1
|
Liu J, Hu D, Zhang Z, Tang F, Yan Y, Ma Y. Autosomal dominant lateral temporal epilepsy in a family exhibiting a rare heterozygous mutation and deletion in the leucine-rich glioma inactivated 1 gene. Neurosci Lett 2022; 782:136698. [PMID: 35643238 DOI: 10.1016/j.neulet.2022.136698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
Abstract
Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. In a family with six ADLTE patients spanning four generations, our linkage and exome sequencing investigations revealed a rare frameshift heterozygous mutation in LGI1 (c.1494del(p.Phe498LeufsTer15)). Gene cloning methods were used to create plasmids with wild-type and mutant LGI1 alleles. Through transfection of HEK293 cells and primary neurons, they were utilized to assess the subcellular location of wild-type and mutant LGI1. Moreover, the plasmid-transfected primary neurons were analyzed for neuronal complexity and density of dendritic spines. According to our results. the mutation decreased LGI1 secretion in transfected HEK293 cells. In primary neurons, mutant LGI1 affected neuronal polarity and complexity. Our findings have broadened the phenotypic spectrum of LGI1 mutations and provided evidence regarding the pathogenicity of this mutation. In addition, we discovered new information about the role of LGI1 in the development of temporal lobe epilepsy, along with a possible link between neuronal polarity disorder and ADLTE.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Danmei Hu
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zhijuan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Fenglin Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yin Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China.
| |
Collapse
|
2
|
Cárdenas-Rodríguez N, Carmona-Aparicio L, Pérez-Lozano DL, Ortega-Cuellar D, Gómez-Manzo S, Ignacio-Mejía I. Genetic variations associated with pharmacoresistant epilepsy (Review). Mol Med Rep 2020; 21:1685-1701. [PMID: 32319641 PMCID: PMC7057824 DOI: 10.3892/mmr.2020.10999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common, serious neurological disorder worldwide. Although this disease can be successfully treated in most cases, not all patients respond favorably to medical treatments, which can lead to pharmacoresistant epilepsy. Drug-resistant epilepsy can be caused by a number of mechanisms that may involve environmental and genetic factors, as well as disease- and drug-related factors. In recent years, numerous studies have demonstrated that genetic variation is involved in the drug resistance of epilepsy, especially genetic variations found in drug resistance-related genes, including the voltage-dependent sodium and potassium channels genes, and the metabolizer of endogenous and xenobiotic substances genes. The present review aimed to highlight the genetic variants that are involved in the regulation of drug resistance in epilepsy; a comprehensive understanding of the role of genetic variation in drug resistance will help us develop improved strategies to regulate drug resistance efficiently and determine the pathophysiological processes that underlie this common human neurological disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Liliana Carmona-Aparicio
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Diana L Pérez-Lozano
- Laboratory of Neuroscience, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Daniel Ortega-Cuellar
- Laboratory of Experimental Nutrition, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Saúl Gómez-Manzo
- Laboratory of Genetic Biochemistry, National Institute of Pediatrics, Ministry of Health, Coyoacán, Mexico City 04530, Mexico
| | - Iván Ignacio-Mejía
- Laboratory of Translational Medicine, Military School of Health Graduates, Lomas de Sotelo, Militar, Mexico City 11200, Mexico
| |
Collapse
|
3
|
Yamagata A, Fukai S. Insights into the mechanisms of epilepsy from structural biology of LGI1-ADAM22. Cell Mol Life Sci 2020; 77:267-274. [PMID: 31432233 PMCID: PMC11104983 DOI: 10.1007/s00018-019-03269-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Epilepsy is one of the most common brain disorders, which can be caused by abnormal synaptic transmissions. Many epilepsy-related mutations have been identified in synaptic ion channels, which are main targets for current antiepileptic drugs. One of the novel potential targets for therapy of epilepsy is a class of non-ion channel-type epilepsy-related proteins. The leucine-rich repeat glioma-inactivated protein 1 (LGI1) is a neuronal secreted protein, and has been extensively studied as a product of a causative gene for autosomal dominant lateral temporal lobe epilepsy (ADLTE; also known as autosomal dominant partial epilepsy with auditory features [ADPEAF]). At least 43 mutations of LGI1 have been found in ADLTE families. Additionally, autoantibodies against LGI1 in limbic encephalitis are associated with amnesia, seizures, and cognitive dysfunction. Although the relationship of LGI1 with synaptic transmission and synaptic disorders has been studied genetically, biochemically, and clinically, the structural mechanism of LGI1 remained largely unknown until recently. In this review, we introduce insights into pathogenic mechanisms of LGI1 from recent structural studies on LGI1 and its receptor, ADAM22. We also discuss the mechanism for pathogenesis of autoantibodies against LGI1, and the potential of chemical correctors as novel drugs for epilepsy, with structural aspects of LGI1-ADAM22.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan.
