1
|
Knowles JK, Warren AEL, Mohamed IS, Stafstrom CE, Koh HY, Samanta D, Shellhaas RA, Gupta G, Dixon‐Salazar T, Tran L, Bhatia S, McCabe JM, Patel AD, Grinspan ZM. Clinical trials for Lennox-Gastaut syndrome: Challenges and priorities. Ann Clin Transl Neurol 2024; 11:2818-2835. [PMID: 39440617 PMCID: PMC11572735 DOI: 10.1002/acn3.52211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe, childhood-onset epilepsy that is typically refractory to treatment. We surveyed the current landscape of LGS treatment, aiming to identify challenges to the development of efficacious therapies, and to articulate corresponding priorities toward clinical trials that improve outcomes. METHODS The LGS Special Interest Group of the Pediatric Epilepsy Research Consortium integrated evidence from the literature and expert opinion, into a narrative review. RESULTS We provide an overview of approved and emerging medical, dietary, surgical and neuromodulation approaches for LGS. We note that quality of care could be improved by standardizing LGS treatment based on expert consensus and empirical data. Whereas LGS natural history is incompletely understood, prospective studies and use of large retrospective datasets to understand LGS across the lifespan would enable clinical trials that address these dynamics. Recent discoveries related to LGS pathophysiology should enable development of disease-modifying therapies, which are currently lacking. Finally, clinical trials have focused chiefly on seizures involving "drops," but should incorporate additional patient-centered outcomes, using emerging measures adapted to people with LGS. INTERPRETATION Clinicians and researchers should enact these priorities, with the goal of patient-centered clinical trials that are tailored to LGS pathophysiology and natural history.
Collapse
Affiliation(s)
- Juliet K. Knowles
- Department of NeurologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Aaron E. L. Warren
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Carl E. Stafstrom
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental NeuroscienceBaylor College of MedicineHoustonTexasUSA
| | - Debopam Samanta
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Renée A. Shellhaas
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Gita Gupta
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | | | - Linh Tran
- Jane and John Justin Institute for Mind HealthCook Children's Medical CenterFort WorthTexasUSA
| | - Sonal Bhatia
- Division of Pediatric NeurologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Anup D. Patel
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
- The Center for Clinical ExcellenceNationwide Children's HospitalColumbusOhioUSA
| | | |
Collapse
|
2
|
Nizami FM, Trivedi S, Kalita J. A systematic review of electroencephalographic findings in Lennox-Gastaut syndrome. Epilepsy Res 2024; 205:107406. [PMID: 38976954 DOI: 10.1016/j.eplepsyres.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe form of childhood onset epileptic encephalopathy characterized by multiple drug-resistant seizures, cognitive impairment, and diffuse slow spike and wave (SSW), and generalized paroxysmal fast activity (GPFA) on electroencephalogram (EEG). Systematic review following the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) guidelines was done to investigate EEG findings in LGS. PubMed and MEDLINE were systematically searched for English-language studies published until15th may 2023. Original articles and research with patients between age group 1-30 years, and studies with description of EEG findings were included. Search identified 20 studies with 1167 patients. In this analysis 62.6 % of patients were male. The median age was 9.6 years. Etiology was structural abnormality in 42.6 %, genetic in 8.7 % but was unknown in 48.7%. Tonic seizures (74.5 %) were most frequent followed by atypical absences (44.3 %), myoclonic (39.2 %), generalized (38.5 %), atonic (34.8 %), epileptic spasm (15.9 %), focal (11.4 %) and non-convulsive status epilepticus (7.0 %). Out of 20 studies, only 15 studies mentioned GPFA in 46.6 % patients and SSW in 91.7 % patients. Unilateral and focal discharges were more common in patients with unilateral structural abnormalities. Seizure discharges on EEG longer than 10 second duration correlated with seizure diary counts. Combination of atonic, tonic, and atypical absence seizures correlated with SSW, and myoclonic seizures correlated with GPFA. EEG helps in diagnosis and prognosis of LGS. SSW is present in almost all EEG, and GPFA in 46.6 % patients. Longer duration of SSW discharges and disorganized background are associated with poor outcome.
Collapse
Affiliation(s)
- Firoz M Nizami
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India.
| | - Sweety Trivedi
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India.
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India.
| |
Collapse
|
3
|
Pal P, Negi S, Baishya J, Madaan P, Saini AG, Suthar R, Ahuja C, Sankhyan N, Sahu JK. Electroclinical Landscape of Infantile Epileptic Spasms Syndrome. Indian J Pediatr 2024:10.1007/s12098-023-05017-6. [PMID: 38305840 DOI: 10.1007/s12098-023-05017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
OBJECTIVES To elucidate the electroclinical characteristics of infantile epileptic spasms syndrome (IESS) and to determine any potential association among these with underlying etiologies and response to therapy. METHODS Sixty-eight, treatment-naive children with IESS underwent long-term video electroencephalogram (EEG) recording, which was used to characterize the semiology, ictal, and inter-ictal EEG patterns. Children were further followed up to assess electroclinical predictors of etiologies and short-term therapeutic response. RESULTS Of 68 children enrolled (69% boys), the median age at enrollment was 10.5 mo (IQR-8). Eighty-eight percent of children had flexor spasms, followed by mixed (7%) and extensor (4.4%). Asymmetrical spasms were noted in 17.6% children, and all of them had underlying structural etiology. Two children had the status of epileptic spasms. In the present cohort, authors recognized five distinct ictal EEG correlates of epileptic spasms; the frontocentral dominant slow wave was the most prevalent (32%), followed by the generalized slow-wave complex with superimposed fast rhythm in 29.4%. The occipital dominant slow wave complex was a peculiar pattern in 16%. The major underlying etiologies were hypoxic-ischemic brain injuries (36.7%) and neonatal hypoglycemic brain injuries (22%). Besides asymmetric spasms, authors could not identify any significant association among electroclinical characteristics, underlying etiologies and response to therapy in this study. CONCLUSIONS The electroclinical landscape of IESS is peculiar and diverse in developing countries. The presence of asymmetrical spasms indicated underlying structural etiology.
Collapse
Affiliation(s)
- Pankaj Pal
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sandeep Negi
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jitupam Baishya
- Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Arushi Gahlot Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Renu Suthar
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Chirag Ahuja
- Department of Radio Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
4
|
Warren AEL, Tobochnik S, Chua MMJ, Singh H, Stamm MA, Rolston JD. Neurostimulation for Generalized Epilepsy: Should Therapy be Syndrome-specific? Neurosurg Clin N Am 2024; 35:27-48. [PMID: 38000840 PMCID: PMC10676463 DOI: 10.1016/j.nec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current applications of neurostimulation for generalized epilepsy use a one-target-fits-all approach that is agnostic to the specific epilepsy syndrome and seizure type being treated. The authors describe similarities and differences between the 2 "archetypes" of generalized epilepsy-Lennox-Gastaut syndrome and Idiopathic Generalized Epilepsy-and review recent neuroimaging evidence for syndrome-specific brain networks underlying seizures. Implications for stimulation targeting and programming are discussed using 5 clinical questions: What epilepsy syndrome does the patient have? What brain networks are involved? What is the optimal stimulation target? What is the optimal stimulation paradigm? What is the plan for adjusting stimulation over time?
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven Tobochnik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hargunbir Singh
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michaela A Stamm
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cohen NT, Xie H, Gholipour T, Gaillard WD. A scoping review of the functional magnetic resonance imaging-based functional connectivity of focal cortical dysplasia-related epilepsy. Epilepsia 2023; 64:3130-3142. [PMID: 37731142 DOI: 10.1111/epi.17775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Nathan T Cohen
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Hua Xie
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Taha Gholipour
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, George Washington University Epilepsy Center, Washington, District of Columbia, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
- Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Streng ML, Froula JM, Krook-Magnuson E. The cerebellum's understated role and influences in the epilepsies. Neurobiol Dis 2023; 183:106160. [PMID: 37209926 DOI: 10.1016/j.nbd.2023.106160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Approximately 1 in 26 people will develop epilepsy in their lifetime, but current treatment options leave as many as half of all epilepsy patients with uncontrolled seizures. In addition to the burden of the seizures themselves, chronic epilepsy can be associated with cognitive deficits, structural changes, and devastating negative outcomes such as sudden unexpected death in epilepsy (SUDEP). Thus, major challenges in epilepsy research surround the need to both develop new therapeutic targets for intervention as well as shed light on the mechanisms by which chronic epilepsy can lead to comorbidities and negative outcomes. Despite not being traditionally associated with epilepsy or seizures, the cerebellum has emerged as not only a brain region that can serve as an important target for seizure control, but one that may also be profoundly impacted by chronic epilepsy. Here, we discuss targeting the cerebellum for potential therapeutic intervention and discuss pathway insights gained from recent optogenetic studies. We then review observations of cerebellar alterations during seizures and in chronic epilepsy, as well as the potential for the cerebellum to be a seizure focus. Cerebellar alterations in epilepsy may be critical to patient outcomes, highlighting the need for a more comprehensive understanding and appreciation of the cerebellum in the epilepsies.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Jessica M Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
7
|
Perinelli MG, Riva A, Amadori E, Follo R, Striano P. Learnings in developmental and epileptic encephalopathies: what do we know? Expert Rev Neurother 2023; 23:45-57. [PMID: 36726225 DOI: 10.1080/14737175.2023.2176221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Developmental and Epileptic Encephalopathies (DEEs) encompass a group of neurological disorders caused by either abnormal neuronal development and white matter maturation or even by weak synaptic plasticity. Hitherto, patients commonly have epileptic seizures featuring cognitive dysfunction, such as neurosensory disorders, difficulties in learning, behavioral disturbances, or speech delay. AREAS COVERED This paper provides a comprehensive review of the current knowledge of DEEs and cognition. Medline/Pubmed database was screened for in-English articles published between 1967-2022 dealing with the topic of DEEs and cognitive development. Two authors independently screened the title and abstract of each record and reviewed the selected articles. Reviews, randomized clinical trials, and case reports were selected. EXPERT OPINION Scientific literature has never explicitly dealt with the early neuro-psychomotor rehabilitation and neuropsychological assessment of patients with DEEs. Targeted intervention and environmental stimuli can influence the maturation of neuronal circuits and shape changes in physical and mental development based on neuronal plasticity, particularly if applied in 'critical periods' liable to heightened sensitivity. Thus, 'early neurorehabilitation interventions' are worthy of being more and more applied to clinical practice to improve the quality of life and reduce the psychosocial burden on families and caregivers.
