1
|
Miller IR, Bui H, Wood JB, Fields MW, Gerlach R. Understanding phycosomal dynamics to improve industrial microalgae cultivation. Trends Biotechnol 2024; 42:680-698. [PMID: 38184438 DOI: 10.1016/j.tibtech.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/08/2024]
Abstract
Algal-bacterial interactions are ubiquitous in both natural and industrial systems, and the characterization of these interactions has been reinvigorated by potential applications in biosystem productivity. Different growth conditions can be used for operational functions, such as the use of low-quality water or high pH/alkalinity, and the altered operating conditions likely constrain microbial community structure and function in unique ways. However, research is necessary to better understand whether consortia can be designed to improve the productivity, processing, and sustainability of industrial-scale cultivations through different controls that can constrain microbial interactions for maximal light-driven outputs. The review highlights current knowledge and gaps for relevant operating conditions, as well as suggestions for near-term and longer-term improvements for large-scale cultivation and polyculture engineering.
Collapse
Affiliation(s)
- Isaac R Miller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Huyen Bui
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jessica B Wood
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew W Fields
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Civil Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA.
| | - Robin Gerlach
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Energy Research Institute, Montana State University, Bozeman, MT, USA; Department of Biological and Chemical Engineering, Bozeman, MT, USA
| |
Collapse
|
2
|
Abate R, Oon YS, Oon YL, Bi Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024; 10:e31170. [PMID: 38813150 PMCID: PMC11133723 DOI: 10.1016/j.heliyon.2024.e31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
3
|
Greipel E, Nagy K, Csákvári E, Dér L, Galajda P, Kutasi J. Chemotactic Interactions of Scenedesmus sp. and Azospirillum brasilense Investigated by Microfluidic Methods. MICROBIAL ECOLOGY 2024; 87:52. [PMID: 38498218 PMCID: PMC10948495 DOI: 10.1007/s00248-024-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
The use of algae for industrial, biotechnological, and agricultural purposes is spreading globally. Scenedesmus species can play an essential role in the food industry and agriculture due to their favorable nutrient content and plant-stimulating properties. Previous research and the development of Scenedesmus-based foliar fertilizers raised several questions about the effectiveness of large-scale algal cultivation and the potential effects of algae on associative rhizobacteria. In the microbiological practice applied in agriculture, bacteria from the genus Azospirillum are one of the most studied plant growth-promoting, associative, nitrogen-fixing bacteria. Co-cultivation with Azospirillum species may be a new way of optimizing Scenedesmus culturing, but the functioning of the co-culture system still needs to be fully understood. It is known that Azospirillum brasilense can produce indole-3-acetic acid, which could stimulate algae growth as a plant hormone. However, the effect of microalgae on Azospirillum bacteria is unclear. In this study, we investigated the behavior of Azospirillum brasilense bacteria in the vicinity of Scenedesmus sp. or its supernatant using a microfluidic device consisting of physically separated but chemically coupled microchambers. Following the spatial distribution of bacteria within the device, we detected a positive chemotactic response toward the microalgae culture. To identify the metabolites responsible for this behavior, we tested the chemoeffector potential of citric acid and oxaloacetic acid, which, according to our HPLC analysis, were present in the algae supernatant in 0.074 mg/ml and 0.116 mg/ml concentrations, respectively. We found that oxaloacetic acid acts as a chemoattractant for Azospirillum brasilense.