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| |
Collapse
|
4
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
5
|
Zhang L, Zhu X, Zou X, Chen L. Factors predicting uncontrolled seizures in epilepsy with auditory features. Seizure 2019; 65:55-61. [PMID: 30612076 DOI: 10.1016/j.seizure.2018.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To analyse the factors predicting uncontrolled seizures in epilepsy with auditory features (EAF). METHODS We analysed individual data from EAF patients who were previously reported. Two authors independently reviewed the titles and abstracts identified and extracted data from each eligible study using a standardized form. The outcome measure was uncontrolled seizures. The odds ratio (OR) and 95% confidence interval (CI) were used. RESULTS A total of 27 studies including 181 patients with familial and sporadic EAF met our inclusion criteria. None of the clinical factors appeared to affect seizure outcomes significantly except that treatment with carbamazepine was a protective factor against uncontrolled seizures (OR = 0.399, 95% CI: 0.195-0.820, p = 0.012), and polytherapy was associated with uncontrolled seizures. Treatment with carbamazepine was also a protective factor against uncontrolled seizures for families with LGI1 mutations (OR = 0.248, 95% CI: 0.085-0.724, p = 0.011). Carbamazepine might have a better efficacy in patients with frequent seizures (p = 0.041). Low-dose carbamazepine might completely control seizures in some EAF patients, although other effective doses of antiepileptic drugs might not. Patients without carbamazepine treatment were more likely to use new antiepileptic drugs, which might be due to the higher rate of uncontrolled seizures. CONCLUSIONS Carbamazepine treatment is a protective factor against uncontrolled seizures for EAF. However, this evidence is not strong enough to state that carbamazepine is the first choice drug for EAF.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Zhu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyi Zou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Jang Y, Lee ST, Bae JY, Kim TJ, Jun JS, Moon J, Jung KH, Park KI, Irani SR, Chu K, Lee SK. LGI1 expression and human brain asymmetry: insights from patients with LGI1-antibody encephalitis. J Neuroinflammation 2018; 15:279. [PMID: 30253786 PMCID: PMC6156957 DOI: 10.1186/s12974-018-1314-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022] Open
Abstract
Background While brain asymmetry has been a fascinating issue in neuroscience, the critical mechanism remains to be elucidated. Based on some index cases with asymmetric 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) uptake in leucine-rich glioma-inactivated 1 (LGI1)-antibody encephalitis, we hypothesized LGI1 expression could be asymmetrically distributed in the human brain. Methods We enrolled 13 patients who were diagnosed with LGI1-antibody encephalitis between June 2012 and January 2018 at Seoul National University Hospital. Their pretreatment 18F-FDG-PET images were analyzed to find asymmetry between the left and right hemispheres. Guided by these observations, expression of LGI1 in the human hippocampus and the globus pallidus of both cerebral hemispheres was studied in nine post-mortem human brains. Results Eleven of the 13 LGI1-antibody encephalitis patients (84.6%) showed asymmetrical FDG high uptake in the hippocampus: nine (81.8%) on the left hippocampus and two (18.2%) on the right. In the basal ganglia, seven patients (53.8%) showed asymmetry: four (57.1%) on the left and three (42.9%) on the right. The asymmetry was not evident in the laterality of faciobrachial dystonic seizures, brain MRI, and EEG. When the expression of LGI1 protein was analyzed in nine post-mortem human brains by western blotting, LGI1 expression was higher on eight left globus pallidus samples (88.89%, P = 0.019) and on four left hippocampal samples (44.44%, P = 0.652), compared to their right hemisphere samples. Conclusions Imaging parameters from patients with LGI1-antibody encephalitis and studies of LGI1 protein expression suggest that LGI1 is asymmetrically distributed in the human brain. These observations have implications for our understanding of human brain development. Electronic supplementary material The online version of this article (10.1186/s12974-018-1314-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoonhyuk Jang
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Ji-Yeon Bae
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurology, National Center for Mental Health, Seoul, South Korea
| | - Jin-Sun Jun
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurosurgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
7
|
Structural basis of epilepsy-related ligand-receptor complex LGI1-ADAM22. Nat Commun 2018; 9:1546. [PMID: 29670100 PMCID: PMC5906670 DOI: 10.1038/s41467-018-03947-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/23/2018] [Indexed: 01/17/2023] Open
Abstract
Epilepsy is a common brain disorder throughout history. Epilepsy-related ligand–receptor complex, LGI1–ADAM22, regulates synaptic transmission and has emerged as a determinant of brain excitability, as their mutations and acquired LGI1 autoantibodies cause epileptic disorders in human. Here, we report the crystal structure of human LGI1–ADAM22 complex, revealing a 2:2 heterotetrameric assembly. The hydrophobic pocket of the C-terminal epitempin-repeat (EPTP) domain of LGI1 binds to the metalloprotease-like domain of ADAM22. The N-terminal leucine-rich repeat and EPTP domains of LGI1 mediate the intermolecular LGI1–LGI1 interaction. A pathogenic R474Q mutation of LGI1, which does not exceptionally affect either the secretion or the ADAM22 binding, is located in the LGI1–LGI1 interface and disrupts the higher-order assembly of the LGI1–ADAM22 complex in vitro and in a mouse model for familial epilepsy. These studies support the notion that the LGI1–ADAM22 complex functions as the trans-synaptic machinery for precise synaptic transmission. LGI1 is an epilepsy-related gene that encodes a secreted neuronal protein. Here the authors present the crystal structure of LGI1 bound to its receptor ADAM22, which provides structural insights into epilepsy-causing LGI1 mutations and might facilitate the development of novel anti-epilepsy drugs.