Collapse
Affiliation(s)
- Martina Giorgia Perinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Lin JJ, Meletti S, Vaudano AE, Lin KL. Developmental and epileptic encephalopathies: Is prognosis related to different epileptic network dysfunctions? Epilepsy Behav 2022; 131:107654. [PMID: 33349540 DOI: 10.1016/j.yebeh.2020.107654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
Developmental and epileptic encephalopathies are a group of rare, severe epilepsies, which are characterized by refractory seizures starting in infancy or childhood and developmental delay or regression. Developmental changes might be independent of epilepsy. However, interictal epileptic activity and seizures can further deteriorate cognition and behavior. Recently, the concept of developmental and epileptic encephalopathies has moved from the lesions associated with epileptic encephalopathies toward the epileptic network dysfunctions on the functioning of the brain. Early recognition and differentiation of patients with developmental and epileptic encephalopathies is important, as precision therapies need to be holistic to address the often devastating symptoms. In this review, we discuss the evolution of the concept of developmental and epileptic encephalopathies in recent years, as well as the current understanding of the genetic basis of developmental and epileptic encephalopathies. Finally, we will discuss the role of epileptic network dysfunctions on prognosis for these severe conditions.
Collapse
Affiliation(s)
- Jainn-Jim Lin
- Division of Pediatric Critical Care and Pediatric Neurocritical Care Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Taoyuan, Taiwan; Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Respiratory Therapy, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Study Group for Intensive and Integrated Care of Pediatric Central Nervous System (iCNS Group), Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Stefano Meletti
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Division of Neurology, University Hospital of Modena, Modena, Italy; Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Study Group for Intensive and Integrated Care of Pediatric Central Nervous System (iCNS Group), Chang Gung Children's Hospital, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Gastrointestinal and Autonomic Symptoms—How to Improve the Diagnostic Process in Panayiotopoulos Syndrome? CHILDREN 2022; 9:children9060814. [PMID: 35740751 PMCID: PMC9222198 DOI: 10.3390/children9060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
One of the most common epileptic disorders in the pediatric population is Panayiotopoulos syndrome. Clinical manifestations of this idiopathic illness include predominantly autonomic symptoms and dysfunction of the cardiorespiratory system. Another feature constitutes prolonged seizures that usually occur at sleep. It is crucial to differentiate the aforementioned disease from other forms of epilepsy, especially occipital and structural epilepsy and non-epileptic disorders. The diagnostic process is based on medical history, clinical examination, neuroimaging and electroencephalography—though results of the latter may be unspecific. Patients with Panayiotopoulos syndrome (PS) do not usually require treatment, as the course of the disease is, in most cases, mild, and the prognosis is good. The purpose of this review is to underline the role of central autonomic network dysfunction in the development of Panayiotopoulos syndrome, as well as the possibility of using functional imaging techniques, especially functional magnetic resonance imaging (fMRI), in the diagnostic process. These methods could be crucial for understanding the pathogenesis of PS. More data arerequired to create algorithms that will be able to predict the exposure to various complications of PS. It also concerns the importance of electroencephalography (EEG) as a tool to distinguish Panayiotopoulos syndrome from other childhood epileptic syndromes and non-epileptic disorders.
Collapse
|
10
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
11
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
12
|
Loushy I, Gurevitch G, Gazit T, Medvedovsky M, Khoo HM, Gotman J, Fahoum F. Bilateral epileptic networks in congenital and acquired corpus callosum defects: EEG-fMRI study. Epilepsy Behav 2021; 120:107986. [PMID: 33965723 DOI: 10.1016/j.yebeh.2021.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Electroencephalography-correlated functional magnetic resonance imaging (EEG-fMRI) allows imaging of brain-wide epileptic networks, and demonstrates that focal interictal epileptic activity is sometimes accompanied by bilateral functional activations. The corpus callosum (CC) facilitates bilateral spread of epileptic activity and at times targeted surgically for drug-resistant epilepsy (DRE). We hypothesized that focal epileptic networks are more unilateral in patients lacking intact CC. METHODS We included focal DRE patients who underwent pre-surgical EEG-fMRI and had CC agenesis (group A, n = 5), patients who previously underwent anterior callosotomy as treatment for drop attacks and continued having seizures (group B, n = 6), and control group of patients with focal epilepsy and intact CC (group C, n = 9). Blood-oxygenation-level-dependent (BOLD) signal maps were generated for interictal epileptic discharges. To quantify bi-hemispheric distribution of epileptic networks, laterality indices were compared between groups. Anatomical and diffusion-weighted imaging demonstrated white matter pathways. RESULTS 96% of studies demonstrated bilateral activations. Laterality indices were similar in groups A and C, whereas group B demonstrated a more bilateral network than group C (p = 0.028). Diffusion-weighted and anatomical imaging showed aberrant white matter pathways and larger anterior commissure in groups A and B. 68% of studies showed maximal activation cluster concordant with the presumed epileptic focus, 28% showed non-maximal activation at presumed focus. SIGNIFICANCE Focal epileptic activity is associated with bilateral functional activations despite lack of intact CC, and is associated with stronger contralateral activation in patients after anterior callosotomy compared to controls. These findings disprove our initial hypothesis, and combined with white matter structural imaging, may indicate that the CC is not a sole route of propagation of epileptic activity, which might spread via anterior commissure. Our study demonstrates the utility of EEG-fMRI in assessing epileptic networks and potentially aiding in tailoring surgical treatments in DRE patients with callosal anomalies, and in callosal surgeries.
Collapse
Affiliation(s)
- Itai Loushy
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Guy Gurevitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mordekhay Medvedovsky
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Agnes Ginges Center of Neurogenetics, Department of Neurology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Firas Fahoum
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Successful Hemispherotomy in a Patient with Encephalopathy with Continuous Spikes and Waves during Sleep Related to Neonatal Thalamic Hemorrhage: A Case Report with Intracranial Electroencephalogram Findings. Brain Sci 2021; 11:brainsci11070827. [PMID: 34206592 PMCID: PMC8301857 DOI: 10.3390/brainsci11070827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Neonatal thalamic hemorrhage is a strong risk factor for developing encephalopathy with continuous spikes and waves during sleep (ECSWS), even when not accompanied by widespread cortical destruction. The efficacy and indication of resective epilepsy surgery in such patients has not yet been reported. A 4-year-old boy was diagnosed with ECSWS based on strong epileptiform activation during sleep and neurocognitive deterioration. He had a history of left thalamic hemorrhage related to a straight sinus thrombosis during the newborn period. He presented with daily absence seizures that were refractory to medical treatment. At age 5, he underwent intracranial electroencephalogram (EEG) recording using depth and subdural strip electrodes placed in the left thalamus and over bilateral cortex, respectively. Interictal and ictal epileptiform discharges were observed in the thalamus, always preceded by discharges in the left or right parietal lobe. Left hemispherotomy successfully normalized the EEG of his unaffected hemisphere and extinguished his seizures. This is the first case report documenting resective epilepsy surgery in a patient with ECSWS due to neonatal thalamic injury without widespread cerebral destruction. Based on intracranial EEG findings, his injured thalamus did not directly generate the EEG abnormalities or absence seizures on its own. Patients with ipsilateral neonatal thalamic injury and even mild lateralized cortical changes may be candidates for resective or disconnective surgery for ECSWS.
