizures are the most common type of epilepsy in infants and children. Our aim was the molecular analysis of SCN1A gene in affected Iranian patients with GEFS+ and Dravet syndrome diagnosed clinically to explain genotype-phenotype correlation and exact classification. METHODS The 34 unrelated Iranian families with epilepsy were selected and screened for SCN1A mutations by MLPA, ARMS, and PCR-RFLP confirmed by direct sequencing. RESULTS MLPA analysis showed normal patterns, but direct sequencing revealed that generally 20/34 (0.588) probands have common reported single nucleotide polymorphisms (SNPs) (p.A1067G; rs2298771) with allelic frequency as 0.706/0.294 in patients and 0.515/0.485 in control group, respectively, for A/G. No significant differences between groups were observed. Moreover, four novel allelic variants as missense substitutions included two new sequence variation (p.F412 I, p.Y1274N) and two previously reported mutations (p.R101G, p.S103G) that were detected in 4/34 probands but not in control groups and other healthy normal family members. CONCLUSIONS Clinical diagnosis could nearly establish the classification, but mutation screening helps clinicians to confirm their data. We found mutation in four probands and confirmed the net diagnosis. Our data suggest that the clinical symptom variations could be also explained, considering the role of modifier genes such as mitochondrial mutations or other genes responsible for drug metabolism pathways including multiple drug resistance family genes (ABCB1) or MTHFR.
Collapse
Affiliation(s)
- Ahmad Ebrahimi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
31
|
Nicita F, Spalice A, Papetti L, Ursitti F, Parisi P, Gennaro E, Zara F, Iannetti P. Genotype-phenotype correlations in a group of 15 SCN1A-mutated Italian patients with GEFS+ spectrum (seizures plus, classical and borderline severe myoclonic epilepsy of infancy). J Child Neurol 2010; 25:1369-76. [PMID: 20729507 DOI: 10.1177/0883073810365737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in SCN1A gene have been associated with the spectrum of generalized/genetic epilepsy with febrile seizures plus. Recently, databases reporting SCN1A mutations and clinical details of patients have been created to facilitate genotype- phenotype correlations, actually not completely defined, particularly if a specific mutation underlies phenotypes. We report on a group of 15 patients with clinical features of GEFS+ (3), classical (7), or borderline severe myoclonic epilepsy of infancy (5), in whom genetic analysis of patients and parents and follow-up period were performed to establish genotype-phenotype correlations, to enrich literature and databases data. We found 11 pathogenic mutations (5 novel: c.80 G>C exon 1; c.187 T>C exon 1; c.3061 G>T exon 16; c.4297 G>A exon 22; c.5579 delA ins TCTCC exon 26) and 4 novel nucleotidic variants (IVS5+38 C>T intron 5; IVS8-19 C>T intron 18; c.4945 C>T exon 25; c.5127 C>A exon 26). Paternal inheritance was observed in 4/4 cases.
Collapse
Affiliation(s)
- Francesco Nicita
- Child Neurology, Paediatric Department, I Faculty of Medicine, Sapienza University c/o Policlinico Umberto I, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mutations in a number of genes encoding voltage-gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A-GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.
Collapse
Affiliation(s)
- Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
33
|
Abstract
Epilepsy is one of the most common neurological disorders, with a prevalence of 1% and lifetime incidence of 3%. There are numerous epilepsy syndromes, most of which are considered to be genetic epilepsies. Despite the discovery of more than 20 genes for epilepsy to date, much of the genetic contribution to epilepsy is not yet known. Copy number variants have been established as an important source of mutation in other complex brain disorders, including intellectual disability, autism and schizophrenia. Recent advances in technology now facilitate genome-wide searches for copy number variants and are beginning to be applied to epilepsy. Here, we discuss what is currently known about the contribution of copy number variants to epilepsy, and how that knowledge is redefining classification of clinical and genetic syndromes.