Collapse
|
8
|
Bisulli F, Menghi V, Vignatelli L, Licchetta L, Zenesini C, Stipa C, Morigi F, Gizzi M, Avoni P, Provini F, Mostacci B, d'Orsi G, Pippucci T, Muccioli L, Tinuper P. Epilepsy with auditory features: Long-term outcome and predictors of terminal remission. Epilepsia 2018; 59:834-843. [PMID: 29464704 DOI: 10.1111/epi.14033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess the long-term outcome of epilepsy with auditory features (EAF) and to identify the clinical predictors for prognosis. METHODS The study involved consecutive EAF patients with a follow-up of ≥5 years. Terminal remission (TR) was defined as a period of ≥5 consecutive years of seizure freedom at the last follow-up. We used Kaplan-Meier estimate to calculate the cumulative time-dependent probability of conversion to TR. Log-rank test and multivariate Cox regression analyses were performed to study the association between time to TR and prognostic determinants. RESULTS We included 123 EAF patients (male/female = 58/65) with a median follow-up of 11 years (1626.9 person-years). Most were sporadic cases (68.3%), whereas 31.7% reported a family history of epilepsy. At last assessment, 42 patients had achieved TR (34.1%). Of the remaining 81 cases with no TR (65.9%), 37% had been in remission for 1-4 years and 62.9% still had seizures within the past year. The cumulative rates of TR were 26.6%, 35.7%, and 51.6% at 10, 20, and 30 years from inclusion. On multivariate analysis, age at onset > 10 years (hazard ratio [HR] = 3.2, P = .028), auditory aura characterized by distortions only versus simple/complex hallucinations (HR = 2.9, P = .041), and unremarkable scalp electroencephalogram (EEG) versus EEG with focal epileptiform activity (HR = 3.5, P = .041) were associated with TR. SIGNIFICANCE Our data show a wide prognostic spectrum of EAF, ranging from mild forms with spontaneous remission, to severely refractory epilepsy addressed to surgery. The outcome, less favorable than expected from previous studies, appears to be primarily a function of 3 prognostic negative risk factors: age at onset < 10 years, auditory aura characterized by complex auditory hallucinations, and focal epileptiform abnormalities on scalp EEG. These predictors, easy to collect even at the first visit, may inform both clinicians and patients about the long-term prognosis and aid patient management.