Collapse
Affiliation(s)
- Erika Greipel
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Pázmány Péter Stny 1/C, H-1117, Budapest, Hungary
| | - Krisztina Nagy
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Eszter Csákvári
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
- Division for Biotechnology, Bay Zoltán Nonprofit Ltd. for Applied Research, Derkovits Fasor 2, 6726, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Peter Galajda
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - József Kutasi
- Albitech Biotechnological Ltd, Berlini Út 47-49, 1045, Budapest, Hungary
| |
Collapse
|
4
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
5
|
Corcoran AA, Ohan J, Hanschen ER, Granite A, Martinez H, Holguin F, Hovde BT, Starkenburg SR. Scale-dependent enhancement of productivity and stability in xenic Nannochloropsis cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Rojas-Padilla J, de-Bashan LE, Parra-Cota FI, Rocha-Estrada J, de los Santos-Villalobos S. Microencapsulation of Bacillus Strains for Improving Wheat ( Triticum turgidum Subsp. durum) Growth and Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212920. [PMID: 36365373 PMCID: PMC9657316 DOI: 10.3390/plants11212920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Bio-formulation technologies have a limited impact on agricultural productivity in developing countries, especially those based on plant growth-promoting rhizobacteria. Thus, calcium alginate microbeads were synthesized and used for the protection and delivery of three beneficial Bacillus strains for agricultural applications. The process of encapsulation had a high yield per gram for all bacteria and the microbeads protected the Bacillus strains, allowing their survival, after 12 months of storage at room temperature. Microbead analysis was carried out by observing the rate of swelling and biodegradation of the beads and the released-establishment of bacteria in the soil. These results showed that there is an increase of around 75% in bead swelling on average, which allows for larger pores, and the effective release and subsequent establishment of the bacteria in the soil. Biodegradation of microbeads in the soil was gradual: in the first week, they increased their weight (75%), which consistently results in the swelling ratio. The co-inoculation of the encapsulated strain TRQ8 with the other two encapsulated strains showed plant growth promotion. TRQ8 + TRQ65 and TRQ8 + TE3T bacteria showed increases in different biometric parameters of wheat plants, such as stem height, root length, dry weight, and chlorophyll content. Thus, here we demonstrated that the application of alginate microbeads containing the studied strains showed a positive effect on wheat plants.
Collapse
Affiliation(s)
- Jonathan Rojas-Padilla
- Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregon 85000, Sonora, Mexico
| | - Luz Estela de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz 23096, Baja California Sur, Mexico
- Department of Entomology and Plant Pathology, Auburn University, 301 Funches Hall, Auburn, AL 36849, USA
| | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad Obregon 85000, Sonora, Mexico
| | - Jorge Rocha-Estrada
- CONACyT Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42163, Hidalgo, Mexico
| | | |
Collapse
|
7
|
Becerril-Espinosa A, Hernández-Herrera RM, Meza-Canales ID, Perez-Ramirez R, Rodríguez-Zaragoza FA, Méndez-Morán L, Sánchez-Hernández CV, Palmeros-Suárez PA, Palacios OA, Choix FJ, Juárez-Carrillo E, Lara-González MA, Hurtado-Oliva MÁ, Ocampo-Alvarez H. Habitat-adapted heterologous symbiont Salinispora arenicola promotes growth and alleviates salt stress in tomato crop plants. FRONTIERS IN PLANT SCIENCE 2022; 13:920881. [PMID: 36003821 PMCID: PMC9393590 DOI: 10.3389/fpls.2022.920881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To ensure food security given the current scenario of climate change and the accompanying ecological repercussions, it is essential to search for new technologies and tools for agricultural production. Microorganism-based biostimulants are recognized as sustainable alternatives to traditional agrochemicals to enhance and protect agricultural production. Marine actinobacteria are a well-known source of novel compounds for biotechnological uses. In addition, former studies have suggested that coral symbiont actinobacteria may support co-symbiotic photosynthetic growth and tolerance and increase the probability of corals surviving abiotic stress. We have previously shown that this activity may also hold in terrestrial plants, at least for the actinobacteria Salinispora arenicola during induced heterologous symbiosis with a wild Solanaceae plant Nicotiana attenuata under in vitro conditions. Here, we further explore the heterologous symbiotic association, germination, growth promotion, and stress relieving activity of S. arenicola in tomato plants under agricultural conditions and dig into the possible associated mechanisms. Tomato plants were grown under normal and saline conditions, and germination, bacteria-root system interactions, plant growth, photosynthetic performance, and the expression of salt stress response genes were analyzed. We found an endophytic interaction between S. arenicola and tomato plants, which promotes germination and shoot and root growth under saline or non-saline conditions. Accordingly, photosynthetic and respective photoprotective performance was enhanced in line with the induced increase in photosynthetic pigments. This was further supported by the overexpression of thermal energy dissipation, which fine-tunes energy use efficiency and may prevent the formation of reactive oxygen species in the chloroplast. Furthermore, gene expression analyses suggested that a selective transport channel gene, SlHKT1,2, induced by S. arenicola may assist in relieving salt stress in tomato plants. The fine regulation of photosynthetic and photoprotective responses, as well as the inhibition of the formation of ROS molecules, seems to be related to the induced down-regulation of other salt stress response genes, such as SlDR1A-related genes or SlAOX1b. Our results demonstrate that the marine microbial symbiont S. arenicola establishes heterologous symbiosis in crop plants, promotes growth, and confers saline stress tolerance. Thus, these results open opportunities to further explore the vast array of marine microbes to enhance crop tolerance and food production under the current climate change scenario.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosalba M. Hernández-Herrera
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ivan D. Meza-Canales
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto Transdisciplinar de Investigación y Servicios, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rodrigo Perez-Ramirez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Lucila Méndez-Morán
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Carla V. Sánchez-Hernández
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paola A. Palmeros-Suárez
- Departamento de Producción Agrícola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Oskar A. Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Francisco J. Choix
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Martha A. Lara-González
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
8
|
Cassan FD, Coniglio A, Amavizca E, Maroniche G, Cascales E, Bashan Y, de-Bashan LE. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. Environ Microbiol 2021; 23:6257-6274. [PMID: 34472164 DOI: 10.1111/1462-2920.15749] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.