Collapse
|
14
|
Abstract
Human neuroimaging has had a major impact on the biological understanding of epilepsy and the relationship between pathophysiology, seizure management, and outcomes. This review highlights notable recent advancements in hardware, sequences, methods, analyses, and applications of human neuroimaging techniques utilized to assess epilepsy. These structural, functional, and metabolic assessments include magnetic resonance imaging (MRI), positron emission tomography (PET), and magnetoencephalography (MEG). Advancements that highlight non-invasive neuroimaging techniques used to study the whole brain are emphasized due to the advantages these provide in clinical and research applications. Thus, topics range across presurgical evaluations, understanding of epilepsy as a network disorder, and the interactions between epilepsy and comorbidities. New techniques and approaches are discussed which are expected to emerge into the mainstream within the next decade and impact our understanding of epilepsies. Further, an increasing breadth of investigations includes the interplay between epilepsy, mental health comorbidities, and aberrant brain networks. In the final section of this review, we focus on neuroimaging studies that assess bidirectional relationships between mental health comorbidities and epilepsy as a model for better understanding of the commonalities between both conditions.
Collapse
Affiliation(s)
- Adam M. Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| | - Jerzy P. Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama At Birmingham, 312 Civitan International Research Center, Birmingham, AL 35294 USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To review the evolution of the concept of epileptic encephalopathy during the course of past years and analyze how the current definition might impact on both clinical practice and research. RECENT FINDINGS Developmental delay in children with epilepsy could be the expression of the cause, consequence of intense epileptiform activity (seizures and EEG abnormalities), or because of the combination of both factors. Therefore, the current International League Against Epilepsy classification identified three electroclinical entities that are those of developmental encephalopathy, epileptic encephalopathy, and developmental and epileptic encephalopathy (DEE). Many biological pathways could be involved in the pathogenesis of DEEs. DNA repair, transcriptional regulation, axon myelination, metabolite and ion transport, and peroxisomal function could all be involved in DEE. Also, epilepsy and epileptiform discharges might impact on cognition via several mechanisms, although they are not fully understood. SUMMARY The correct and early identification of cause in DEE might increase the chances of a targeted treatment regimen. Interfering with neurobiological processes of the disease will be the most successful way in order to improve both the cognitive disturbances and epilepsy that are the key features of DEE.
Collapse
|
16
|
Vaudano AE, Avanzini P, Cantalupo G, Filippini M, Ruggieri A, Talami F, Caramaschi E, Bergonzini P, Vignoli A, Veggiotti P, Guerra A, Gessaroli G, Santucci M, Canevini MP, Piccolo B, Pisani F, Gobbi G, Dalla Bernardina B, Meletti S. Mapping the Effect of Interictal Epileptic Activity Density During Wakefulness on Brain Functioning in Focal Childhood Epilepsies With Centrotemporal Spikes. Front Neurol 2019; 10:1316. [PMID: 31920937 PMCID: PMC6930928 DOI: 10.3389/fneur.2019.01316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022] Open
Abstract
Childhood epilepsy with centrotemporal spikes (CECTS) is the most common type of “self-limited focal epilepsies.” In its typical presentation, CECTS is a condition reflecting non-lesional cortical hyperexcitability of rolandic regions. The benign evolution of this disorder is challenged by the frequent observation of associated neuropsychological deficits and behavioral impairment. The abundance (or frequency) of interictal centrotemporal spikes (CTS) in CECTS is considered a risk factor for deficits in cognition. Herein, we captured the hemodynamic changes triggered by the CTS density measure (i.e., the number of CTS for time bin) obtained in a cohort of CECTS, studied by means of video electroencephalophy/functional MRI during quite wakefulness. We aim to demonstrate a direct influence of the diurnal CTS frequency on epileptogenic and cognitive networks of children with CECTS. A total number of 8,950 CTS (range between 27 and 801) were recorded in 23 CECTS (21 male), with a mean number of 255 CTS/patient and a mean density of CTS/30 s equal to 10,866 ± 11.46. Two independent general linear model models were created for each patient based on the effect of interest: “individual CTS” in model 1 and “CTS density” in model 2. Hemodynamic correlates of CTS density revealed the involvement of a widespread cortical–subcortical network encompassing the sensory-motor cortex, the Broca's area, the premotor cortex, the thalamus, the putamen, and red nucleus, while in the CTS event-related model, changes were limited to blood–oxygen-level-dependent (BOLD) signal increases in the sensory-motor cortices. A linear relationship was observed between the CTS density hemodynamic changes and both disease duration (positive correlation) and age (negative correlation) within the language network and the bilateral insular cortices. Our results strongly support the critical role of the CTS frequency, even during wakefulness, to interfere with the normal functioning of language brain networks.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Avanzini
- Italian National Research Council, Parma Research Unit, Parma, Italy
| | | | - Melissa Filippini
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Physical Medicine and Rehabilitation Unit, Sant'Andrea Hospital, University of Rome La Sapienza, Rome, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Aglaia Vignoli
- Department of Health Sciences, University of Milano, Milan, Italy
| | | | - Azzura Guerra
- Physical Medicine and Rehabilitation Unit, Sant'Andrea Hospital, University of Rome La Sapienza, Rome, Italy
| | - Giuliana Gessaroli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Margherita Santucci
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Benedetta Piccolo
- Child Neuropsychiatry, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Pisani
- Child Neuropsychiatry, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Gobbi
- Child Neuropsychiatry Unit, IRCCS, Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Stefano Meletti
- Neurology Unit, OCB Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Alteration of the anatomical covariance network after corpus callosotomy in pediatric intractable epilepsy. PLoS One 2019; 14:e0222876. [PMID: 31805047 PMCID: PMC6894802 DOI: 10.1371/journal.pone.0222876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study aimed to use graph theoretical analysis of anatomical covariance derived from structural MRI to reveal how the gray matter connectivity pattern is altered after corpus callosotomy (CC). MATERIALS AND METHODS We recruited 21 patients with epilepsy who had undergone CC. Enrollment criteria were applied: (1) no lesion identified on brain MRI; (2) no history of other brain surgery; and (3) age not younger than 3 years and not older than 18 years at preoperative MRI evaluation. The most common epilepsy syndrome was Lennox-Gastaut syndrome (11 patients). For voxel-based morphometry, the normalized gray matter images of pre-CC and post-CC patients were analyzed with SPM12 (voxel-level threshold of p<0.05 [familywise error-corrected]). Secondly, the images of both groups were subjected to graph theoretical analysis using the Graph Analysis Toolbox with SPM8. Each group was also compared with 32 age- and sex-matched control patients without brain diseases. RESULTS Comparisons between the pre- and post-CC groups revealed a significant reduction in seizure frequency with no change in mean intelligence quotient/developmental quotient levels. There was no relationship among the three groups in global network metrics or in targeted attack. A regional comparison of betweenness centrality revealed decreased connectivity to and from the right middle cingulate gyri and medial side of the right superior frontal gyrus and a partial shift in the distribution of betweenness centrality hubs to the normal location. Significantly lower resilience to random failure was found after versus before CC and versus controls (p = 0.0450 and p = 0.0200, respectively). CONCLUSION Graph theoretical analysis of anatomical covariance derived from structural imaging revealed two neural network effects of resection associated with seizure reduction: the reappearance of a structural network comparable to that in healthy children and reduced connectivity along the median line, including the middle cingulate gyrus.
Collapse
|
18
|
Warren AE, Harvey AS, Vogrin SJ, Bailey C, Davidson A, Jackson GD, Abbott DF, Archer JS. The epileptic network of Lennox-Gastaut syndrome. Neurology 2019; 93:e215-e226. [DOI: 10.1212/wnl.0000000000007775] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
ObjectiveTo identify brain regions underlying interictal generalized paroxysmal fast activity (GPFA), and their causal interactions, in children and adults with Lennox-Gastaut syndrome (LGS).MethodsConcurrent scalp EEG-fMRI was performed in 2 separately analyzed patient groups with LGS: 10 children (mean age 8.9 years) scanned under isoflurane-remifentanil anesthesia and 15 older patients (mean age 31.7 years) scanned without anesthesia. Whole-brain event-related analysis determined GPFA-related activation in each group. Results were used as priors in a dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing initiation and propagation of GPFA between cortex, thalamus, and brainstem.ResultsA total of 1,045 GPFA events were analyzed (cumulative duration 1,433 seconds). In both pediatric and older groups, activation occurred in distributed association cortical areas, as well as the thalamus and brainstem (p < 0.05, corrected for family-wise error). Activation was similar across individual patients with structural, genetic, and unknown etiologies of epilepsy, particularly in frontoparietal cortex. In both groups, DCM revealed that GPFA was most likely driven by prefrontal cortex, with propagation occurring first to the brainstem and then from brainstem to thalamus.ConclusionsWe show reproducible evidence of a cortically driven process within the epileptic network of LGS. This network is present early (in children) and late (in older patients) in the course of the syndrome and across diverse etiologies of epilepsy, suggesting that LGS reflects shared “secondary network” involvement. A cortical-to-subcortical hierarchy is postulated whereby GPFA rapidly propagates from prefrontal cortex to the brainstem via extrapyramidal corticoreticular pathways, whereas the thalamus is engaged secondarily.