Collapse
Affiliation(s)
- Francesca Bisulli
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Veronica Menghi
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Luca Vignatelli
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy
| | - Laura Licchetta
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy
| | - Carlotta Stipa
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Morigi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Gizzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Avoni
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Federica Provini
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Mostacci
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy
| | - Giuseppe d'Orsi
- Clinic of Nervous System Diseases, Riuniti Hospital, University of Foggia, Foggia, Italy
| | - Tommaso Pippucci
- Medical Genetic Unit, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Bologna Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Michelucci R, Pulitano P, Di Bonaventura C, Binelli S, Luisi C, Pasini E, Striano S, Striano P, Coppola G, La Neve A, Giallonardo AT, Mecarelli O, Serioli E, Dazzo E, Fanciulli M, Nobile C. The clinical phenotype of autosomal dominant lateral temporal lobe epilepsy related to reelin mutations. Epilepsy Behav 2017; 68:103-107. [PMID: 28142128 PMCID: PMC5378904 DOI: 10.1016/j.yebeh.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/10/2016] [Accepted: 12/12/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To describe the clinical phenotype of 7 families with Autosomal Dominant Lateral Temporal Lobe Epilepsy (ADLTE) related to Reelin (RELN) mutations comparing the data with those observed in 12 LGI1-mutated pedigrees belonging to our series. METHODS Out of 40 Italian families with ADLTE, collected by epileptologists participating in a collaborative study of the Commission for Genetics of the Italian League against Epilepsy encompassing a 14-year period (2000-2014), 7 (17.5%) were found to harbor heterozygous RELN mutations. The whole series also included 12 (30%) LGI1 mutated families and 21 (52.5%) non-mutated pedigrees. The clinical, neurophysiological, and neuroradiological findings of RELN and LGI1 mutated families were analyzed. RESULTS Out of 28 affected individuals belonging to 7 RELN mutated families, 24 had sufficient clinical data available for the study. In these patients, the epilepsy onset occurred at a mean age of 20years, with focal seizures characterized by auditory auras in about 71% of the cases, associated in one-third of patients with aphasia, visual disturbances or other less common symptoms (vertigo or déjà-vu). Tonic-clonic seizures were reported by almost all patients (88%), preceded by typical aura in 67% of cases. Seizures were precipitated by environmental noises in 8% of patients and were completely or almost completely controlled by antiepileptic treatment in the vast majority of cases (96%). The interictal EEG recordings showed epileptiform abnormalities or focal slow waves in 80% of patients, localized over the temporal regions, with marked left predominance and conventional 1,5T MRI scans were not contributory. By comparing these findings with those observed in families with LGI1 mutations, we did not observe significant differences except for a higher rate of left-sided EEG abnormalities in the RELN group. SIGNIFICANCE Heterozygous RELN mutations cause a typical ADLTE syndrome, indistinguishable from that associated with LGI1 mutations.
Collapse
Affiliation(s)
- Roberto Michelucci
- IRCCS - Institute of Neurological Sciences of Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy
| | - Patrizia Pulitano
- Department of Neurology and Psychiatry, University of Rome “Sapienza”, Policlinico Umberto 1° Hospital, Roma, Italy
| | | | - Simona Binelli
- C. Besta Foundation Neurological Institute, Milano, Italy
| | | | - Elena Pasini
- IRCCS - Institute of Neurological Sciences of Bologna, Unit of Neurology, Bellaria Hospital, Bologna, Italy.
| | - Salvatore Striano
- Department of Neurological Sciences, Federico II University, Napoli, Italy
| | - Pasquale Striano
- Muscular and Neurodegenerative Disease Unit, Institute “G. Gaslini,” University of Genova, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Italy
| | | | | | - Oriano Mecarelli
- Department of Neurology and Psychiatry, University of Rome “Sapienza”, Policlinico Umberto 1° Hospital, Roma, Italy
| | - Elena Serioli
- Section of Padua, Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Emanuela Dazzo
- Section of Padua, Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Padova, Italy
| | | | - Carlo Nobile
- Section of Padua, Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Padova, Italy
| |
Collapse
|
10
|
Serafini A, Lukas RV, VanHaerents S, Warnke P, Tao JX, Rose S, Wu S. Paraneoplastic epilepsy. Epilepsy Behav 2016; 61:51-58. [PMID: 27304613 DOI: 10.1016/j.yebeh.2016.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 01/17/2023]
Abstract
Epilepsy can be a manifestation of paraneoplastic syndromes which are the consequence of an immune reaction to neuronal elements driven by an underlying malignancy affecting other organs and tissues. The antibodies commonly found in paraneoplastic encephalitis can be divided into two main groups depending on the target antigen: 1) antibodies against neuronal cell surface antigens, such as against neurotransmitter (N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), gamma-aminobutyric acid (GABA)) receptors, ion channels (voltage-gated potassium channel (VGKC)), and channel-complex proteins (leucine rich, glioma inactivated-1 glycoprotein (LGI1) and contactin-associated protein-2 (CASPR2)) and 2) antibodies against intracellular neuronal antigens (Hu/antineuronal nuclear antibody-1 (ANNA-1), Ma2/Ta, glutamate decarboxylase 65 (GAD65), less frequently to CV2/collapsin response mediator protein 5 (CRMP5)). In this review, we provide a comprehensive survey of the current literature on paraneoplastic epilepsy indexed by the associated onconeuronal antibodies. While a range of seizure types can be seen with paraneoplastic syndromes, temporal lobe epilepsy is the most common because of the association with limbic encephalitis. Early treatment of the paraneoplastic syndrome with immune modulation/suppression may prevent the more serious potential consequences of paraneoplastic epilepsy.
