1
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
2
|
Annunziata R, Balestra C, Marotta P, Ruggiero A, Manfellotto F, Benvenuto G, Biffali E, Ferrante MI. An optimised method for intact nuclei isolation from diatoms. Sci Rep 2021; 11:1681. [PMID: 33462289 PMCID: PMC7813820 DOI: 10.1038/s41598-021-81238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
Due to their abundance in the oceans, their extraordinary biodiversity and the increasing use for biotech applications, the study of diatom biology is receiving more and more attention in the recent years. One of the limitations in developing molecular tools for diatoms lies in the peculiar nature of their cell wall, that is made of silica and organic molecules and that hinders the application of standard methods for cell lysis required, for example, to extract organelles. In this study we present a protocol for intact nuclei isolation from diatoms that was successfully applied to three different species: two pennates, Pseudo-nitzschia multistriata and Phaeodactylum tricornutum, and one centric diatom species, Chaetoceros diadema. Intact nuclei were extracted by treatment with acidified NH4F solution combined to low intensity sonication pulses and separated from cell debris via FAC-sorting upon incubation with SYBR Green. Microscopy observations confirmed the integrity of isolated nuclei and high sensitivity DNA electrophoresis showed that genomic DNA extracted from isolated nuclei has low degree of fragmentation. This protocol has proved to be a flexible and versatile method to obtain intact nuclei preparations from different diatom species and it has the potential to speed up applications such as epigenetic explorations as well as single cell ("single nuclei") genomics, transcriptomics and proteomics in different diatom species.
Collapse
Affiliation(s)
| | | | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | | | | | | - Elio Biffali
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | |
Collapse
|
3
|
Quick and facile preparation of histone proteins from the green microalga Chlamydomonas reinhardtii and other photosynthetic organisms. Methods 2020; 184:102-111. [DOI: 10.1016/j.ymeth.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 01/26/2020] [Indexed: 11/23/2022] Open
|
4
|
|
5
|
Khan A, Eikani CK, Khan H, Iavarone AT, Pesavento JJ. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications. J Proteome Res 2017; 17:23-32. [PMID: 29198113 DOI: 10.1021/acs.jproteome.7b00780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.
Collapse
Affiliation(s)
- Aliyya Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Carlo K Eikani
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Hana Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California , Berkeley, California 94720, United States
| | - James J Pesavento
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| |
Collapse
|
6
|
Lv B, Wan L, Taschner M, Cheng X, Lorentzen E, Huang K. Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. J Cell Sci 2017; 130:1662-1674. [PMID: 28302912 DOI: 10.1242/jcs.200758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cilia are microtubule-based organelles and perform motile, sensing and signaling functions. The assembly and maintenance of cilia depend on intraflagellar transport (IFT). Besides ciliary localization, most IFT proteins accumulate at basal bodies. However, little is known about the molecular mechanism of basal body targeting of IFT proteins. We first identified the possible basal body-targeting sequence in IFT46 by expressing IFT46 truncation constructs in an ift46-1 mutant. The C-terminal sequence between residues 246-321, termed BBTS3, was sufficient to target YFP to basal bodies in the ift46-1 strain. Interestingly, BBTS3 is also responsible for the ciliary targeting of IFT46. BBTS3::YFP moves bidirectionally in flagella and interacts with other IFT complex B (IFT-B) proteins. Using IFT and motor mutants, we show that the basal body localization of IFT46 depends on IFT52, but not on IFT81, IFT88, IFT122, FLA10 or DHC1b. IFT52 interacts with IFT46 through residues L285 and L286 of IFT46 and recruits it to basal bodies. Ectopic expression of the C-terminal domain of IFT52 in the nucleus resulted in accumulation of IFT46 in nuclei. These data suggest that IFT52 and IFT46 can preassemble as a complex in the cytoplasm, which is then targeted to basal bodies.
Collapse
Affiliation(s)
- Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Wan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried D-82152, Germany
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
7
|
Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Dore LC, Weng X, Ji Q, Mets L, He C. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 2015; 161:879-892. [PMID: 25936837 DOI: 10.1016/j.cell.2015.04.010] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
Abstract
N(6)-methyldeoxyadenosine (6mA or m(6)A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here, we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms.