Collapse
|
19
|
Multifocal epilepsy in children is associated with increased long-distance functional connectivity: An explorative EEG-fMRI study. Eur J Paediatr Neurol 2018; 22:1054-1065. [PMID: 30017619 DOI: 10.1016/j.ejpn.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/12/2018] [Accepted: 07/01/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Multifocal epileptic activity is an unfavourable feature of a number of epileptic syndromes (Lennox-Gastaut syndrome, West syndrome, severe focal epilepsies) which suggests an overall vulnerability of the brain to pathological synchronization. However, the mechanisms of multifocal activity are insufficiently understood. This explorative study investigates whether pathological connectivity within brain areas of the default mode network as well as thalamus, brainstem and retrosplenial cortex may predispose individuals to multifocal epileptic activity. METHODS 33 children suffering from multifocal and monofocal (control group) epilepsies were investigated using EEG-fMRI recordings during sleep. The blood oxygenated level dependent (BOLD) signal of 15 regions of interest was extracted and temporally correlated (resting-state functional connectivity). RESULTS Patients with monofocal epilepsies were characterized by strong correlations between the corresponding interhemispheric homotopic regions. This pattern of correlations with pronounced short-distance and weak long-distance functional connectivity resembles the connectivity pattern described for healthy children. Patients with multifocal epileptic activity, however, demonstrated significantly stronger correlations between a large number of regions of the default mode network as well as thalamus and brainstem, with a significant increase in long-distance connectivity compared to children with monofocal epileptic activity. In the group of patients with multifocal epilepsies there were no differences in functional connectivity between patients with or without Lennox-Gastaut syndrome. CONCLUSION This explorative study shows that multifocal activity is associated with generally increased long-distance functional connectivity in the brain. It can be suggested that this pronounced connectivity may represent either a risk to pathological over-synchronization or a consequence of the multifocal epileptic activity.
Collapse
|
20
|
Vignoli A, Oggioni G, De Maria G, Peron A, Savini MN, Zambrelli E, Chiesa V, La Briola F, Turner K, Canevini MP. Lennox-Gastaut syndrome in adulthood: Long-term clinical follow-up of 38 patients and analysis of their recorded seizures. Epilepsy Behav 2017; 77:73-78. [PMID: 29126048 DOI: 10.1016/j.yebeh.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe epileptic encephalopathy with childhood onset that usually continues through adolescence and into adulthood. In the long term, patients with this condition still have intractable seizures, intellectual disability, behavioral problems, and physical comorbidities. The aim of this study was to describe the clinical and EEG characteristics of a group of adults with Lennox-Gastaut syndrome. We identified 38 (22 females, 16 males) patients with LGS older than age 18years at their last evaluation, with mean age of 43.3±10.6years. Median follow-up was 14.4years (range: 2-40). All of our patients had 3 or more seizure types during their clinical history. The most prevalent seizure types at follow-up were atypical absences (28/38), tonic (28/38), generalized tonic-clonic (17/38), focal (11/38), and myoclonic seizures (9/38). All patients had drug-resistant seizures. Besides epilepsy, intellectual disability and behavioral problems were prominent features. Surprisingly, paroxysmal nonepileptic seizures were reported in 3 patients. Our observations confirm the poor outcome of Lennox-Gastaut syndrome through adulthood, regardless of age at seizure onset, etiology, and history of previous West syndrome.
Collapse
Affiliation(s)
- Aglaia Vignoli
- Epilepsy Center, San Paolo Hospital, Milan, Italy; Department of Health Sciences, Università degli Studi di Milano, Italy
| | - Gaia Oggioni
- Epilepsy Center, San Paolo Hospital, Milan, Italy
| | | | - Angela Peron
- Epilepsy Center, San Paolo Hospital, Milan, Italy; Department of Health Sciences, Università degli Studi di Milano, Italy.
| | | | | | | | | | | | - Maria Paola Canevini
- Epilepsy Center, San Paolo Hospital, Milan, Italy; Department of Health Sciences, Università degli Studi di Milano, Italy
| |
Collapse
|
21
|
Warren AEL, Abbott DF, Jackson GD, Archer JS. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks. Epilepsia 2017; 58:2085-2097. [PMID: 29098688 DOI: 10.1111/epi.13932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. METHODS Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. RESULTS In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. SIGNIFICANCE Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - David F Abbott
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Graeme D Jackson
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - John S Archer
- Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
22
|
Current understanding and neurobiology of epileptic encephalopathies. Neurobiol Dis 2016; 92:72-89. [PMID: 26992889 DOI: 10.1016/j.nbd.2016.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022] Open
|
23
|
Hur YJ, Kim HD. Predictive role of brain connectivity for resective surgery in Lennox–Gastaut syndrome. Clin Neurophysiol 2016; 127:2862-2868. [DOI: 10.1016/j.clinph.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/14/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
|
24
|
Usami K, Matsumoto R, Sawamoto N, Murakami H, Inouchi M, Fumuro T, Shimotake A, Kato T, Mima T, Shirozu H, Masuda H, Fukuyama H, Takahashi R, Kameyama S, Ikeda A. Epileptic network of hypothalamic hamartoma: An EEG-fMRI study. Epilepsy Res 2016; 125:1-9. [PMID: 27295078 DOI: 10.1016/j.eplepsyres.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/20/2016] [Accepted: 05/27/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the brain networks involved in epileptogenesis/encephalopathy associated with hypothalamic hamartoma (HH) by EEG with functional MRI (EEG-fMRI), and evaluate its efficacy in locating the HH interface in comparison with subtraction ictal SPECT coregistered to MRI (SISCOM). METHODS Eight HH patients underwent EEG-fMRI. All had gelastic seizures (GS) and 7 developed other seizure types. Using a general linear model, spike-related activation/deactivation was analyzed individually by applying a hemodynamic response function before, at, and after spike onset (time-shift model=-8-+4s). Group analysis was also performed. The sensitivity of EEG-fMRI in identifying the HH interface was compared with SISCOM in HH patients having unilateral hypothalamic attachment. RESULTS EEG-fMRI revealed activation and/or deactivation in subcortical structures and neocortices in all patients. 6/8 patients showed activation in or around the hypothalamus with the HH interface with time-shift model before spike onset. Group analysis showed common activation in the ipsilateral hypothalamus, brainstem tegmentum, and contralateral cerebellum. Deactivation occurred in the default mode network (DMN) and bilateral hippocampi. Among 5 patients with unilateral hypothalamic attachment, activation in or around the ipsilateral hypothalamus was seen in 3 using EEG-fMRI, whereas hyperperfusion was seen in 1 by SISCOM. SIGNIFICANCE Group analysis of this preliminary study may suggest that the commonly activated subcortical network is related to generation of GS and that frequent spikes lead to deactivation of the DMN and hippocampi, and eventually to a form of epileptic encephalopathy. Inter-individual variance in neocortex activation explains various seizure types among patients. EEG-fMRI enhances sensitivity in detecting the HH interface compared with SISCOM.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Hiroatsu Murakami
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Morito Inouchi
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Fumuro
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Shirozu
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hiroshi Masuda
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Shigeki Kameyama
- Department of Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
25
|
Shao LR, Stafstrom CE. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models. Semin Pediatr Neurol 2016; 23:98-107. [PMID: 27544466 DOI: 10.1016/j.spen.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
26
|
Hur YJ, Kim HD. The causal epileptic network identifies the primary epileptogenic zone in Lennox–Gastaut syndrome. Seizure 2015; 33:1-7. [DOI: 10.1016/j.seizure.2015.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/15/2022] Open
|
27
|
Pospelov AS, Yukin AY, Blumberg MS, Puskarjov M, Kaila K. Forebrain-independent generation of hyperthermic convulsions in infant rats. Epilepsia 2015; 57:e1-6. [PMID: 26547277 PMCID: PMC4738399 DOI: 10.1111/epi.13230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
Febrile seizures are the most common type of convulsive events in children. It is generally assumed that the generalization of these seizures is a result of brainstem invasion by the initial limbic seizure activity. Using precollicular transection in 13‐day‐old rats to isolate the forebrain from the brainstem, we demonstrate that the forebrain is not required for generation of tonic–clonic convulsions induced by hyperthermia or kainate. Compared with sham‐operated littermate controls, latency to onset of convulsions in both models was significantly shorter in pups that had undergone precollicular transection, indicating suppression of the brainstem seizure network by the forebrain in the intact animal. We have shown previously that febrile seizures are precipitated by hyperthermia‐induced respiratory alkalosis. Here, we show that triggering of hyperthermia‐induced hyperventilation and consequent convulsions in transected animals are blocked by diazepam. The present data suggest that the role of endogenous brainstem activity in triggering tonic–clonic seizures should be re‐evaluated in standard experimental models of limbic seizures. Our work sheds new light on the mechanisms that generate febrile seizures in children and, therefore, on how they might be treated.
