1
|
Wang S, Wufuer R, Duo J, Li W, Pan X. Cadmium Caused Different Toxicity to Photosystem I and Photosystem II of Freshwater Unicellular Algae Chlorella pyrenoidosa (Chlorophyta). TOXICS 2022; 10:toxics10070352. [PMID: 35878257 PMCID: PMC9323598 DOI: 10.3390/toxics10070352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Heavy metals such as Cd pose environmental problems and threats to a variety of organisms. The effects of cadmium (Cd) on the growth and activities of photosystem I (PSI) and photosystem II (PSII) of Chlorella pyrenoidosa were studied. The growth rate of cells treated with 25 and 100 µM of Cd for longer than 48 h were significantly lower than the control, accompanying with the inhibition of photosynthesis. The result of quantum yields and electron transport rates (ETRs) in PSI and PSII showed that Cd had a more serious inhibition on PSII than on PSI. Cd decreased the efficiency of PSII to use the energy under high light with increasing Cd concentration. In contrast, the quantum yield of PSI did not show a significant difference among different Cd treatments. The activation of cyclic electron flow (CEF) and the inhibition of linear electron flow (LEF) due to Cd treatment were observed. The photochemical quantum yield of PSI and the tolerance of ETR of PSI to Cd treatments were due to the activation of CEF around PSI. The activation of CEF also played an important role in induction of non-photochemical quenching (NPQ). The binding features of Cd ions and photosystem particles showed that Cd was easier to combine with PSII than PSI, which may explain the different toxicity of Cd on PSII and PSI.
Collapse
Affiliation(s)
- Shuzhi Wang
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (S.W.); (R.W.); (J.D.)
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Rehemanjiang Wufuer
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (S.W.); (R.W.); (J.D.)
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jia Duo
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (S.W.); (R.W.); (J.D.)
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenfeng Li
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi 830011, China; (S.W.); (R.W.); (J.D.)
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Correspondence: (W.L.); (X.P.); Tel.: +86-991-7823-147 (W.L.)
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (W.L.); (X.P.); Tel.: +86-991-7823-147 (W.L.)
| |
Collapse
|
2
|
The Effect of Chromium on Photosynthesis and Lipid Accumulation in Two Chlorophyte Microalgae. ENERGIES 2021. [DOI: 10.3390/en14082260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heavy metals have adverse effects on microalgae metabolism and growth. Photosynthesis and lipid profile are quite sensitive to heavy metal toxicity. The impact of hexavalent chromium—Cr(VI) on photosynthesis and lipid accumulation in Mucidosphaerium pulchellum and Micractinium pusillum exposed to different concentrations (0–500 μg L−1) was investigated for 11 days. A significant (p < 0.05) increase in lipid content was observed with increasing Cr(VI) concentration. However, growth was suppressed at higher concentrations exceeding 100 μg L−1. Addition of Cr(VI) in the cell culture medium showed a negative effect on quantum yield (Fv/Fm), and a photosynthetic inhibition of >65% was noted in both species at 500 μg L−1. However, the lipid gravimetric analysis presented inner cell lipid content up to 36% and 30% of dry weight biomass for M. pulchellum and M. pusillum, respectively. The fatty acids profiles of both microalgae species showed higher levels of hexadecenoic acid as well as ω3, ω6, and ω7 fatty acids. The effect of Cr(VI) on photosynthesis and lipid accumulation in both microalgae species was concentration and exposure time dependent. This shows that an appropriate concentration of Cr(VI) in culture medium could be beneficial for higher lipid accumulation in freshwater eukaryotic microalgae species.
Collapse
|
3
|
Todorenko D, Timofeev N, Kovalenko I, Kukarskikh G, Matorin D, Antal T. Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.). PLANTA 2019; 251:11. [PMID: 31776673 DOI: 10.1007/s00425-019-03304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 05/02/2023]
Abstract
MAIN CONCLUSION Components of the photosynthetic electron transport chain in pea (Pisum sativum L.) leaves under in vivo conditions showed the following sensitivity to the inhibitory action of chromium(VI): intersystem electron transport > photosystem I > photosystem II. Inhibitory effects of chromium (VI) (K2Cr2O7, Cr) on the light reactions of photosynthesis were studied in vivo in Pisum sativum L. by using Multi-function Plant Efficiency Analyser (M-PEA-2). Photosynthetic parameters related to photosystem (PS) II, PSI and intersystem electron carriers were calculated from the light-induced kinetics of prompt chlorophyll a fluorescence (OJIP transient), delayed chlorophyll a fluorescence (DF), and 820 nm modulated reflection (MR). We showed that the I2 step of DF induction is sensitive to inhibition of the Q0 site of the cytochrome b6f complex. Such parameters as δRo of the JIP test related to the functional state of photosynthetic reactions beyond the PQ pool, Vred of the MR induction assigned to the overall rate of P700+ and plastocyanin reduction, and I2 step of the DF induction were significantly altered in the presence of low-dose Cr(VI). Moderate doses of Cr affected mainly PSI-related parameters including Vox and ΔMR parameters of the MR induction, whereas high-dose treatment influenced JIP test parameters φPo(= FV/FM) and ψEo related to PSII. The obtained results showed that the earliest Cr(VI) effect on the photosynthetic electron transport chain manifests itself by inhibition of the intersystem electron transport, rather, at the level of the cytochrome b6f complex. Inhibitory effects of Cr on PSI were more pronounced than those on PSII. Sensitivity of the used kinetic parameters toward the functional state of photosynthetic reactions makes this approach suitable for early diagnostics of toxic action of pollutants on plants.