Collapse
Affiliation(s)
- Ye Fu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Guan-Zheng Luo
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Dali Han
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Ziyang Hao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Jianzhao Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xingyu Lu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Louis C Dore
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Xiaocheng Weng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Quanjiang Ji
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Laurens Mets
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th St, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Schierenbeck L, Ries D, Rogge K, Grewe S, Weisshaar B, Kruse O. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing. BMC Genomics 2015; 16:57. [PMID: 25730202 PMCID: PMC4336690 DOI: 10.1186/s12864-015-1232-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 01/12/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High light tolerance of microalgae is a desired phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Outdoor cultivation requires the use of either wild-type or non-GMO derived mutant strains due to safety concerns. The identification and molecular characterization of such mutants derived from untagged forward genetics approaches was limited previously by the tedious and time-consuming methods involving techniques such as classical meiotic mapping. The combination of mapping with next generation sequencing technologies offers alternative strategies to identify genes involved in high light adaptation in untagged mutants. RESULTS We used the model alga Chlamydomonas reinhardtii in a non-GMO mutation strategy without any preceding crossing step or pooled progeny to identify genes involved in the regulatory processes of high light adaptation. To generate high light tolerant mutants, wildtype cells were mutagenized only to a low extent, followed by a stringent selection. We performed whole-genome sequencing of two independent mutants hit1 and hit2 and the parental wildtype. The availability of a reference genome sequence and the removal of shared bakground variants between the wildtype strain and each mutant, enabled us to identify two single nucleotide polymorphisms within the same gene Cre02.g085050, hereafter called LRS1 (putative Light Response Signaling protein 1). These two independent single amino acid exchanges are both located in the putative WD40 propeller domain of the corresponding protein LRS1. Both mutants exhibited an increased rate of non-photochemical-quenching (NPQ) and an improved resistance against chemically induced reactive oxygen species. In silico analyses revealed homology of LRS1 to the photoregulatory protein COP1 in plants. CONCLUSIONS In this work we identified the nuclear encoded gene LRS1 as an essential factor for high light adaptation in C. reinhardtii. The causative random mutation within this gene was identified by a rapid and efficient method, avoiding any preceding crossing step, meiotic mapping, or pooled progeny. Our results open up new insights into mechanisms of high light adaptation in microalgae and at the same time provide a simplified strategy for non-GMO forward genetics, a crucial precondition that could result in the identification of key factors for economically relevant biological processes within algae.
Collapse
Affiliation(s)
- Lisa Schierenbeck
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - David Ries
- />Department of Biology/Center for Biotechnology, Genome Research, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kristin Rogge
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Sabrina Grewe
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Bernd Weisshaar
- />Department of Biology/Center for Biotechnology, Genome Research, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- />Department of Biology/Center for Biotechnology, Algae Biotechnology and Bioenergy, Bielefeld University, Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii. eLife 2014; 3:e02286. [PMID: 24859755 PMCID: PMC4067076 DOI: 10.7554/elife.02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023] Open
Abstract
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001.
Collapse
Affiliation(s)
- Setsuko Wakao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Brian L Chin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Heidi K Ledford
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - Rachel M Dent
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
| | - David Casero
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States
| | - Sabeeha S Merchant
- Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
10
|
Ning J, Otto TD, Pfander C, Schwach F, Brochet M, Bushell E, Goulding D, Sanders M, Lefebvre PA, Pei J, Grishin NV, Vanderlaan G, Billker O, Snell WJ. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 2013; 27:1198-215. [DOI: 10.1101/gad.212746.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Winck FV, Riaño-Pachón DM, Sommer F, Rupprecht J, Mueller-Roeber B. The nuclear proteome of the green alga Chlamydomonas reinhardtii. Proteomics 2011; 12:95-100. [PMID: 22065562 DOI: 10.1002/pmic.201000782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 08/23/2011] [Accepted: 10/11/2011] [Indexed: 02/03/2023]
Abstract
Nuclear proteins play a central role in regulating gene expression. Their identification is important for understanding how the nuclear repertoire changes over time under different conditions. Nuclear proteins are often underrepresented in proteomic studies due to the frequently low abundance of proteins involved in regulatory processes. So far, only few studies describing the nuclear proteome of plant species have been published. Recently, the genome sequence of the unicellular green alga Chlamydomonas reinhardtii has been obtained and annotated, allowing the development of further detailed studies for this organism. However, a detailed description of its nuclear proteome has not been reported so far. Here, we present an analysis of the nuclear proteome of the sequenced Chlamydomonas strain cc503. Using LC-MS/MS, we identified 672 proteins from nuclei isolates with a maximum 1% peptide spectrum false discovery rate. Besides well-known proteins (e.g. histones), transcription factors and other transcriptional regulators (e.g. tubby and HMG) were identified. The presence of protein motifs in nuclear proteins was investigated by computational tools, and specific over-represented protein motifs were identified. This study provides new insights into the complexity of the nuclear environment and reveals novel putative protein targets for further studies of nuclear mechanisms.
Collapse
Affiliation(s)
- Flavia V Winck
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|