Collapse
Affiliation(s)
- Alexey S Pospelov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexey Y Yukin
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Mark S Blumberg
- Departments of Psychology and Biology, University of Iowa, Iowa City, Iowa, U.S.A
| | - Martin Puskarjov
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Kai Kaila
- Department of Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Maloney TC, Tenney JR, Szaflarski JP, Vannest J. Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging and the Identification of Epileptic Networks in Children. JOURNAL OF PEDIATRIC EPILEPSY 2015; 4:174-183. [PMID: 26744634 DOI: 10.1055/s-0035-1559812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
EEG/fMRI takes advantage of the high temporal resolution of EEG in combination with the high spatial resolution of fMRI. These features make it particularly applicable to the study of epilepsy in which the event duration (e.g., interictal epileptiform discharges) is short, typically less than 200 milliseconds. Interictal or ictal discharges can be identified on EEG and be used for source localization in fMRI analyses. The acquisition of simultaneous EEG/fMRI involves the use of specialized EEG hardware that is safe in the MR environment and comfortable to the participant. Advanced data analysis approaches such as independent component analysis conducted alone or sometimes combined with other, e.g., Granger Causality or "sliding window" analyses are currently thought to be most appropriate for EEG/fMRI data. These approaches make it possible to identify networks of brain regions associated with ictal and/or interictal events allowing examination of the mechanisms critical for generation and propagation through these networks. After initial evaluation in adults, EEG/fMRI has been applied to the examination of the pediatric epilepsy syndromes including Childhood Absence Epilepsy, Benign Epilepsy with Centrotemporal Spikes (BECTS), Dravet Syndrome, and Lennox-Gastaut Syndrome. Results of EEG/fMRI studies suggest that the hemodynamic response measured by fMRI may have a different shape in response to epileptic events compared to the response to external stimuli; this may be especially true in the developing brain. Thus, the main goal of this review is to provide an overview of the pediatric applications of EEG/fMRI and its associated findings up until this point.
Collapse
|
29
|
Yagi K. The pathophysiology of Lennox-Gastaut syndrome – a review of clinico-electrophysiological studies. JOURNAL OF EPILEPTOLOGY 2015. [DOI: 10.1515/joepi-2015-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SUMMARYIntroduction.Lennox-Gastaut syndrome (LGS) is a type of therapy-resistant epileptic syndrome. Since the establishment of our Epilepsy Center in 1975 we have performed many studies to assess the clinical symptoms, seizure manifestations, sleep and long-term follow-up of the clinical course and changes on electroencephalographs (EEGs) in patients with LGS.Aim.To review the updated pathophysiology of LGS based on our own clinico-electrophysiological data referring to recent advances in brain research.Methods.All of our previously published and unpublished data were reviewed in order to investigate the pathophysiology of LGS and using PubMed database for relevant literature.Results and Discussion.While LGS usually occurs in infancy, it has become apparent that there is a form of late-onset LGS (L-LGS) that may occur at age eight or older. L-LGS often occurs when there is a history of encephalitis/encephalopathy or status epilepticus. The long-term progression of LGS includes mainly tonic seizures that persist and are the basis of LGS. In approximately 30% of cases, the basic symptoms of LGS remain 10 years or longer after long-term progression, while the rest lose their characteristics, although the condition is residual in 60% of cases and remission occurs in fewer than 10%. Among the characteristic seizures associated with LGS, atypical absence seizures occur in response to a diverse range of EEG features; wherein, while they are mostly short, they are accompanied by a state of enervation along with a tendency for it to be unclear when the seizure has ended. Drop attacks can in fact be categorized into those in which the subject falls over due to hypertonia in the muscles used to maintain body posture and those in which the subject falls over due to loss of tension in the posture-retaining muscles. Tonic seizures range from those manifesting in the form of extremely mild axial muscle tonicity, open eyes and respiratory changes, accompanied by high voltage, fast rhythm (averaging 14 ± 0.4 Hz), or tonicity from axorhyzomelic muscles to the peripheral muscles, accompanying global tonic seizures, and EEG features showing low voltage fast activity (averaging 22 ± 0.6 Hz) from desynchronization. A total of 1191 clinical seizures were recorded upon overnight polysomnography and videotape, and seizure symptoms and their ictal EEGs were analyzed. In LGS, seizure activity increases during slow wave sleep, inhibiting progression into the further sleep stages but falls significantly during rapid eye movement (REM) sleep.Conclusions.From the research into seizure symptoms, clinical progression, sleep and seizures during sleep, it was believed that in LGS epileptic native lesions occur due to mesencephalic reticular formation, in the thalamic reticular system and, as a result of recent of brain physiology research, it is considered that LGS is an epileptic reticulo-thalamo-cortical system disorder. This has been supported by EEG-fMRI findings (Siniatchikin et al., 2011). Further research is therefore necessary to elucidate the role of the reticular formation in controlling the thalamo-cortical networks in humans.
Collapse
|
30
|
Abstract
Epileptic encephalopathies represent a group of devastating epileptic disorders that appear early in life and are characterized by pharmacoresistant generalized or focal seizures, persistent severe EEG abnormalities, and cognitive dysfunction or decline. The ictal and interictal epileptic discharges are age-specific and are either the main cause or contribute to cognitive deterioration in the idiopathic or symptomatic group respectively. Despite choosing the most appropriate anti-seizure drugs for the seizure-type and syndrome the results are often disappointing and polytherapy and/or alternative therapy becomes unavoidable. In those cases, consideration should be given to the quality of life of the child and carers. In this review we will discuss the clinical and EEG characteristics, evolution and management of age-related epileptic encephalopathies, recognized by the International League Against Epilepsy.
Collapse
|
31
|
Vinogradova LV. Comparative potency of sensory-induced brainstem activation to trigger spreading depression and seizures in the cortex of awake rats: Implications for the pathophysiology of migraine aura. Cephalalgia 2014; 35:979-86. [PMID: 25516507 DOI: 10.1177/0333102414565672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/15/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Migraine and epilepsy are highly co-morbid neurological disorders associated with episodic dysfunction of both cortical and subcortical networks. The study examined the interrelation between cortical spreading depression, the electrophysiological correlate of migraine aura and seizures triggered at cortical and brainstem levels by repeated sound stimulation in rats with acoustic hypersensitivity (reflex audiogenic epilepsy). METHOD In awake, freely moving rats with innate audiogenic epilepsy, 25 episodes of running seizure (brainstem seizures) were induced by repeated sound stimulation. Spreading depression and seizures were recorded using implanted cortical electrodes. RESULTS The first sound-induced brainstem seizures evoked neither spreading depression nor seizures in the cortex. With repetition, brainstem seizures began to be followed by a single cortical spreading depression wave and an epileptiform discharge. Spreading depression was more frequent an early cortical event than seizures: spreading depression appeared after 8.4 ± 1.0 repeated stimulations in 100% rats (n = 24) while cortical seizures were recorded after 12.9 ± 1.2 tests in 46% rats. Brainstem seizure triggered unilateral long-latency spreading depression. Bilateral short-latency cortical spreading depression was recorded only after intense cortical seizures. CONCLUSION These data show that episodic brainstem activation is a potent trigger of unilateral cortical spreading depression. Development of intense seizures in the cortex leads to initiation of spreading depression in multiple cortical sites of both hemispheres.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Russia
| |
Collapse
|
32
|
Pittau F, Mégevand P, Sheybani L, Abela E, Grouiller F, Spinelli L, Michel CM, Seeck M, Vulliemoz S. Mapping epileptic activity: sources or networks for the clinicians? Front Neurol 2014; 5:218. [PMID: 25414692 PMCID: PMC4220689 DOI: 10.3389/fneur.2014.00218] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/08/2014] [Indexed: 01/03/2023] Open
Abstract
Epileptic seizures of focal origin are classically considered to arise from a focal epileptogenic zone and then spread to other brain regions. This is a key concept for semiological electro-clinical correlations, localization of relevant structural lesions, and selection of patients for epilepsy surgery. Recent development in neuro-imaging and electro-physiology and combinations, thereof, have been validated as contributory tools for focus localization. In parallel, these techniques have revealed that widespread networks of brain regions, rather than a single epileptogenic region, are implicated in focal epileptic activity. Sophisticated multimodal imaging and analysis strategies of brain connectivity patterns have been developed to characterize the spatio-temporal relationships within these networks by combining the strength of both techniques to optimize spatial and temporal resolution with whole-brain coverage and directional connectivity. In this paper, we review the potential clinical contribution of these functional mapping techniques as well as invasive electrophysiology in human beings and animal models for characterizing network connectivity.