Collapse
|
34
|
Arlier Z, Bayri Y, Kolb LE, Erturk O, Ozturk AK, Bayrakli F, Bilguvar K, Moliterno JA, Dervent A, Demirbilek V, Yalcinkaya C, Korkmaz B, Tuysuz B, Gunel M. Four novel SCN1A mutations in Turkish patients with severe myoclonic epilepsy of infancy (SMEI). J Child Neurol 2010; 25:1265-8. [PMID: 20110217 DOI: 10.1177/0883073809357241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Severe myoclonic epilepsy of infancy (SMEI) (OMIM #607208), also known as Dravet syndrome, is a rare genetic disorder characterized by frequent generalized, unilateral clonic or tonic-clonic seizures that begin during the first year of life. Heterozygous de novo mutations in the SCN1A gene, which encodes the neuronal voltage-gated sodium channel α subunit type 1 (Nav1.1), are responsible for Dravet syndrome, with a broad spectrum of mutations and rearrangements having been reported. In this study, the authors present 4 novel mutations and confirm 2 previously identified mutations in the SCN1A gene found in a cohort of Turkish patients with Dravet syndrome. Mutational analysis of other responsible genes, GABRG2 and PCDH19, were unrevealing. The authors' findings add to the known spectrum of mutations responsible for this disease phenotype and once again reinforce our understanding of the allelic heterogeneity of this disease.
Collapse
Affiliation(s)
- Zulfikar Arlier
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krepischi ACV, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna-Morgante AM, Rosenberg C. Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia 2010; 51:2457-60. [PMID: 21204806 DOI: 10.1111/j.1528-1167.2010.02742.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 50% of all carriers of 2q21-q31 deletions present epileptic seizures. The band 2q24 constitutes the smallest commonly deleted segment in these patients, and contains the voltage-gated sodium channel genes SCN1A and SCN2A, associated with Dravet syndrome and benign familial neonatal-infantile seizures, respectively. A further putative locus involving epilepsy in the region was previously identified through disruption of the SLC4A10 gene by translocation. In the course of performing high-resolution DNA copy number analyses on syndromic mentally impaired individuals, we encountered three patients with overlapping deletions in chromosome region 2q24. Two of these patients exhibited epileptic seizures in addition to mental deficiency. The deletion in one of the epileptic patients did not include the SCN cluster, demonstrating that a less severe form of epilepsy maps to an adjacent genomic region. This second region comprises about 3 Mb and contains the candidate gene SLC4A10, providing further support for the potential role of this gene in epilepsy.
Collapse
|
36
|
Ishii A, Zhang B, Kaneko S, Hirose S. Positive association between benign familial infantile convulsions and LGI4. Brain Dev 2010; 32:538-43. [PMID: 19815358 DOI: 10.1016/j.braindev.2009.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE LGI4 is located in 19q13.11, where the locus of benign familial infantile convulsions (BFIC) has been mapped. LGI4 belongs to a family of proteins with the epilepsy-associated repeat (EAR) domain and is associated with various epilepsies. We investigated whether LGI4 is a candidate gene for BFIC. METHODS Fifteen patients with BFIC were examined for mutations and/or polymorphisms of LGI4 by using a direct sequencing method. RESULTS Several frequent polymorphisms were identified. The genotype frequency distribution of c.1722G/A polymorphism was significantly different between patients with BFIC and control subjects (p<0.05). Logistic regression analysis showed that the G allele of c.1722G/A polymorphism had significant recessive effects on the increased relative risk for BFIC (p<0.05). There was no association between c.1722G/A polymorphism and benign familial neonatal convulsion, an epilepsy phenotype similar to BFIC but genetically distinguished from BFIC. DISCUSSION The positive genotypic association between BFIC and c.1722G/A polymorphism suggests that LGI4 might contribute to the susceptibility to BFIC.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Jonanku, Fukuoka, Japan
| | | | | | | |
Collapse
|
37
|
|
38
|
Takatsuki S, Nakamura R, Haga Y, Mitsui K, Hashimoto T, Shimojima K, Saji T, Yamamoto T. Severe pulmonary emphysema in a girl with interstitial deletion of 2q24.2q24.3 includingITGB6. Am J Med Genet A 2010; 152A:1020-5. [DOI: 10.1002/ajmg.a.33362] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Ottman R, Hirose S, Jain S, Lerche H, Lopes-Cendes I, Noebels JL, Serratosa J, Zara F, Scheffer IE. Genetic testing in the epilepsies--report of the ILAE Genetics Commission. Epilepsia 2010; 51:655-70. [PMID: 20100225 DOI: 10.1111/j.1528-1167.2009.02429.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice.