Collapse
Affiliation(s)
- Anna Serafini
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen VanHaerents
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter Warnke
- Section of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Rose
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Shasha Wu
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Screening LGI1 in a cohort of 26 lateral temporal lobe epilepsy patients with auditory aura from Turkey detects a novel de novo mutation. Epilepsy Res 2016; 120:73-8. [DOI: 10.1016/j.eplepsyres.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/02/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
|
12
|
Boillot M, Baulac S. Genetic models of focal epilepsies. J Neurosci Methods 2016; 260:132-43. [DOI: 10.1016/j.jneumeth.2015.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
|
13
|
Silva J, Sharma S, Cowell JK. Homozygous Deletion of the LGI1 Gene in Mice Leads to Developmental Abnormalities Resulting in Cortical Dysplasia. Brain Pathol 2014; 25:587-97. [PMID: 25346110 DOI: 10.1111/bpa.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 01/02/2023] Open
Abstract
LGI1 mutations lead to an autosomal dominant form of epilepsy. Lgi1 mutant null mice develop seizures and show abnormal neuronal excitability. A fine structure analysis of the cortex in these mice demonstrated a subtle cortical dysplasia, preferentially affecting layers II-IV, associated with increased Foxp2 and Cux1-expressing neurons leading to blurring of the cortical layers. The hypercellularity observed in the null cortex resulted from an admixture of highly branched mature pyramidal neurons with short and poorly aligned axons as revealed by Golgi staining and immature small neurons with branched disoriented dendrites with reduced spine density and undersized, morphologically altered and round-headed spines. In vitro, hippocampal neurons revealed poor neurite outgrowth in null mice as well as reduced synapse formation. Electron microscopy demonstrated reduced spine-localized asymmetric (axospinous) synapses with postsynaptic densities and vesicle-loaded synapses in the mutant null cortex. The overall pathology in the null mice suggested cortical dyslamination most likely because of mislocalization of late-born neurons, with an admixture of those carrying suboptimally developed axons and dendrites with reduced functional synapses with normal neurons. Our study suggests that LGI1 has a role in regulating cortical development, which is increasingly becoming recognized as one of the causes of idiopathic epilepsy.
Collapse
Affiliation(s)
- Jeane Silva
- Cancer Center, Georgia Regents University, Augusta, GA
| | - Suash Sharma
- Cancer Center, Georgia Regents University, Augusta, GA.,Department of Pathology, Georgia Regents University, Augusta, GA
| | - John K Cowell
- Cancer Center, Georgia Regents University, Augusta, GA.,Department of Pathology, Georgia Regents University, Augusta, GA
| |
Collapse
|
14
|
Bisulli F, Naldi I, Baldassari S, Magini P, Licchetta L, Castegnaro G, Fabbri M, Stipa C, Ferrari S, Seri M, Gonçalves Silva GE, Tinuper P, Pippucci T. Autosomal dominant partial epilepsy with auditory features: a new locus on chromosome 19q13.11-q13.31. Epilepsia 2014; 55:841-8. [PMID: 24579982 DOI: 10.1111/epi.12560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To clinically and genetically characterize a large Brazilian family with autosomal dominant partial epilepsy with auditory features (ADPEAF) not related to leucine-rich, glioma-inactivated 1 (LGI1) gene. METHODS Seventy family members (four married-ins) participating in the study were assessed by a detailed clinical interview and a complete neurologic examination. Genetic mapping was conducted through autosome-wide single nucleotide polymorphism (SNP) genotyping and subsequent linkage analysis on 16 and haplotype analysis on 25 subjects, respectively. RESULTS The pedigree comprised 15 affected members, of whom 11 were included in the study (male/female: 6/5; mean age 39.5 years). All but two (III:22 and IV:92) had focal seizures with auditory aura followed by secondary generalization in 44.4%. The mean age at onset of epilepsy seizures was 13.7 years. Initial autosome-wide SNP linkage analysis conducted on 12 subjects (8 affected) pointed to a single genomic region on chromosome 19 with a maximum multipoint logarithm of the odds (LOD) score of 2.60. Further refinement of this region through SNP and microsatellite genotyping on 16 subjects (11 affected) increased the LOD score to 3.41, thereby establishing 19q13.11-q13.31 as a novel ADPEAF locus. Haplotype analysis indicated that the underlying mutation is most likely located in a 9.74 Mb interval between markers D19S416 and D19S420. Sequence analysis of the most prominent candidate genes within this critical interval (SCN1B, LGI4, KCNK6, and LRFN1) did not reveal any mutation. SIGNIFICANCE This study disclosed a novel ADPEAF locus on chromosome 19q13.11-q13.31, contributing to future identification of a second dominant gene for this epileptic syndrome. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Mutations in the LGI1 gene predispose to autosomal dominant lateral temporal lobe epilepsy, a rare hereditary form with incomplete penetrance and associated with acoustic auras. LGI1 is not a structural component of an ion channel like most epilepsy-related genes, but is a secreted protein. Mutant null mice exhibit early-onset seizures, and electrophysiological analysis shows abnormal synaptic transmission. LGI1 binds to ADAM23 on the presynaptic membrane and ADAM22 on the postsynaptic membrane, further implicating it in regulating the strength of synaptic transmission. Patients with limbic encephalitis show autoantibodies against LGI1 and develop seizures, supporting a role for LGI1 in synapse transmission in the post developmental brain. LGI1, however, also seems to be involved in aspects of neurite development and dendritic pruning, suggesting an additional role in corticogenesis. LGI1 is also involved in cell movement and suppression of dendritic outgrowth in in vitro systems, possibly involving actin cytoskeleton dynamics. Expression patterns in embryonic development correspond to areas of neuronal migration. Loss of LGI1 expression also impacts on myelination of the central and peripheral nervous systems. In zebrafish embryos, knockdown of lgi1a leads to a seizure-like behavior and abnormal brain development, providing a system to study its role in early embryogenesis. Despite being implicated in a role in both synapse transmission and neuronal development, how LGI1 predisposes to epilepsy is still largely unknown. It appears, however, that LGI1 may function differently in a cell context-specific manner, implying a complex involvement in brain development and function that remains to be defined.