Collapse
Affiliation(s)
- Daria Todorenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nyurgun Timofeev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya Kovalenko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina Kukarskikh
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry Matorin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Taras Antal
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Department of Botany and Plant Ecology, Faculty of Natural Sciences and Geography, Pskov State University, Pskov, 180000, Russia.
| |
Collapse
|
4
|
Li M, Chen D, Liu Y, Chuang CY, Kong F, Harrison PJ, Zhu X, Jiang Y. Exposure of engineered nanoparticles to Alexandrium tamarense (Dinophyceae): Healthy impacts of nanoparticles via toxin-producing dinoflagellate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:356-366. [PMID: 28806552 DOI: 10.1016/j.scitotenv.2017.05.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Human activities can enhance the frequency, intensity and occurrence of harmful algal blooms (HABs). Engineered nanoparticles (ENPs), contained in many materials, will inevitably enter coastal waters and thus cause unpredictable impacts on aquatic organisms. However, knowledge of the influence of ENPs on HAB species is still lacking. In this study, we examined the effects of titanium dioxide nanoparticles (nTiO2), zinc oxide nanoparticles (nZnO) and aluminum oxide nanoparticles (nAl2O3) on physiological changes and paralytic shellfish poisoning toxins (PSTs) production of Alexandrium tamarense. We found a dose-dependent decrease in photosynthetic activity of A. tamarense under all three ENPs and a significant growth inhibition induced by nZnO. The largest reactive oxygen species (ROS) production was induced by nTiO2, followed by nZnO and nAl2O3. Moreover, the PSTs production rate increased by 3.9-fold for nTiO2 (p<0.01) and 4.5-fold for nAl2O3 (p<0.01) at a concentration of 200mgL-1. The major component, C2 was transformed to its epimer C1 and the proportion of decarbamoyl toxins increased under 200mgL-1 of nZnO and nAl2O3. In addition, the proportion of carbamate toxins increased upon exposure to 2mgL-1 ENPs, while decreased upon exposure to 200mgL-1 ENPs. The changes in PSTs production and composition might be an adaptive response for A. tamarense to overcome the stress of ENPs exposure. This work brings the first evidence that ENP would affect PSTs production and profiles.
Collapse
Affiliation(s)
- Manlu Li
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Daoyi Chen
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chia Ying Chuang
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Fanzhou Kong
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Paul J Harrison
- Dept Earth & Ocean Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuelu Jiang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Wang S, Chen F, Mu S, Zhang D, Pan X, Lee DJ. Simultaneous analysis of photosystem responses of Microcystis aeruginoga under chromium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:163-168. [PMID: 23228465 DOI: 10.1016/j.ecoenv.2012.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Chromium (Cr) is a toxic metal that poses a great threat to aquatic ecosystems. Information is limited on coinstantaneous responses of photosystems I (PSI) and II (PSII) to Cr(VI) stress due to lack of instruments that can simultaneously measure PSI and PSII activities. In the present study, responses of quantum yields of energy conversion and electron transport rates of PSI and PSII in Microcystis aeruginosa cells to Cr(VI) stress were simultaneously analyzed by a DUAL-PAM-100 system. Quantum yield of cyclic electron flow (CEF) under Cr(VI) stress and its physiological role in alleviating toxicity of Cr(VI) were also analyzed. At 5 mg L(-1) Cr(VI), quantum yield and electron transport rate of PSII decreased significantly, and light-induced non-photochemical fluorescence quenching lost. Cr(VI) also inhibited efficiency of PSII to use energy under high light more than of PSI. PSII showed lower maximal electron transport rate and light adaptability than PSI. Electron transport rate of PSI was higher and decreased less than that of PSII, implying less sensitivity of PSI to high light and Cr(VI). Energy dissipation through non-light-induced non-photochemical fluorescence quenching increased with increasing Cr(VI) concentration. CEF was stimulated under Cr(VI) treatment and made a significant contribution to quantum yield and electron transport of PSI, which was essential for protection of PSI from stresses of Cr(VI) and high light.
Collapse
Affiliation(s)
- Shuzhi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | | | | | | | | | | |
Collapse
|
7
|
Wang S, Pan X. Effects of Sb(V) on Growth and Chlorophyll Fluorescence of Microcystis aeruginosa (FACHB-905). Curr Microbiol 2012; 65:733-41. [DOI: 10.1007/s00284-012-0221-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/17/2012] [Indexed: 11/30/2022]
|