Collapse
Affiliation(s)
- Fabricio D Cassan
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Anahí Coniglio
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Edgar Amavizca
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
| | - Guillermo Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA.,Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL, USA
| |
Collapse
|
9
|
Lakshmikandan M, Wang S, Murugesan AG, Saravanakumar M, Selvakumar G. Co-cultivation of Streptomyces and microalgal cells as an efficient system for biodiesel production and bioflocculation formation. BIORESOURCE TECHNOLOGY 2021; 332:125118. [PMID: 33866154 DOI: 10.1016/j.biortech.2021.125118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone producing Streptomyces rosealbus MTTC 12,951 (S.R) and green microalga Chlorella vulgaris MSU-AGM 14 (C.V) were cultivated in co-culture system to evaluate exogenous hormonal activity. Biosynthesis of indole-3-acetic acid (IAA) and their precursors were quantitatively evaluated by employing High Performance Liquid Chromatography (HPLC). The concentration of IAA (0.72 ± 0.02 µg mL-1) was observed to be elevated in co-cultivation system due to symbiotic interaction between Streptomyces and microalgae. In exchange, microalgae produced adequate volume of tryptophan (Trp) to induce IAA biosynthesis. The Trp stress in late exponential phase encouraged lipid accumulation (175 ± 10 mg g-1). The bioflocculation property of microalgae ensures potential and economic viable harvesting process by reducing 148% input energy compared to conventional method. The overall results evidenced that C.V co-cultivation with S.R exhibits promotional behavior and serves as a promising cultivation process for microalgae in terms of cost efficiency and energy conservation.
Collapse
Affiliation(s)
- M Lakshmikandan
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Jiangsu 212013, China.
| | - A G Murugesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| | - M Saravanakumar
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| | - G Selvakumar
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi 627412, Tamil Nadu, India
| |
Collapse
|
10
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
11
|
Satpati GG, Pal R. Co-Cultivation of Leptolyngbya tenuis (Cyanobacteria) and Chlorella ellipsoidea (Green alga) for Biodiesel Production, Carbon Sequestration, and Cadmium Accumulation. Curr Microbiol 2021; 78:1466-1481. [PMID: 33661421 DOI: 10.1007/s00284-021-02426-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/11/2021] [Indexed: 01/20/2023]
Abstract
The co-cultivation approach using cyanobacteria-Leptolyngbya tenuis and green alga-Chlorella ellipsoidea demonstrated in the present study showed additive and synergistic effects on biomass yield, biomass productivity, lipid yield, lipid productivity, CO2 fixation, and cadmium bioremediation efficiency. The results of co-culture in batch mode revealed about 2-3 times increase in biomass and two times increase in total lipid, when compared to the pure culture batches. The results revealed that co-cultures exhibited significantly high CO2 fixation rate of 2.63 ± 0.09 g/L/d, which is 1.5-2 times better than monocultures (P < 0.05). To explore the bioaccumulation of cadmium by co-cultures and pure cultures, different concentrations of cadmium nitrate was used in flask trials. Cadmium accumulation was observed in the order: co-culture (74%, 0.37 mg/L) > Chlorella (58%, 0.29 mg/L) > Leptolyngbya (50%, 0.25 mg/L) (P < 0.05). In addition, fatty acid composition, CHNS analysis, biodiesel characterization, and biochemical compositions were also determined using co-culture method. The maximum biomass yield, productivity, lipid content, and CO2 fixation rate in cadmium induced co-culture were 3.95 ± 0.13 g/L, 258.88 ± 15.75 mg/L/d, 41.43 ± 0.71%, and 3.21 ± 0.20 g/L/d, respectively which is 1.2, 1.3, 2.3, and 1.2 times higher than the control (P < 0.05). Cadmium induced changes in growth and lipid yield using co-culture suggests cost-effective and eco-friendly production of biodiesel and carbon mitigation.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19 Rajkumar Chakraborty Sarani, Kolkata, 700009, West Bengal, India.
