1
|
Hüner NPA, Smith DR, Cvetkovska M, Zhang X, Ivanov AG, Szyszka-Mroz B, Kalra I, Morgan-Kiss R. Photosynthetic adaptation to polar life: Energy balance, photoprotection and genetic redundancy. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153557. [PMID: 34922115 DOI: 10.1016/j.jplph.2021.153557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 06/14/2023]
Abstract
The persistent low temperature that characterize polar habitats combined with the requirement for light for all photoautotrophs creates a conundrum. The absorption of too much light at low temperature can cause an energy imbalance that decreases photosynthetic performance that has a negative impact on growth and can affect long-term survival. The goal of this review is to survey the mechanism(s) by which polar photoautotrophs maintain cellular energy balance, that is, photostasis to overcome the potential for cellular energy imbalance in their low temperature environments. Photopsychrophiles are photosynthetic organisms that are obligately adapted to low temperature (0⁰- 15 °C) but usually die at higher temperatures (≥20 °C). In contrast, photopsychrotolerant species can usually tolerate and survive a broad range of temperatures (5⁰- 40 °C). First, we summarize the basic concepts of excess excitation energy, energy balance, photoprotection and photostasis and their importance to survival in polar habitats. Second, we compare the photoprotective mechanisms that underlie photostasis and survival in aquatic cyanobacteria and green algae as well as terrestrial Antarctic and Arctic plants. We show that polar photopsychrophilic and photopsychrotolerant organisms attain energy balance at low temperature either through a regulated reduction in the efficiency of light absorption or through enhanced capacity to consume photosynthetic electrons by the induction of O2 as an alternative electron acceptor. Finally, we compare the published genomes of three photopsychrophilic and one photopsychrotolerant alga with five mesophilic green algae including the model green alga, Chlamydomonas reinhardtii. We relate our genomic analyses to photoprotective mechanisms that contribute to the potential attainment of photostasis. Finally, we discuss how the observed genomic redundancy in photopsychrophilic genomes may confer energy balance, photoprotection and resilience to their harsh polar environment. Primary production in aquatic, Antarctic and Arctic environments is dependent on diverse algal and cyanobacterial communities. Although mosses and lichens dominate the Antarctic terrestrial landscape, only two extant angiosperms exist in the Antarctic. The identification of a single 'molecular key' to unravel adaptation of photopsychrophily and photopsychrotolerance remains elusive. Since these photoautotrophs represent excellent biomarkers to assess the impact of global warming on polar ecosystems, increased study of these polar photoautotrophs remains essential.
Collapse
Affiliation(s)
- Norman P A Hüner
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - David R Smith
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | | | - Xi Zhang
- Dept. of Biology, University of Western Ontario, London, N6A 5B7, Canada.
| | - Alexander G Ivanov
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Beth Szyszka-Mroz
- Dept. of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, N6A 5B7, Canada.
| | - Isha Kalra
- Dept. of Microbiology, Miami University of Ohio, Oxford, OH, 45056, USA.
| | | |
Collapse
|
2
|
Rapid changes in spectral composition after darkness influences nitric oxide, glucose and hydrogen peroxide production in the Antarctic diatom Fragilariopsis cylindrus. Polar Biol 2021. [DOI: 10.1007/s00300-021-02867-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Mammone M, Ferrier-Pagés C, Lavorano S, Rizzo L, Piraino S, Rossi S. High photosynthetic plasticity may reinforce invasiveness of upside-down zooxanthellate jellyfish in Mediterranean coastal waters. PLoS One 2021; 16:e0248814. [PMID: 33739995 PMCID: PMC7978352 DOI: 10.1371/journal.pone.0248814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/06/2021] [Indexed: 12/05/2022] Open
Abstract
Ecological profiling of non-native species is essential to predict their dispersal and invasiveness potential across different areas of the world. Cassiopea is a monophyletic taxonomic group of scyphozoan mixotrophic jellyfish including C. andromeda, a recent colonizer of sheltered, shallow-water habitats of the Mediterranean Sea, such as harbors and other light-limited, eutrophic coastal habitats. To assess the ecophysiological plasticity of Cassiopea jellyfish and their potential to spread across the Mare Nostrum by secondary introductions, we investigated rapid photosynthetic responses of jellyfish to irradiance transitions—from reduced to increased irradiance conditions (as paradigm of transition from harbors to coastal, meso/oligotrophic habitats). Laboratory incubation experiments were carried out to compare oxygen fluxes and photobiological variables in Cassiopea sp. immature specimens pre-acclimated to low irradiance (PAR = 200 μmol photons m−2 s−1) and specimens rapidly exposed to higher irradiance levels (PAR = 500 μmol photons m−2 s−1). Comparable photosynthetic potential and high photosynthetic rates were measured at both irradiance values, as also shown by the rapid light curves. No significant differences were observed in terms of symbiont abundance between control and treated specimens. However, jellyfish kept at the low irradiance showed a higher content in chlorophyll a and c (0.76±0.51SD vs 0.46±0.13SD mg g-1 AFDW) and a higher Ci (amount of chlorophyll per cell) compared to jellyfish exposed to higher irradiance levels. The ratio between gross photosynthesis and respiration (P:R) was >1, indicating a significant input from the autotrophic metabolism. Cassiopea sp. specimens showed high photosynthetic performances, at both low and high irradiance, demonstrating high potential to adapt to sudden changes in light exposure. Such photosynthetic plasticity, combined with Cassiopea eurythermal tolerance and mixotrophic behavior, jointly suggest the upside-down jellyfish as a potentially successful invader in the scenario of a warming Mediterranean Sea.