Collapse
Affiliation(s)
- Francesca Pittau
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Pierre Mégevand
- Laboratory for Multimodal Human Brain Mapping, Hofstra North Shore LIJ School of Medicine , Manhasset, NY , USA
| | - Laurent Sheybani
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital , Bern , Switzerland
| | - Frédéric Grouiller
- Radiology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Laurent Spinelli
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, University of Geneva , Geneva , Switzerland
| | - Margitta Seeck
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Neurology Department, University Hospitals and Faculty of Medicine of Geneva , Geneva , Switzerland
| |
Collapse
|
33
|
Archer JS, Warren AEL, Jackson GD, Abbott DF. Conceptualizing lennox-gastaut syndrome as a secondary network epilepsy. Front Neurol 2014; 5:225. [PMID: 25400619 PMCID: PMC4214194 DOI: 10.3389/fneur.2014.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022] Open
Abstract
Lennox–Gastaut Syndrome (LGS) is a category of severe, disabling epilepsy, characterized by frequent, treatment-resistant seizures, and cognitive impairment. Electroencephalography (EEG) shows characteristic generalized epileptic activity that is similar in those with lesional, genetic, or unknown causes, suggesting a common underlying mechanism. The condition typically begins in young children, leaving many severely disabled with recurring seizures throughout their adult life. Scalp EEG of the tonic seizures of LGS is characterized by a diffuse high-voltage slow transient evolving into generalized low-voltage fast activity, likely reflecting sustained fast neuronal firing over a wide cortical area. The typical interictal discharges (runs of slow spike-and-wave and bursts of generalized paroxysmal fast activity) also have a “generalized” electrical field, suggesting widespread cortical involvement. Recent brain mapping studies have begun to reveal which cortical and subcortical regions are active during these “generalized” discharges. In this critical review, we examine findings from neuroimaging studies of LGS and place these in the context of the electrical and clinical features of the syndrome. We suggest that LGS can be conceptualized as “secondary network epilepsy,” where the epileptic activity is expressed through large-scale brain networks, particularly the attention and default-mode networks. Cortical lesions, when present, appear to chronically interact with these networks to produce network instability rather than triggering each individual epileptic discharge. LGS can be considered as “secondary” network epilepsy because the epileptic manifestations of the disorder reflect the networks being driven, rather than the specific initiating process. In this review, we begin with a summation of the clinical manifestations of LGS and what this has revealed about the underlying etiology of the condition. We then undertake a systematic review of the functional neuroimaging literature in LGS, which leads us to conclude that LGS can best be conceptualized as “secondary network epilepsy.”
Collapse
Affiliation(s)
- John S Archer
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Aaron E L Warren
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department Neurology, Austin Health , Heidelberg, VIC , Australia
| | - David F Abbott
- Department of Medicine, Austin Health, The University of Melbourne , Heidelberg, VIC , Australia ; Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia
| |
Collapse
|
34
|
Abstract
Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist. In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
Collapse
Affiliation(s)
- Sahar Esmaeeli Nieh
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| | - Elliott H. Sherr
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA USA
| |
Collapse
|
35
|
Carney PW, Jackson GD. Insights into the mechanisms of absence seizure generation provided by EEG with functional MRI. Front Neurol 2014; 5:162. [PMID: 25225491 PMCID: PMC4150362 DOI: 10.3389/fneur.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/14/2014] [Indexed: 11/20/2022] Open
Abstract
Absence seizures (AS) are brief epileptic events characterized by loss of awareness with subtle motor features. They may be very frequent, and impact on attention, learning, and memory. A number of pathophysiological models have been developed to explain the mechanism of absence seizure generation, which relies heavily on observations from animal studies. Studying the structural and functional relationships between large-scale brain networks in humans is only practical with non-invasive whole brain techniques. EEG with functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore the interactions between brain structures involved in AS generation. A number of fMRI techniques including event-related analysis, time-course analysis, and functional connectivity (FC) have identified a common network of structures involved in AS. This network comprises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)], caudate nuclei, and the reticular structures of the pons. The main component displaying an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in group studies, is the thalamus while the most consistent cortical change is reduced BOLD signal in the DMN. Time-course analysis shows that, rather than some structures being activated or inactivated during AS, there appears to be increase in activity across components of the network preceding or following the electro-clinical onset of the seizure. The earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events. This region also shows altered FC in patients with AS. Hence, it appears that engagement of this network is central to AS. In this review, we will explore the insights of EEG-fMRI studies into the mechanisms of AS and consider how the DMN is likely to be the major large-scale brain network central to both seizure generation and seizure manifestations.
Collapse
Affiliation(s)
- Patrick W Carney
- The Florey Institute for Neuroscience and Mental Health , Heidelberg, VIC , Australia ; The University of Melbourne , Parkville, VIC , Australia ; Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- The Florey Institute for Neuroscience and Mental Health , Heidelberg, VIC , Australia ; The University of Melbourne , Parkville, VIC , Australia ; Austin Health , Heidelberg, VIC , Australia
| |
Collapse
|
36
|
Archer JS, Warren AEL, Stagnitti MR, Masterton RAJ, Abbott DF, Jackson GD. Lennox-Gastaut syndrome and phenotype: secondary network epilepsies. Epilepsia 2014; 55:1245-54. [PMID: 24902608 DOI: 10.1111/epi.12682] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is a severe epilepsy phenotype with characteristic electroclinical features despite diverse etiologies. We previously found common cerebral networks involved during slow spike-and-wave (SSW) and generalized paroxysmal fast activity (PFA), characteristic interictal discharges. Some patients have a Lennox-Gastaut-like phenotype and cortical lesions. We wished to explore the interaction between cerebral networks and lesions in this group. METHODS 3 Tesla electroencephalography-functional magnetic resonance imaging (EEG-fMRI) on six subjects with Lennox-Gastaut phenotype and a structural lesion. Timings of SSW and PFA events were used in an event-related fMRI analysis, and to estimate the time course of the hemodynamic response from key regions. RESULTS (1) PFA-robust fMRI signal increases were observed in frontal and parietal association cortical areas, thalamus, and pons, with simultaneous increases in both "attention" and resting-state (default mode) networks, a highly unusual pattern. (2) SSW showed mixed increased and decreased fMRI activity, with preevent increases in association cortex and thalamus, and then prominent postevent reduction. There was decreased fMRI activity in primary cortical areas. (3) Lesion-variable fMRI increases were observed during PFA and SSW discharges. Three subjects who proceeded to lesionectomy are >1 year seizure-free. SIGNIFICANCE We conceptualize Lennox-Gastaut phenotype as a being a network epilepsy, where key cerebral networks become autonomously unstable. Epileptiform activity in Lennox-Gastaut phenotype, and by implication in LGS, appears to be amplified and expressed through association cortical areas, possibly because the attention and default-mode networks are widely interconnected, fundamental brain networks. Seizure freedom in the subjects who proceeded to lesionectomy suggests that cortical lesions are able to establish and maintain this abnormal unstable network behavior. LGS may be considered a secondary network epilepsy because the unifying epileptic manifestations of the disorder, including PFA and SSW, reflect network dysfunction, rather than the specific initiating process.