| | - Ruma Pal
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
12
|
|
13
|
Zhao R, Chen G, Liu L, Zhang W, Sun Y, Li B, Wang G. Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113924. [PMID: 31926396 DOI: 10.1016/j.envpol.2020.113924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Microalgal aggregation is a key to many ecosystem functions in aquatic environments. Yet mechanistic understanding of microalgae aggregation, especially the interactions with ubiquitous bacteria populations, remains elusive. We reported an experimental study illustrating how the emerging bacterial populations interacted with a model microalga (Chlamydomonas microsphaera) cells and the consequent aggregation patterns. Results showed that the emergence of bacterial populations significantly stimulated C. microsphaera aggregation. Both bacterial and C. microsphaera motilities were remarkably excited upon coculturing, with the mean cell velocity being up to 2.67 and 1.80 times of those of separate bacterial and C. microsphaera cultures, respectively. The stimulated bacterial and C. microsphaera cell velocity upon coculturing would likely provide a mechanism for enhanced probability of cell-cell collisions that led to amplified aggregation of C. microsphaera population. Correlation analysis revealed that bacterial resource foraging (for polysaccharides) was likely a candidate mechanism for stimulated cell motility in an organic carbon source-limited environment, whereby C. microsphaera-derived polysaccharides serve as the sole organic carbon source for heterotrophic bacteria which in turns facilitates bacteria-C. microsphaera aggregation. Additional analysis showed that bacterial populations capable of successive decomposing algal-derived organic matters dominated the cocultures, with the top five abundant genera of Brevundimonas (24.78%), Shinella (17.94%), Sphingopyxis (11.62%), Dongia (5.82%) and Hyphomicrobium (5.45%). These findings provide new insights into full understanding of microalgae-bacteria interactions and consequent microbial aggregation characteristics in aquatic ecosystems.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Li Liu
- Department of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, and Environmental Science and Policy Program, Michigan State University, East Lansing, MI, 48824, United States
| | - Yifei Sun
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Lopez BR, Palacios OA, Bashan Y, Hernández-Sandoval FE, de-Bashan LE. Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101696 10.1016/j.algal.2019.101696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Lopez BR, Palacios OA, Bashan Y, Hernández-Sandoval FE, de-Bashan LE. Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Palacios OA, Lopez BR, Bashan Y, de-Bashan LE. Early Changes in Nutritional Conditions Affect Formation of Synthetic Mutualism Between Chlorella sorokiniana and the Bacterium Azospirillum brasilense. MICROBIAL ECOLOGY 2019; 77:980-992. [PMID: 30397795 DOI: 10.1007/s00248-018-1282-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
The effect of three different nutritional conditions during the initial 12 h of interaction between the microalgae Chlorella sorokiniana UTEX 2714 and the plant growth-promoting bacterium Azospirillum brasilense Cd on formation of synthetic mutualism was assessed by changes in population growth, production of signal molecules tryptophan and indole-3-acetic acid, starch accumulation, and patterns of cell aggregation. When the interaction was supported by a nutrient-rich medium, production of both signal molecules was detected, but not when this interaction began with nitrogen-free (N-free) or carbon-free (C-free) media. Overall, populations of bacteria and microalgae were larger when co-immobilized. However, the highest starch production was measured in C. sorokiniana immobilized alone and growing continuously in a C-free mineral medium. In this interaction, the initial nutritional condition influenced the time at which the highest accumulation of starch occurred in Chlorella, where the N-free medium induced faster starch production and the richer medium delayed its accumulation. Formation of aggregates made of microalgae and bacteria occurred in all nutritional conditions, with maximum at 83 h in mineral medium, and coincided with declining starch content. This study demonstrates that synthetic mutualism between C. sorokiniana and A. brasilense can be modulated by the initial nutritional condition, mainly by the presence or absence of nitrogen and carbon in the medium in which they are interacting.