Collapse
Affiliation(s)
- Marta Mammone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- * E-mail: (MM); (SP); (SR)
| | | | | | - Lucia Rizzo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
- * E-mail: (MM); (SP); (SR)
| | - Sergio Rossi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
- Labomar, Universidade Federal do Ceará, Fortaleza, Brazil
- * E-mail: (MM); (SP); (SR)
| |
Collapse
|
4
|
Differences in diversity and photoprotection capability between ice algae and under-ice phytoplankton in Saroma-Ko Lagoon, Japan: a comparative taxonomic diatom analysis with microscopy and DNA barcoding. Polar Biol 2020. [DOI: 10.1007/s00300-020-02751-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol 2019. [DOI: 10.1007/s00300-019-02576-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Yan D, Endo H, Suzuki K. Increased temperature benefits growth and photosynthetic performance of the sea ice diatom Nitzschia cf. neglecta (Bacillariophyceae) isolated from saroma lagoon, Hokkaido, Japan. JOURNAL OF PHYCOLOGY 2019; 55:700-713. [PMID: 30802945 DOI: 10.1111/jpy.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
During ice melt in spring, ice algae are released from the ice and could be exposed to variable temperatures and irradiances in surface water. Saroma Lagoon is an embayment with two inlets leading to the Sea of Okhotsk. With seasonal development of sea ice, its water temperature changes dramatically throughout the year. To investigate the living and photoprotective strategies of ice algae in such a coastal water system, we grew Nitzschia cf. neglecta, an ice diatom isolated from the sea ice of this lagoon, under irradiance levels of 30 and 100 μmol photons · m-2 · s-1 , and temperatures of 2°C and 10°C. Then the acclimated cells were exposed to high light in order to investigate the plasticity of their photosynthetic apparatus. At 10°C, cells grew faster and showed decreased susceptibility to high light. At 2°C, an immediate decrease in all pigment content upon exposure, as well as a higher cellular content of diatoxanthin was used to compensate for the more severe excitation stress. Highly efficient photoprotection was achieved through the diadinoxanthin-diatoxanthin cycle-dependent nonphotochemical quenching. While regulation through psbA and rbcL at the transcription level played a minor role in the response to high light stress at both temperatures. The wide tolerance to both temperature and light changes suggest that the thinning of sea ice and higher temperatures in a warmer world will lead to more intense blooms in Saroma Lagoon.
Collapse
Affiliation(s)
- Dong Yan
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Hisashi Endo
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Koji Suzuki
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
7
|
Petrou K, Kranz SA, Trimborn S, Hassler CS, Ameijeiras SB, Sackett O, Ralph PJ, Davidson AT. Southern Ocean phytoplankton physiology in a changing climate. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:135-150. [PMID: 27236210 DOI: 10.1016/j.jplph.2016.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO2), potentially harbouring even greater potential for additional sequestration of CO2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO.
Collapse
Affiliation(s)
- Katherina Petrou
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia.
| | - Sven A Kranz
- Florida State University, Department of Earth, Ocean and Atmospheric Sciences, Tallahassee, FL 32306, USA
| | - Scarlett Trimborn
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; University of Bremen, Leobener Straße NW2, 28359 Bremen, Germany
| | - Christel S Hassler
- University of Geneva, Earth and Environmental Sciences, Institut F.-A. Forel, Uni Vogt, 66 bvd Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Sonia Blanco Ameijeiras
- University of Geneva, Earth and Environmental Sciences, Institut F.-A. Forel, Uni Vogt, 66 bvd Carl-Vogt, 1211 Geneva 4, Switzerland
| | - Olivia Sackett
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter J Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Andrew T Davidson
- Department of the Environment, Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia; Antarctic Climate and Ecosystem Cooperative Research Centre (ACECRC), University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia
| |
Collapse
|
8
|
Enberg S, Piiparinen J, Majaneva M, Vähätalo AV, Autio R, Rintala JM. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae. FEMS Microbiol Ecol 2015. [PMID: 26310455 DOI: 10.1093/femsec/fiv102 fiv102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition.