Collapse
Affiliation(s)
- John K Cowell
- Georgia Regents University Cancer Center, Augusta, GA, USA.
| |
Collapse
|
16
|
Berghuis B, Brilstra EH, Lindhout D, Baulac S, de Haan GJ, van Kempen M. Hyperactive behavior in a family with autosomal dominant lateral temporal lobe epilepsy caused by a mutation in the LGI1/epitempin gene. Epilepsy Behav 2013; 28:41-6. [PMID: 23651915 DOI: 10.1016/j.yebeh.2013.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 10/26/2022]
Abstract
Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is characterized by focal seizures with auditory features or aphasia. Mutations in the leucine-rich glioma-inactivated 1 (LGI1) gene have been reported in up to 50% of families with ADLTE. Attention-deficit/hyperactivity disorder (ADHD) symptoms have not yet been reported in these families. Clinical data were collected from a family with five affected members. Leucine-rich glioma-inactivated 1 exons and boundaries were sequenced by standard methods. Attention-deficit/hyperactivity disorder symptoms were scored based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Affected members had seizures with auditory features and psychic auras, and some experienced nightmares. A heterozygous c.431+1G>A substitution in LGI1 was detected in all members. Significantly more hyperactivity symptoms were found in family members carrying the LGI1 mutation. This study expands the phenotypic spectrum associated with ADLTE due to LGI1 mutation and underlines the need for more systematic evaluation of ADHD and related symptoms.
Collapse
Affiliation(s)
- B Berghuis
- SEIN, Epilepsy Institute in the Netherlands, Zwolle, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Michelucci R, Pasini E, Malacrida S, Striano P, Bonaventura CD, Pulitano P, Bisulli F, Egeo G, Santulli L, Sofia V, Gambardella A, Elia M, de Falco A, Neve AL, Banfi P, Coppola G, Avoni P, Binelli S, Boniver C, Pisano T, Marchini M, Dazzo E, Fanciulli M, Bartolini Y, Riguzzi P, Volpi L, de Falco FA, Giallonardo AT, Mecarelli O, Striano S, Tinuper P, Nobile C. Low penetrance of autosomal dominant lateral temporal epilepsy in Italian families without LGI1 mutations. Epilepsia 2013; 54:1288-97. [PMID: 23621105 DOI: 10.1111/epi.12194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. METHODS In a collaborative study of the Commission of Genetics of the Italian League Against Epilepsy (LICE) encompassing a 10-year period (2000-2010), we collected 33 ADLTE families, selected on the basis of the following criteria: presence of at least two members concordant for unprovoked partial seizures with prominent auditory and or aphasic symptoms, absence of any known structural brain pathology or etiology, and normal neurologic examination. The clinical, neurophysiologic, and neuroradiologic findings of all patients were analyzed and a genealogic tree was built for each pedigree. The probands' DNA was tested for LGI1 mutations by direct sequencing and, if negative, were genotyped with single-nucleotide polymorphism (SNP) array to search for disease-linked copy-number variation CNV. The disease penetrance in mutated and nonmutated families was assessed as a proportion of obligate carriers who were affected. KEY FINDINGS The 33 families included a total of 127 affected individuals (61 male, 66 female, 22 deceased). The age at onset ranged between 2 and 60 years (mean 18.7 years). Ninety-one patients (72%) had clear-cut focal (elementary, complex, or secondarily generalized) seizures, characterized by prominent auditory auras in 68% of the cases. Other symptoms included complex visual hallucinations, vertigo, and déjà vu. Aphasic seizures, associated or not with auditory features, were observed in 20% of the cases, whereas tonic-clonic seizures occurred in 86% of the overall series. Sudden noises could precipitate the seizures in about 20% of cases. Seizures, which usually occurred at a low frequency, were promptly controlled or markedly improved by antiepileptic treatment in the majority of