Collapse
Affiliation(s)
- Oskar A Palacios
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Blanca R Lopez
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico.
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA.
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
17
|
|
18
|
Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11030707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of nitrogen-deficient agriculture wastewater, arising from the vegetable and fruit processing, is a significant problem that limits the efficiency of its biological treatment. This study evaluates the effectiveness of the symbiotic co-culture of Azospirillum brasilense and Scenedesmus sp., under two nitrogen levels (8.23 mg L−1 and 41.17 mg L−1) and mixing systems (aeration and magnetic stirring), aiming to simultaneously use the N-deficient media for their growth while producing biomass for biofuels. Microalgae growth and biomass composition, in terms of protein, carbohydrate and fatty acid contents, were evaluated at the end of the exponential growth phase (15 days after inoculation). Results show that the symbiotic co-culture of microalgae-bacteria can be effectively performed on nitrogen-deficient media and has the potential to enhance microalgae colony size and the fatty acid content of biomass for biofuels. The highest biomass concentration (103 ± 2 mg·L−1) was obtained under aeration, with low nitrogen concentration, in the presence of A. brasilense. In particular, aeration contributed to, on average, a higher fatty acid content (48 ± 7% dry weight (DW)) and higher colony size (164 ± 21 µm2) than mechanical stirring (with 39 ± 2% DW and 134 ± 21 µm2, respectively) because aeration contribute to better mass transfer of gases in the culture. Also, co-culturing contributed in average, to higher colony size (155 ± 21 µm2) than without A. brasilense (143 ± 21 µm2). Moreover, using nitrogen deficient wastewater as the culture media can contribute to decrease nitrogen and energy inputs. Additionally, A. brasilense is approved and already extensively used in agriculture and wastewater treatment, without known environmental or health issues, simplifying the biomass processing for the desired application.
Collapse
|
19
|
Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period. mBio 2017; 8:mBio.00959-17. [PMID: 28951476 PMCID: PMC5615197 DOI: 10.1128/mbio.00959-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild (n = 5), moderate (n = 9), and severe (n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients’ clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were observed, probably related to sampling bias. Bdellovibrio and Vampirovibrio predator bacteria were found for the first time by NGS as part of the CF lung microbiota, although their ecological significance needs to be clarified. The newly designed computational model allows us to hypothesize that inoculation of predators into the lung microbiome can eradicate CF pathogens in early stages of the process. Our data strongly suggest that lower respiratory microbiome fluctuations are not necessarily related to the patient’s clinical status.
Collapse
|
20
|
Lopez BR, Hernandez JP, Bashan Y, de-Bashan LE. Immobilization of microalgae cells in alginate facilitates isolation of DNA and RNA. J Microbiol Methods 2017; 135:96-104. [DOI: 10.1016/j.mimet.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
|
21
|
Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep 2017; 7:41310. [PMID: 28145473 PMCID: PMC5286510 DOI: 10.1038/srep41310] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications.
Collapse
|
22
|
Posada LF, Alvarez JC, Hu CH, de-Bashan LE, Bashan Y. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. J Microbiol Methods 2016; 128:125-129. [PMID: 27263830 DOI: 10.1016/j.mimet.2016.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022]
Abstract
Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.
Collapse
Affiliation(s)
- Luisa F Posada
- Department of Process Engineering, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Javier C Alvarez
- Departament of Biological Sciences, Cra 49 #7 sur-50, Universidad EAFIT, Medellín, Colombia
| | - Chia-Hui Hu
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Luz E de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Yoav Bashan
- The Bashan Institute of Science, 1730 Post Oak Ct., AL 36830, USA; Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| |
Collapse
|
23
|
Palacios OA, Choix FJ, Bashan Y, de-Bashan LE. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana – Azospirillum brasilense system under heterotrophic conditions. Res Microbiol 2016; 167:367-79. [DOI: 10.1016/j.resmic.2016.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/07/2015] [Accepted: 02/15/2016] [Indexed: 01/08/2023]
|
24
|
Perez-Garcia O, Lear G, Singhal N. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Front Microbiol 2016; 7:673. [PMID: 27242701 PMCID: PMC4870247 DOI: 10.3389/fmicb.2016.00673] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations.