Collapse
Affiliation(s)
- Ruth Ottman
- G. H. Sergievsky Center and Department of Epidemiology, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev 2009; 31:758-62. [PMID: 19783390 DOI: 10.1016/j.braindev.2009.08.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/18/2009] [Accepted: 08/26/2009] [Indexed: 12/20/2022]
Abstract
Mutations of the gene encoding the alpha2 subunit of the neuronal sodium channel, SCN2A, have been found in benign familial neonatal-infantile seizures (BFNIS). In Dravet syndrome, only one nonsense mutation of SCN2A was identified, while hundreds of mutations were found in the paralogue gene, SCN1A, which encodes the alpha1 subunit. This study examines whether SCN2A mutations are associated with Dravet syndrome. We screened for mutations of SCN1A, SCN2A and GABRG2 (the gene encoding gamma2 subunit of the GABA(A) receptor) in 59 patients with Dravet syndrome and found 29 SCN1A mutations and three missense SCN2A mutations. Among the three, one de novo SCN2A mutation (c.3935G>C: R1312T) identified in a patient was thought to affect an arginine residue in a voltage sensor of the channel and hence, to be pathogenic. This finding suggests that both nonsense mutations and missense SCN2A mutations cause Dravet syndrome.
Collapse
|
42
|
Nabbout R, Depienne C, Chipaux M, Girard B, Souville I, Trouillard O, Dulac O, Chelly J, Afenjar A, Héron D, Leguern E, Beldjord C, Bienvenu T, Bahi-Buisson N. CDKL5 and ARX mutations are not responsible for early onset severe myoclonic epilepsy in infancy. Epilepsy Res 2009; 87:25-30. [DOI: 10.1016/j.eplepsyres.2009.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/02/2009] [Accepted: 07/15/2009] [Indexed: 11/26/2022]
|
43
|
Arzimanoglou A. Dravet syndrome: From electroclinical characteristics to molecular biology. Epilepsia 2009; 50 Suppl 8:3-9. [DOI: 10.1111/j.1528-1167.2009.02228.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res 2009; 85:89-95. [DOI: 10.1016/j.eplepsyres.2009.02.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 11/22/2022]
|
45
|
Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126:173-93. [PMID: 19536565 DOI: 10.1007/s00439-009-0702-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/02/2009] [Indexed: 01/10/2023]
Abstract
Epilepsy is the most common neurological disorder affecting young people. The etiologies are multiple and most cases are sporadic. However, some rare families with Mendelian inheritance have provided evidence of genes' important role in epilepsy. Two important but apparently different groups of disorders have been extensively studied: epilepsies associated with malformations of cortical development (MCDs) and epilepsies associated with a structurally normal brain (or with minimal abnormalities only). This review is focused on clinical and molecular aspects of focal cortical dysplasia, polymicrogyria, periventricular nodular heterotopia, subcortical band heterotopia, lissencephaly and schizencephaly as examples of MCDs. Juvenile myoclonic epilepsy, childhood absence epilepsy, some familial forms of focal epilepsy and epilepsies associated with febrile seizures are discussed as examples of epileptic conditions in (apparently) structurally normal brains.
Collapse
|
46
|
Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev 2009; 31:394-400. [PMID: 19203856 DOI: 10.1016/j.braindev.2009.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/02/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) can both arise due to mutations of SCN1A, the gene encoding the alpha 1 pore-forming subunit of the sodium channel. GEFS+ refers to a familial epilepsy syndrome where at least two family members have phenotypes that fit within the GEFS+ spectrum. The GEFS+ spectrum comprises a range of mild to severe phenotypes varying from classical febrile seizures to Dravet syndrome. Dravet syndrome is a severe infantile onset epilepsy syndrome with multiple seizure types, developmental slowing and poor outcome. More than 70% of patients with Dravet syndrome have mutations of SCN1A; these include both truncation and missense mutations. In contrast, only 10% of GEFS+ families have SCN1A mutations and these comprise missense mutations. GEFS+ has also been associated with mutations of genes encoding the sodium channel beta 1 subunit, SCN1B, and the GABA(A) receptor gamma 2 subunit, GABRG2. The phenotypic heterogeneity that is characteristic of GEFS+ families is likely to be due to modifier genes. Interpretation of the significance of a SCN1A missense mutation requires a thorough understanding of the phenotypes in the GEFS+ spectrum whereas a de novo truncation mutation is likely to be associated with a severe phenotype. Early recognition of Dravet syndrome is important as aggressive control of seizures may improve developmental outcome.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Department of Medicine, The University of Melbourne, Austin Health, Victoria, Australia.
