1
|
Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, Shibata T, Feng M, Maeda T, Schwartz JA, Shigenobu S, Lundholm N, Nishiyama T, Yang H, Hasebe M, Li S, Pierce SK, Wang J. A draft genome assembly of the solar-powered sea slug Elysia chlorotica. Sci Data 2019; 6:190022. [PMID: 30778257 PMCID: PMC6380222 DOI: 10.1038/sdata.2019.22] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/10/2019] [Indexed: 11/09/2022] Open
Abstract
Elysia chlorotica, a sacoglossan sea slug found off the East Coast of the United States, is well-known for its ability to sequester chloroplasts from its algal prey and survive by photosynthesis for up to 12 months in the absence of food supply. Here we present a draft genome assembly of E. chlorotica that was generated using a hybrid assembly strategy with Illumina short reads and PacBio long reads. The genome assembly comprised 9,989 scaffolds, with a total length of 557 Mb and a scaffold N50 of 442 kb. BUSCO assessment indicated that 93.3% of the expected metazoan genes were completely present in the genome assembly. Annotation of the E. chlorotica genome assembly identified 176 Mb (32.6%) of repetitive sequences and a total of 24,980 protein-coding genes. We anticipate that the annotated draft genome assembly of the E. chlorotica sea slug will promote the investigation of sacoglossan genetics, evolution, and particularly, the genetic signatures accounting for the long-term functioning of algal chloroplasts in an animal.
Collapse
Affiliation(s)
- Huimin Cai
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | | | - Ji Li
- BGI-Shenzhen, Shenzhen 518083, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Nicholas E Curtis
- Department of Biology, Ave Maria University, Ave Maria, Florida 34142, USA
| | - Andreas Altenburger
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoko Shibata
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Mingji Feng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Taro Maeda
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Julie A Schwartz
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Nina Lundholm
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
| | - Sidney K Pierce
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.,Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| |
Collapse
|
2
|
Schwartz JA, Curtis NE, Pierce SK. FISH labeling reveals a horizontally transferred algal (Vaucheria litorea) nuclear gene on a sea slug (Elysia chlorotica) chromosome. THE BIOLOGICAL BULLETIN 2014; 227:300-312. [PMID: 25572217 DOI: 10.1086/bblv227n3p300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The horizontal transfer of functional nuclear genes, coding for both chloroplast proteins and chlorophyll synthesis, from the food alga Vaucheria litorea to the sea slug Elysia chlorotica has been demonstrated by pharmacological, polymerase chain reaction (PCR), real time PCR (qRT-PCR), and transcriptome sequencing experiments. However, partial genomic sequencing of E. chlorotica larvae failed to find evidence for gene transfer. Here, we have used fluorescent in situ hybridization to localize an algal nuclear gene, prk, found in both larval and adult slug DNA by PCR and in adult RNA by transcriptome sequencing and RT-PCR. The prk probe hybridized with a metaphase chromosome in slug larvae, confirming gene transfer between alga and slug.
Collapse
Affiliation(s)
- Julie A Schwartz
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620
| | - Nicholas E Curtis
- Department of Biology and Chemistry, Ave Maria University, Ave Maria, Florida 34142; and
| | - Sidney K Pierce
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620; Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
3
|
Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME. Genome analysis of Elysia chlorotica Egg DNA provides no evidence for horizontal gene transfer into the germ line of this Kleptoplastic Mollusc. Mol Biol Evol 2013; 30:1843-52. [PMID: 23645554 PMCID: PMC3708498 DOI: 10.1093/molbev/mst084] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The “stolen” plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University
| | | | | | | | | |
Collapse
|
5
|
Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol 2011; 214:303-11. [PMID: 21177950 PMCID: PMC3008634 DOI: 10.1242/jeb.046540] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2010] [Indexed: 11/20/2022]
Abstract
Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO(2) fixation (photosynthesis). 'Solar-powered' sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a 'plant' when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ~10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating 'green animal' provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.
Collapse
Affiliation(s)
- Mary E Rumpho
- Department of Molecular and Biomedical Sciences, 5735 Hitchner Hall, University of Maine, Orono, ME 04469, USA.
| | | | | | | |
Collapse
|