Collapse
Affiliation(s)
- Octavio Perez-Garcia
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland Auckland, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| |
Collapse
|
25
|
Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE. Tryptophan, thiamine and indole-3-acetic acid exchange betweenChlorella sorokinianaand the plant growth-promoting bacteriumAzospirillum brasilense. FEMS Microbiol Ecol 2016; 92:fiw077. [DOI: 10.1093/femsec/fiw077] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
|
26
|
de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Prufert-Bebout L, Bashan Y. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Meza B, de-Bashan LE, Hernandez JP, Bashan Y. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Res Microbiol 2015; 166:399-407. [DOI: 10.1016/j.resmic.2015.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
|
28
|
Meza B, de-Bashan LE, Bashan Y. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 2014; 166:72-83. [PMID: 25554489 DOI: 10.1016/j.resmic.2014.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/24/2022]
Abstract
Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris.
Collapse
Affiliation(s)
- Beatriz Meza
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, La Paz, B.C.S. 23096, Mexico
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, La Paz, B.C.S. 23096, Mexico; The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, OR 97330, USA; Department of Entomology and Plant Pathology, 209 Life Sciences Building, Auburn University, Auburn, AL 36849, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Calle IPN 195, La Paz, B.C.S. 23096, Mexico; The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, OR 97330, USA; Department of Entomology and Plant Pathology, 209 Life Sciences Building, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
29
|
Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften 2014; 101:819-30. [DOI: 10.1007/s00114-014-1223-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022]
|
30
|
Choix FJ, Bashan Y, Mendoza A, de-Bashan LE. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol 2014; 177:22-34. [DOI: 10.1016/j.jbiotec.2014.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
|
31
|
Leyva LA, Bashan Y, de-Bashan LE. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0866-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Joe MM, Saravanan VS, Islam MR, Sa T. Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. J Appl Microbiol 2013; 116:408-23. [PMID: 24188110 DOI: 10.1111/jam.12384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 11/28/2022]
Abstract
AIM To develop co-aggregated bacterial inoculant comprising of Methylobacterium oryzae CBMB20/Methylobacterium suomiense CBMB120 strains with Azospirillum brasilense (CW903) strain and testing their efficiency as inoculants for plant growth promotion (PGP). METHODS AND RESULTS Biofilm formation and co-aggregation efficiency was studied between A. brasilense CW903 and methylobacterial strains M. oryzae CBMB20 and M. suomiense CBMB120. Survival and release of these co-aggregated bacterial strains entrapped in alginate beads were assessed. PGP attributes of the co-aggregated bacterial inoculant were tested in tomato plants under water-stressed conditions. Results suggest that the biofilm formation efficiency of the CBMB20 and CBMB120 strains increased by 15 and 34%, respectively, when co-cultivated with CW903. Co-aggregation with CW903 enhanced the survivability of CBMB20 strain in alginate beads. Water stress index score showed least stress index in plants inoculated with CW903 and CBMB20 strains maintained as a co-aggregated inoculant. CONCLUSIONS This study reports the development of co-aggregated cell inoculants containing M. oryzae CBMB20 and A. brasilense CW903 strains conferred better shelf life and stress abatement in inoculated tomato plants. SIGNIFICANCE AND IMPACT OF THE STUDY These findings could be extended to other PGP bacterial species to develop multigeneric bioinoculants with multiple benefits for various crops.
Collapse
Affiliation(s)
- M M Joe
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Korea.,Department of Microbiology, School of Life Sciences, Vels University, Chennai, India
| | - V S Saravanan
- Department of Microbiology, Indira Gandhi College of Arts and Science, Kathirkamam, Pondicherry, India
| | - M R Islam
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - T Sa
- Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
33
|
Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA. Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200219] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Athens Silaban
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| | - Rong Bai
- Cain Department of Chemical Engineering; Louisiana State University; Baton Rouge LA USA
| | - M. Teresa Gutierrez-Wing
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| | - Ioan I. Negulescu
- School of Human Ecology, Louisiana State University and Ag Center; Baton Rouge LA USA
| | - Kelly A. Rusch
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| |
Collapse
|
34
|
Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 2013; 97:9847-58. [DOI: 10.1007/s00253-013-4703-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
35
|
Choix FJ, de-Bashan LE, Bashan Y. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme Microb Technol 2012; 51:300-9. [DOI: 10.1016/j.enzmictec.2012.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 11/25/2022]
|
36
|
Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 2011; 93:2669-80. [DOI: 10.1007/s00253-011-3585-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/19/2011] [Accepted: 09/15/2011] [Indexed: 11/28/2022]
|