| | | | | | | |
Collapse
|
47
|
|
48
|
Marini C, Scheffer IE, Nabbout R, Mei D, Cox K, Dibbens LM, McMahon JM, Iona X, Carpintero RS, Elia M, Cilio MR, Specchio N, Giordano L, Striano P, Gennaro E, Cross JH, Kivity S, Neufeld MY, Afawi Z, Andermann E, Keene D, Dulac O, Zara F, Berkovic SF, Guerrini R, Mulley JC. SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular diagnosis. Epilepsia 2009; 50:1670-8. [PMID: 19400878 DOI: 10.1111/j.1528-1167.2009.02013.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We aimed to determine the type, frequency, and size of microchromosomal copy number variations (CNVs) affecting the neuronal sodium channel α 1 subunit gene (SCN1A) in Dravet syndrome (DS), other epileptic encephalopathies, and generalized epilepsy with febrile seizures plus (GEFS+). METHODS Multiplex ligation-dependent probe amplification (MLPA) was applied to detect SCN1A CNVs among 289 cases (126 DS, 97 GEFS+, and 66 with other phenotypes). CNVs extending beyond SCN1A were further characterized by comparative genome hybridization (array CGH). RESULTS Novel SCN1A CNVs were found in 12.5% of DS patients where sequence-based mutations had been excluded. We identified the first partial SCN1A duplications in two siblings with typical DS and in a patient with early-onset symptomatic generalized epilepsy. In addition, a patient with DS had a partial SCN1A amplification of 5-6 copies. The remaining CNVs abnormalities were four partial and nine whole SCN1A deletions involving contiguous genes. Two CNVs (a partial SCN1A deletion and a duplication) were inherited from a parent, in whom there was mosaicism. Array CGH showed intragenic deletions of 90 kb and larger, with the largest of 9.3 Mb deleting 49 contiguous genes and extending beyond SCN1A. DISCUSSION Duplication and amplification involving SCN1A are now added to molecular mechanisms of DS patients. Our findings showed that 12.5% of DS patients who are mutation negative have MLPA-detected SCN1A CNVs with an overall frequency of about 2-3%. MLPA is the established second-line testing strategy to reliably detect all CNVs of SCN1A from the megabase range down to one exon. Large CNVs extending outside SCN1A and involving contiguous genes can be precisely characterized by array CGH.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology Unit, Children's Hospital A. Meyer, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Depienne C, Bouteiller D, Keren B, Cheuret E, Poirier K, Trouillard O, Benyahia B, Quelin C, Carpentier W, Julia S, Afenjar A, Gautier A, Rivier F, Meyer S, Berquin P, Hélias M, Py I, Rivera S, Bahi-Buisson N, Gourfinkel-An I, Cazeneuve C, Ruberg M, Brice A, Nabbout R, Leguern E. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 2009; 5:e1000381. [PMID: 19214208 PMCID: PMC2633044 DOI: 10.1371/journal.pgen.1000381] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/13/2009] [Indexed: 11/18/2022] Open
Abstract
Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.
Collapse
Affiliation(s)
- Christel Depienne
- Département de Génétique et Cytogénétique, AP-HP, Fédération de Génétique, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gargus JJ. Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 2009; 1151:133-56. [PMID: 19154521 DOI: 10.1111/j.1749-6632.2008.03572.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calcium ion is one of the most versatile, ancient, and universal of biological signaling molecules, known to regulate physiological systems at every level from membrane potential and ion transporters to kinases and transcription factors. Disruptions of intracellular calcium homeostasis underlie a host of emerging diseases, the calciumopathies. Cytosolic calcium signals originate either as extracellular calcium enters through plasma membrane ion channels or from the release of an intracellular store in the endoplasmic reticulum (ER) via inositol triphosphate receptor and ryanodine receptor channels. Therefore, to a large extent, calciumopathies represent a subset of the channelopathies, but include regulatory pathways and the mitochondria, the major intracellular calcium repository that dynamically participates with the ER stores in calcium signaling, thereby integrating cellular energy metabolism into these pathways, a process of emerging importance in the analysis of the neurodegenerative and neuropsychiatric diseases. Many of the calciumopathies are common complex polygenic diseases, but leads to their understanding come most prominently from rare monogenic channelopathy paradigms. Monogenic forms of common neuronal disease phenotypes-such as seizures, ataxia, and migraine-produce a constitutionally hyperexcitable tissue that is susceptible to periodic decompensations. The gene families and genetic lesions underlying familial hemiplegic migraine, FHM1/CACNA1A, FHM2/ATP1A2, and FHM3/SCN1A, and monogenic mitochondrial migraine syndromes, provide a robust platform from which genes, such as CACNA1C, which encodes the calcium channel mutated in Timothy syndrome, can be evaluated for their role in autism and bipolar disease.
Collapse
Affiliation(s)
- J Jay Gargus
- Department of Physiology & Biophysics, Section of Human Genetics, School of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|