Collapse
Affiliation(s)
- Sara Enberg
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Jonna Piiparinen
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Finnish Environment Institute, Marine Research Centre, PO Box 140, FI-00251 Helsinki, Finland
| | - Markus Majaneva
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, PO Box 35, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Riitta Autio
- Finnish Environment Institute, Marine Research Centre, PO Box 140, FI-00251 Helsinki, Finland
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Enberg S, Piiparinen J, Majaneva M, Vähätalo AV, Autio R, Rintala JM. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae. FEMS Microbiol Ecol 2015; 91:fiv102. [PMID: 26310455 DOI: 10.1093/femsec/fiv102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 11/12/2022] Open
Abstract
The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition.
Collapse
Affiliation(s)
- Sara Enberg
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Jonna Piiparinen
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Finnish Environment Institute, Marine Research Centre, PO Box 140, FI-00251 Helsinki, Finland
| | - Markus Majaneva
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Anssi V Vähätalo
- Department of Biological and Environmental Science, PO Box 35, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Riitta Autio
- Finnish Environment Institute, Marine Research Centre, PO Box 140, FI-00251 Helsinki, Finland
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
10
|
La Rocca N, Sciuto K, Meneghesso A, Moro I, Rascio N, Morosinotto T. Photosynthesis in extreme environments: responses to different light regimes in the Antarctic alga Koliella antarctica. PHYSIOLOGIA PLANTARUM 2015; 153:654-67. [PMID: 25186023 DOI: 10.1111/ppl.12273] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/07/2014] [Accepted: 07/23/2014] [Indexed: 05/22/2023]
Abstract
Antarctic algae play a fundamental role in polar ecosystem thanks to their ability to grow in an extreme environment characterized by low temperatures and variable illumination. Here, for prolonged periods, irradiation is extremely low and algae must be able to harvest light as efficiently as possible. On the other side, at low temperatures even dim irradiances can saturate photosynthesis and drive to the formation of reactive oxygen species. Colonization of this extreme environment necessarily required the optimization of photosynthesis regulation mechanisms by algal organisms. In order to investigate these adaptations we analyzed the time course of physiological and morphological responses to different irradiances in Koliella antarctica, a green microalga isolated from Ross Sea (Antarctica). Koliella antarctica not only modulates cell morphology and composition of its photosynthetic apparatus on a long-term acclimation, but also shows the ability of a very fast response to light fluctuations. Koliella antarctica controls the activity of two xanthophyll cycles. The first, involving lutein epoxide and lutein, may be important for the growth under very low irradiances. The second, involving conversion of violaxanthin to antheraxanthin and zeaxanthin, is relevant to induce a fast and particularly strong non-photochemical quenching, when the alga is exposed to higher light intensities. Globally K. antarctica thus shows the ability to activate a palette of responses of the photosynthetic apparatus optimized for survival in its natural extreme environment.
Collapse
|
11
|
Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biol 2013. [DOI: 10.1007/s00300-013-1444-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
|
13
|
Vilumbrales DM, Skácelová K, Barták M. Sensitivity of Antarctic freshwater algae to salt stress assessed by fast chlorophyll fluorescence transient. ACTA ACUST UNITED AC 2013. [DOI: 10.5817/cpr2013-2-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we investigated the effects of salt stress (2 mM NaCl) on excitation energy transfer from light harvesting complexes to photosystem II (PS II) in two Antarctic algal species: Klebsormidium sp. and Zygnema sp. Short-term salt stress led to a significant changes in the shape of chlorophyll fluorescence transient (OJIP). Analyses of the polyphasic fluorescence transients (OJIP) showed that the fluorescence yield at the phases J, I and P declined considerably with the time of exposition to salt stress. In both experimental species, OJIP transients reached lowest values of chlorophyll fluorescence signal after 30/60 min. of NaCl exposition. Then, OJIP shape and chlorophyll fluo-rescence showed species-specific recovery and rised towards original values (about 2/3 of untreated control). Analyses of chlorophyll fluorescence parameters derived from OJIPs showed that salt stress led to a decrease in the maximal efficiency of PS II photo-chemistry (FV/FM) in Zygnema sp. but not Klebsormidium sp. The results indicated that the probability of excitation energy transfer before and beyond QA, and the yield of electron transport beyond QA is limited by salt-induced stress in Zygnema sp. In addition, salt stress resulted in a decrease in the photosynthetic electron transport per PS II reaction center, but both increase and decrease in the trapping per PS II reaction center was found. Performace index (PIabs) was affected negatively in Zygnema sp. but possitively Klebsormidium sp. indicating that the latter species was more resistant to salt stress than Zygnema sp.
Collapse
|