patients. The interictal electroencephalography (EEG) studies showed the epileptiform temporal abnormalities in 62% of cases, with a slight predominance over the left region. Magnetic resonance imaging (MRI) or computerized tomography (CT) scans were negative. LGI1 mutations (missense in nine and a microdeletion in one) were found in only 10 families (30%). The patients belonging to the mutated and not mutated groups did not differ except for penetrance estimate, which was 61.3% and 35% in the two groups, respectively (chi-square, p = 0.017). In addition, the disease risk of members of families with mutations in LGI1 was three times higher than that of members of LGI1-negative families (odds ratio [OR] 2.94, confidence interval [CI] 1.2-7.21). SIGNIFICANCE A large number of ADLTE families has been collected over a 10-year period in Italy, showing a typical and homogeneous phenotype. LGI1 mutations have been found in only one third of families, clinically indistinguishable from nonmutated pedigrees. The estimate of penetrance and OR, however, demonstrates a significantly lower penetrance rate and relative disease risk in non-LGI1-mutated families compared with LGI1-mutated pedigrees, suggesting that a complex inheritance pattern may underlie a proportion of these families.
Collapse
Affiliation(s)
- Roberto Michelucci
- Unit of Neurology, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Genetics of temporal lobe epilepsy: a review. EPILEPSY RESEARCH AND TREATMENT 2012; 2012:863702. [PMID: 22957248 PMCID: PMC3420533 DOI: 10.1155/2012/863702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/06/2011] [Accepted: 12/07/2011] [Indexed: 11/18/2022]
Abstract
Temporal lobe epilepsy (TLE) is usually regarded as a polygenic and complex disorder. To understand its genetic component, numerous linkage analyses of familial forms and association studies of cases versus controls have been conducted since the middle of the nineties. The present paper lists genetic findings for TLE from the initial segregation analysis to the most recent results published in May 2011. To date, no genes have been clearly related to TLE despite many efforts to do so. However, it is vital to continue replication studies and collaborative attempts to find significant results and thus determine which gene variant combination plays a definitive role in the aetiology of TLE.
Collapse
|
19
|
Ho YY, Ionita-Laza I, Ottman R. Domain-dependent clustering and genotype-phenotype analysis of LGI1 mutations in ADPEAF. Neurology 2012; 78:563-8. [PMID: 22323750 DOI: 10.1212/wnl.0b013e318247ccbf] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE In families with autosomal dominant partial epilepsy with auditory features (ADPEAF) with mutations in the LGI1 gene, we evaluated clustering of mutations within the gene and associations of penetrance and phenotypic features with mutation location and predicted effect (truncation or missense). METHODS We abstracted clinical and molecular information from the literature for all 36 previously published ADPEAF families with LGI1 mutations. We used a sliding window approach to analyze mutation clustering within the gene. Each mutation was mapped to one of the gene's 2 major functional domains, N-terminal leucine-rich repeats (LRRs) and C-terminal epitempin (EPTP) repeats, and classified according to predicted effect on the encoded protein (truncation vs missense). Analyses of phenotypic features (age at onset and occurrence of auditory symptoms) in relation to mutation site and predicted effect included 160 patients with idiopathic focal unprovoked seizures from the 36 families. RESULTS ADPEAF-causing mutations clustered significantly in the LRR domain (exons 3-5) of LGI1 (p = 0.026). Auditory symptoms were less frequent in individuals with truncation mutations in the EPTP domain than in those with other mutation type/domain combinations (58% vs 80%, p = 0.018). CONCLUSION The LRR region of the LGI1 gene is likely to play a major role in pathogenesis of ADPEAF.