Collapse
Affiliation(s)
- John S Archer
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Austin Health, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Vaudano AE, Ruggieri A, Vignoli A, Avanzini P, Benuzzi F, Gessaroli G, Nichelli PF, Darra F, Cantalupo G, Mastrangelo M, Dalla Bernardina B, Canevini MP, Meletti S. Epilepsy-related brain networks in ring chromosome 20 syndrome: an EEG-fMRI study. Epilepsia 2014; 55:403-13. [PMID: 24483620 DOI: 10.1111/epi.12539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify the brain networks that are involved in the different electroencephalography (EEG) abnormalities in patients with ring chromosome 20 [r(20)] syndrome. We hypothesize the existence of both distinctive and common brain circuits for the paroxysmal high voltage sharp waves (hSWs), the seizures, and the slow-wave 3-7 Hz rhythm that characterize this condition. METHODS Thirteen patients with [r(20)] syndrome were studied by means of EEG simultaneously recorded with functional magnetic resonance imaging (EEG-fMRI). EEG traces were reviewed in order to detect the pathologic interictal (hSWs) and ictal activities; the 3-7 Hz theta-delta power was derived using a fast Fourier transform. A group-level analysis was performed for each type of EEG abnormality separately using a fixed-effect model and a conjunction analysis. Finally, a second-level random-effect model was applied considering together the different EEG abnormalities, without distinction between hSW, seizures, or theta-delta rhythms. RESULTS Subcontinuous theta-delta rhythm was recorded in seven patients, seizures in two, and hSWs in three patients. The main results are the following: (1) the slow-wave rhythm was related to blood oxygen level-dependent (BOLD) increases in the premotor, sensory-motor, and temporoparietal cortex, and to BOLD decrements involving the default mode (DMN) and the dorsal attention networks (DANs); (2) the ictal-related BOLD changes showed an early involvement of the prefrontal lobe; (3) increases in BOLD signal over the basal ganglia, either for interictal and ictal activities, were observed; (4) a common pattern of positive BOLD changes in the bilateral perisylvian regions was found across the different EEG abnormalities. SIGNIFICANCE The BOLD increment in the perisylvian network and the decrease of the DMN and DAN could be the expression of the [r(20)] syndrome-related cognitive and behavioral deficits. The observed BOLD patterns are similar to the ones detected in other epileptic encephalopathies, suggesting that different epileptic disorders characterized by neurobehavioral regression are associated with dysfunction in similar brain networks. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Department of Biomedical Sciences, Metabolic, and Neuroscience, NOCSAE Hospital, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Flanagan D, Badawy R, Jackson G. EEG–fMRI in focal epilepsy: Local activation and regional networks. Clin Neurophysiol 2014; 125:21-31. [DOI: 10.1016/j.clinph.2013.06.182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
39
|
Capovilla G, Moshé SL, Wolf P, Avanzini G. Epileptic encephalopathy as models of system epilepsy. Epilepsia 2013; 54 Suppl 8:34-7. [DOI: 10.1111/epi.12421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giuseppe Capovilla
- Department of Child Neuropsychiatry; Epilepsy Center; C. Poma Hospital; Mantua Italy
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology; Dominick P. Purpura Departments of Neuroscience and Pediatrics; Laboratory of Developmental Epilepsy; Montefiore/Einstein Epilepsy Management Center; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York U.S.A
| | - Peter Wolf
- The Danish Epilepsy Center; Dianalund Denmark
| | - Giuliano Avanzini
- Department of Neurophysiology; IRCCS Foundation Neurological Institute “Carlo Besta”; Milan Italy
| |
Collapse
|
40
|
Siniatchkin M, Capovilla G. Functional neuroimaging in epileptic encephalopathies. Epilepsia 2013; 54 Suppl 8:27-33. [DOI: 10.1111/epi.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Siniatchkin
- Clinic of Child and Adolescents Psychiatry; Goethe-University of Frankfurt; Frankfurt Germany
| | - Giuseppe Capovilla
- Department of Child Neuropsychiatry; Epilepsy Center; C. Poma Hospital; Mantova Italy
| |
Collapse
|
41
|
Pillay N, Archer JS, Badawy RAB, Flanagan DF, Berkovic SF, Jackson G. Networks underlying paroxysmal fast activity and slow spike and wave in Lennox-Gastaut syndrome. Neurology 2013; 81:665-73. [PMID: 23864316 DOI: 10.1212/wnl.0b013e3182a08f6a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To use EEG-fMRI to determine which structures are critically involved in the generation of paroxysmal fast activity (PFA) and slow spike and wave (SSW) (1.5-2.5 Hz), the characteristic interictal discharges of Lennox-Gastaut syndrome (LGS). METHODS We studied 13 well-characterized patients with LGS using structural imaging and EEG-fMRI at 3 tesla. Ten patients had cortical structural abnormalities. PFA and SSW were considered as separate events in the fMRI analysis. RESULTS Simultaneous with fMRI, PFA was recorded in 6 patients and SSW in 9 (in 2, both were recorded). PFA events showed almost uniform increases in blood oxygen level-dependent (BOLD) signal in "association" cortical areas, as well as brainstem, basal ganglia, and thalamus. SSW showed a different pattern of BOLD signal change with many areas of decreased BOLD signal, mostly in primary cortical areas. Two patients with prior callosotomy had lateralized as well as generalized PFA. The lateralized PFA was associated with a hemispheric version of the PFA pattern we report here. CONCLUSION PFA is associated with activity in a diffuse network that includes association cortices as well as an unusual pattern of simultaneous activation of subcortical structures (brainstem, thalamus, and basal ganglia). By comparison, the SSW pattern is quite different, with cortical and subcortical activations and deactivations. Regardless of etiology, it appears that 2 key, but distinct, patterns of diffuse brain network involvement contribute to the defining electrophysiologic features of LGS.
Collapse
Affiliation(s)
- Neelan Pillay
- Brain Research Institute, Department of Medicine, University of Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Lennox-Gastaut syndrome symptomatic to hypothalamic hamartoma: evolution and long-term outcome following surgery. Pediatr Neurol 2013; 49:25-30. [PMID: 23827423 DOI: 10.1016/j.pediatrneurol.2013.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lennox-Gastaut syndrome is a catastrophic childhood cryptogenic or symptomatic epilepsy. Hypothalamic hamartomas cause refractory epilepsy often consistent with Lennox-Gastaut syndrome. METHODS Children with Lennox-Gastaut syndrome were defined by a triad of multiple generalized seizure types, slow spike-and-wave on EEG, and mental retardation. RESULTS Twenty-one of 159 hypothalamic hamartoma patients (14%) met the diagnostic criteria of Lennox-Gastaut syndrome. The median age of patients at epilepsy onset was 0.9 years (range, birth to 9 years). Six of the 21 patients (28%) had preceding infantile spasms. All patients underwent different surgical approaches, including endoscopic, transcallosal, orbitozygomatic resections, and radiosurgery treatment. Five of the 21 (24%) were seizure free with an additional 9 (42%) having at least >90% seizure reduction. Only 1 patient was not effectively treated (<50% seizure reduction). Eighty-eight percent of parents reported improvement in behavioral functioning. Shorter duration of epilepsy prior to surgery was a significant predictor of surgical outcome. CONCLUSIONS Patients with Lennox-Gastaut syndrome symptomatic to hypothalamic hamartomas have better postsurgical outcome due to other etiologies compared with cryptogenic and symptomatic Lennox-Gastaut syndrome patients. However, compared with overall hypothalamic hamartomas postsurgical outcomes, this cohort was less favorable. Earlier surgery may lead to better outcomes.
Collapse
|
43
|
Moeller F, Moehring J, Ick I, Steinmann E, Wolff S, Jansen O, Boor R, Stephani U, Siniatchkin M. EEG-fMRI in atypical benign partial epilepsy. Epilepsia 2013; 54:e103-8. [PMID: 23758518 DOI: 10.1111/epi.12243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
Abstract
Atypical benign partial epilepsy (ABPE) is a subgroup among the idiopathic focal epilepsies of childhood. Aim of this study was to investigate neuronal networks underlying ABPE and compare the results with previous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) studies of related epilepsy syndromes. Ten patients with ABPE underwent simultaneous EEG-fMRI recording. In all 10 patients several types of interictal epileptiform discharges (IEDs) were recorded. Individual IED-associated blood oxygen level-dependent (BOLD) signal changes were analyzed in a single subject analysis for each IED type (33 studies). A group analysis was also performed to determine common BOLD signal changes across the patients. IED-associated BOLD signal changes were found in 31 studies. Focal BOLD signal changes concordant with the spike field (21 studies) and distant cortical and subcortical BOLD signal changes (31 studies) were detected. The group analysis revealed a thalamic activation. This study demonstrated that ABPE is characterized by patterns similar to studies in rolandic epilepsy (focal BOLD signal changes in the spike field) as well as patterns observed in continuous spikes and waves during slow sleep (CSWS) (distant BOLD signal changes in cortical and subcortical structures), thereby underscoring that idiopathic focal epilepsies of childhood form a spectrum of overlapping syndromes.
Collapse
Affiliation(s)
- Friederike Moeller
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Moeller F, Stephani U, Siniatchkin M. Simultaneous EEG and fMRI recordings (EEG-fMRI) in children with epilepsy. Epilepsia 2013; 54:971-82. [PMID: 23647021 DOI: 10.1111/epi.12197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/27/2022]
Abstract
By combining electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) it is possible to describe blood oxygenation level-dependent (BOLD) signal changes related to EEG patterns. This way, EEG-pattern-associated networks of hemodynamic changes can be detected anywhere in the brain with good spatial resolution. This review summarizes EEG-fMRI studies that have been performed in children with epilepsy. EEG-fMRI studies in focal epilepsy (structural and nonlesional cases, benign epilepsy with centrotemporal spikes), generalized epilepsy (especially absence epilepsy), and epileptic encephalopathies (West syndrome, Lennox-Gastaut syndrome, continuous spike and waves during slow sleep, and Dravet syndrome) are presented. Although EEG-fMRI was applied mainly to localize the region presumably generating focal interictal discharges in focal epilepsies, EEG-fMRI identified underlying networks in patients with generalized epilepsies and thereby contributed to a better understanding of these epilepsies. In epileptic encephalopathies a specific fingerprint of hemodynamic changes associated with the particular syndrome was detected. The value of the EEG-fMRI technique for diagnosis and investigation of pathogenetic mechanisms of different forms of epilepsy is discussed.
Collapse
Affiliation(s)
- Friederike Moeller
- Department of Neuropediatrics, Christian-Albrechts-University, Kiel, Germany.
| | | | | |
Collapse
|
45
|
Moehring J, von Spiczak S, Moeller F, Helbig I, Wolff S, Jansen O, Muhle H, Boor R, Stephani U, Siniatchkin M. Variability of EEG-fMRI findings in patients withSCN1A-positive Dravet syndrome. Epilepsia 2013; 54:918-26. [DOI: 10.1111/epi.12119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Jan Moehring
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| | - Sarah von Spiczak
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| | - Friederike Moeller
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| | - Ingo Helbig
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| | | | - Olav Jansen
- Institute of Neuroradiology; Christian-Albrechts-University; Kiel; Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| | - Rainer Boor
- Northern German Epilepsy Center; Schwentinental-Raisdorf; Germany
| | | | - Michael Siniatchkin
- Department of Neuropediatrics; Christian-Albrechts-University; Kiel; Germany
| |
Collapse
|
46
|
Meletti S, Vignoli A, Benuzzi F, Avanzini P, Ruggieri A, Pugnaghi M, Nichelli P, Canevini MP. Ictal involvement of the nigrostriatal system in subtle seizures of ring chromosome 20 epilepsy. Epilepsia 2012; 53:e156-60. [PMID: 22738216 DOI: 10.1111/j.1528-1167.2012.03568.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies in animal models and patients with epilepsy have suggested that basal ganglia circuits may control epileptic seizures and that striatal dopaminergic transmission may play a role in seizure modulation and interruption. Chromosome 20 [r(20)] syndrome is a well-defined chromosomal disorder characterized by epilepsy, mild-to-moderate mental retardation, and lack of recognizable dysmorphic features. Epilepsy is often the most important clinical manifestation of the syndrome, with prolonged episodes of nonconvulsive status epilepticus suggesting dysfunction in the seizure control system. We present the ictal blood oxygen level-dependent (BOLD) changes in brief seizures recorded by means of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) coregistration in a patient with [r(20)] syndrome. We observed ictal BOLD increments in a cortical-subcortical network involving substantia nigrastriatum and frontal cortex. At present, this is the first functional neuroimaging evidence of the involvement of the nigrostriatal system during ictal EEG discharges in [r(20)] syndrome supporting a role of the basal ganglia circuits in human epileptic seizures.
Collapse
Affiliation(s)
- Stefano Meletti
- Department of Neuroscience, NOCSAE Hospital, University of Modena e Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia 2012; 53:1618-27. [PMID: 22691174 DOI: 10.1111/j.1528-1167.2012.03533.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess the extent of brain involvement during focal epileptic activity, we studied patterns of cortical and subcortical metabolic changes coinciding with interictal epileptic discharges (IEDs) using group analysis of simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) scans in patients with focal epilepsy. METHODS We selected patients with temporal lobe epilepsy (TLE, n = 32), frontal lobe epilepsy (FLE, n = 14), and posterior quadrant epilepsy (PQE, n = 20) from our 3 Tesla EEG-fMRI database. We applied group analysis upon the blood oxygen-level dependent (BOLD) response associated with focal IEDs. KEY FINDINGS Patients with TLE and FLE showed activations and deactivations, whereas in PQE only deactivations occurred. In TLE and FLE, the largest activation was in the mid-cingulate gyri bilaterally. In FLE, activations were also found in the ipsilateral frontal operculum, thalamus, and internal capsule, and in the contralateral cerebellum, whereas in TLE, we found additional activations in the ipsilateral mesial and neocortical temporal regions, insula, and cerebellar cortex. All three groups showed deactivations in default mode network regions, the most widespread being in the TLE group, and less in PQE and FLE. SIGNIFICANCE These results indicate that different epileptic syndromes result in unique and widespread networks related to focal IEDs. Default mode regions are deactivated in response to focal discharges in all three groups with syndrome specific pattern. We conclude that focal IEDs are associated with specific networks of widespread metabolic changes that may cause more substantial disturbance to brain function than might be appreciated from the focal nature of the scalp EEG discharges.
Collapse
Affiliation(s)
- Firas Fahoum
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Badawy RAB, Johnson KA, Cook MJ, Harvey AS. A mechanistic appraisal of cognitive dysfunction in epilepsy. Neurosci Biobehav Rev 2012; 36:1885-96. [PMID: 22617705 DOI: 10.1016/j.neubiorev.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/24/2012] [Accepted: 05/13/2012] [Indexed: 12/14/2022]
Abstract
A strong relationship between the clinical characteristics of epilepsy and the nature of cognitive impairments associated with the condition has been found, but the nature of this relationship appears to be quite complex and not well understood. This review presents a summary of the research on the interaction between cognition and epilepsy, surveyed from a mechanistic perspective with the aim of clarifying factors that contribute to the co-existence of both disorders. The physiological basis underpinning cognitive processing is first reviewed. The physiology of epilepsy is reviewed, with emphasis placed on interictal discharges and seizures. The nature of the impact of epilepsy on cognition is described, with transient and prolonged effects distinguished. Finally, the complexity of the co-morbidity between cognitive dysfunction and epilepsy is discussed in relation to childhood and adult-onset epilepsy syndromes and severe epileptic encephalopathies. Structural and functional abnormalities exist in patients with epilepsy that may underpin both the cognitive dysfunction and epilepsy, highlighting the complexity of the association. Research, possibly of a longitudinal nature, is needed to elucidate this multifactorial relationship between cognitive dysfunction and epilepsy.
Collapse
Affiliation(s)
- Radwa A B Badawy
- Department of Clinical Neurosciences, St. Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, Melbourne, Victoria, Australia; Electrical and Electronic Engineering, Melbourne, Victoria, Australia. ,
| | | | | | | |
Collapse
|
49
|
Vinogradova LV, Shatskova AB. Lateral asymmetry of early seizure manifestations in experimental generalized epilepsy. Neuroscience 2012; 213:133-43. [PMID: 22525136 DOI: 10.1016/j.neuroscience.2012.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Reorganization of seizure networks during epileptogenesis involves cortico-subcortical and interhemispheric interactions. In the audiogenic kindling (AK) model of generalized tonic-clonic seizures, upstream seizure propagation along ascending brainstem-to-forebrain pathways determines progressive intensification of repeated sound-induced convulsions. Full-blown audiogenic seizures are bilaterally symmetric and their repetition results in bisynchronous recruiting the cortex in secondary epileptogenesis. The present study describes lateral asymmetry of initial behavioral and EEG manifestations of audiogenic seizures and AK in Wistar and WAG/Rij rats with acoustic hypersensitivity. These rats exhibit consistent individual lateralization of running seizures (run directionality) induced by repeated binaural stimulation. Since this initial preconvulsive running reflects seizure onset in the auditory brainstem, the running asymmetry suggests non-symmetric early epileptic activation of brainstem substrates by sound in these rats. Repetition of the asymmetric brainstem seizures led to asynchronous recruiting the cortex into seizure network and lateralization of running seizures was predictive for asymmetry of early cortical seizure manifestations in Wistar and WAG/Rij rats. Both electrographic markers of AK, spreading depression (SD) and post-running afterdischarge, first appeared in the cortex ipsilateral to run direction, suggesting lateralized brainstem-to-forebrain seizure generalization during AK. At the population level, no bias in lateralization of running and SD was found in Wistar and WAG/Rij rats but incidence of secondary cortical seizures varied, depending on strain and run laterality. Among Wistar rats, cortical seizures developed more rarely in right-runners than in left-runners, suggesting enhanced resistance of the right hemisphere to epileptogenesis in rats of this strain. WAG/Rij rats with mixed (absence and audiogenic) epilepsy showed weak lateralization of early cortical seizures and no left-right difference in their incidence during AK. Present findings suggest (1) lateralized brainstem-to-forebrain seizure propagation and hemispheric difference in its facility in Wistar rats, (2) alterations of intra- and interhemispheric seizure propagation in WAG/Rij rats with genetic absence epilepsy.
Collapse
Affiliation(s)
- L V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences - RAS, Butlerova Street 5A, 117485 Moscow, Russia.
| | | |
Collapse
|
50
|
T2 hyperintense signal of the central tegmental tracts in children: disease or normal maturational process? Neuroradiology 2012; 54:863-71. [PMID: 22271318 DOI: 10.1007/s00234-012-1006-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/05/2012] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebral central tegmental tract hyperintense signal on T2-weighted MRI (CTTH) is known from various clinical conditions, including children treated with vigabatrin (VGB) for West syndrome (WS), with hypoxic-ischemic brain injury, and metabolic diseases. Considering this clinical diversity, we hypothesized that CTTH might primarily mirror a physiologic process. METHODS We retrospectively analysed brain MRI data of the central tegmental tracts deriving from four different groups: (1) children with WS and VGB therapy (WS+VGB+), (2) children with WS but without VGB therapy (WS+VGB-), (3) children with different neurological diseases (WS-VGB-; maximum age 15 years), and (4) controls younger than 25 months of age (this age includes the peak age of WS). RESULTS CTTH were detected in 4/17 WS+VGB+ children (24%), 4/34 WS+VGB- children (12%), 18/296 WS-VGB- children (6%), and 8/112 controls (7%). Independently from the underlying diagnosis, CTTH showed a peak age during early infancy and were not found before 4 months and after 7 years of life. The rate of CTTH among WS children ± VGB therapy was similar so that VGB therapy seems of minor etiological impact. However, comparison of WS patients younger than 25 months of age (CTTH present in 7/40) with age-matched controls (CTTH present in 8/112) revealed that CTTH tend to be more frequent among WS patients in general. CONCLUSIONS Our study suggests that CTTH represents a physiological maturation-related process. The high prevalence of CTTH among patients with WS indicates that this physiological process may be modified by additional endo- or exogeneous factors.
Collapse
|