Collapse
Affiliation(s)
- Yuan-Yuan Ho
- Department of Psychiatry, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
20
|
Irani SR, Michell AW, Lang B, Pettingill P, Waters P, Johnson MR, Schott JM, Armstrong RJE, S Zagami A, Bleasel A, Somerville ER, Smith SMJ, Vincent A. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 2011; 69:892-900. [PMID: 21416487 DOI: 10.1002/ana.22307] [Citation(s) in RCA: 560] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/27/2010] [Accepted: 10/15/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To describe a distinctive seizure semiology that closely associates with voltage-gated potassium channel (VGKC)-complex/Lgi1 antibodies and commonly precedes the onset of limbic encephalitis (LE). METHODS Twenty-nine patients were identified by the authors (n = 15) or referring clinicians (n = 14). The temporal progression of clinical features and serum sodium, brain magnetic resonance imaging (MRI), positron emission tomography/single photon emission computed tomography, and VGKC-complex antibodies was studied. RESULTS Videos and still images showed a distinctive adult-onset, frequent, brief dystonic seizure semiology that predominantly affected the arm and ipsilateral face. We have termed these faciobrachial dystonic seizures (FBDS). All patients tested during their illness had antibodies to VGKC complexes; the specific antigenic target was Lgi1 in 89%. Whereas 3 patients never developed LE, 20 of the remaining 26 (77%) experienced FBDS prior to the development of the amnesia and confusion that characterize LE. During the prodrome of FBDS alone, patients had normal sodium and brain MRIs, but electroencephalography demonstrated ictal epileptiform activity in 7 patients (24%). Following development of LE, the patients often developed other seizure semiologies, including typical mesial temporal lobe seizures. At this stage, investigations commonly showed hyponatremia and MRI hippocampal high T2 signal; functional brain imaging showed evidence of basal ganglia involvement in 5/8. Antiepileptic drugs (AEDs) were generally ineffective and in 41% were associated with cutaneous reactions that were often severe. By contrast, immunotherapies produced a clear, and often dramatic, reduction in FBDS frequency. INTERPRETATION Recognition of FBDS should prompt testing for VGKC-complex/Lgi1 antibodies. AEDs often produce adverse effects; treatment with immunotherapies may prevent the development of LE with its potential for cerebral atrophy and cognitive impairment.
Collapse
Affiliation(s)
- Sarosh R Irani
- Department of Clinical Neurology, Oxford University, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
KOIZUMI S, KAWAI K, ASANO S, UEKI K, SUZUKI I, SAITO N. Familial Lateral Temporal Lobe Epilepsy Confirmed With Intracranial Electroencephalography and Successfully Treated by Surgery -Five Case Reports in One Family-. Neurol Med Chir (Tokyo) 2011; 51:604-10. [DOI: 10.2176/nmc.51.604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Satoshi KOIZUMI
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| | - Kensuke KAWAI
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| | - Shuichiro ASANO
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| | - Keisuke UEKI
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| | - Ichiro SUZUKI
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| | - Nobuhito SAITO
- Department of Neurosurgery, Graduate School of Medicine, the University of Tokyo
| |
Collapse
|
22
|
Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Péchoux S, Fricker D, Baulac M, Miles R, Leguern E, Baulac S. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice. ACTA ACUST UNITED AC 2010; 133:2749-62. [PMID: 20659958 PMCID: PMC2929330 DOI: 10.1093/brain/awq171] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations of the LGI1 (leucine-rich, glioma-inactivated 1) gene underlie autosomal dominant lateral temporal lobe epilepsy, a focal idiopathic inherited epilepsy syndrome. The LGI1 gene encodes a protein secreted by neurons, one of the only non-ion channel genes implicated in idiopathic familial epilepsy. While mutations probably result in a loss of function, the role of LGI1 in the pathophysiology of epilepsy remains unclear. Here we generated a germline knockout mouse for LGI1 and examined spontaneous seizure characteristics, changes in threshold for induced seizures and hippocampal pathology. Frequent spontaneous seizures emerged in homozygous LGI1−/− mice during the second postnatal week. Properties of these spontaneous events were examined in a simultaneous video and intracranial electroencephalographic recording. Their mean duration was 120 ± 12 s, and behavioural correlates consisted of an initial immobility, automatisms, sometimes followed by wild running and tonic and/or clonic movements. Electroencephalographic monitoring indicated that seizures originated earlier in the hippocampus than in the cortex. LGI1−/− mice did not survive beyond postnatal day 20, probably due to seizures and failure to feed. While no major developmental abnormalities were observed, after recurrent seizures we detected neuronal loss, mossy fibre sprouting, astrocyte reactivity and granule cell dispersion in the hippocampus of LGI1−/− mice. In contrast, heterozygous LGI1+/− littermates displayed no spontaneous behavioural epileptic seizures, but auditory stimuli induced seizures at a lower threshold, reflecting the human pathology of sound-triggered seizures in some patients. We conclude that LGI1+/− and LGI1−/− mice may provide useful models for lateral temporal lobe epilepsy, and more generally idiopathic focal epilepsy.
Collapse
Affiliation(s)
- Elodie Chabrol
- CRICM UMR_S975, Hôpital de la Pitié-Salpêtrière, Bâtiment Pharmacie, 47 Boulevard de l'hôpital, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|