1
|
Jiménez-Marín B, Ortega-Escalante JA, Tyagi A, Seah J, Olson BJSC, Miller SM. Functional analysis of regA paralog rlsD in Volvox carteri. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1798-1825. [PMID: 39436924 DOI: 10.1111/tpj.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 08/14/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Volvox carteri is an excellent system for investigating the origins of cell differentiation because it possesses just two cell types, reproductive gonidia and motile somatic cells, which evolved relatively recently. The somatic phenotype depends on the regA gene, which represses cell growth and reproduction, preventing cells expressing it from growing large enough to become gonidia. regA encodes a putative transcription factor and was generated in an undifferentiated ancestor of V. carteri through duplication of a progenitor gene whose ortholog in V. carteri is named rlsD. Here we analyze the function of rlsD through knockdown, overexpression, and RNA-seq experiments, to gain clues into the function of a member of an understudied putative transcription factor family and to obtain insight into the origins of cell differentiation in the volvocine algae. rlsD knockdown was lethal, while rlsD overexpression dramatically reduced gonidial growth. rlsD overexpression led to differential expression of approximately one-fourth of the genome, with repressed genes biased for those typically overexpressed in gonidia relative to somatic cells, and upregulated genes biased toward expression in soma, where regA expression is high. Notably, rlsD overexpression affects accumulation of transcripts for genes/Pfam domains involved in ribosome biogenesis, photosynthetic light harvesting, and sulfate generation, functions related to organismal growth, and responses to resource availability. We also found that in the wild type, rlsD expression is induced by light deprivation. These findings are consistent with the idea that cell differentiation in V. carteri evolved when a resource-responsive, growth-regulating gene was amplified, and a resulting gene duplicate was co-opted to repress growth in a constitutive, spatial context.
Collapse
Affiliation(s)
- Berenice Jiménez-Marín
- Division of Biology, Kansas State University, 239E Chalmers Hall, Manhattan, 66506, Kansas, USA
| | - José A Ortega-Escalante
- Department of Biological Sciences, UMBC, 1000 Hilltop Circle, Baltimore, 21250, Maryland, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, 239E Chalmers Hall, Manhattan, 66506, Kansas, USA
| | - Jundhi Seah
- Department of Biological Sciences, UMBC, 1000 Hilltop Circle, Baltimore, 21250, Maryland, USA
| | - Bradley J S C Olson
- Division of Biology, Kansas State University, 239E Chalmers Hall, Manhattan, 66506, Kansas, USA
| | - Stephen M Miller
- Department of Biological Sciences, UMBC, 1000 Hilltop Circle, Baltimore, 21250, Maryland, USA
| |
Collapse
|
2
|
Cornwallis CK, Svensson-Coelho M, Lindh M, Li Q, Stábile F, Hansson LA, Rengefors K. Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. Nat Ecol Evol 2023; 7:889-902. [PMID: 37081145 PMCID: PMC10250200 DOI: 10.1038/s41559-023-02044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
The evolution of multicellular life has played a pivotal role in shaping biological diversity. However, we know surprisingly little about the natural environmental conditions that favour the formation of multicellular groups. Here we experimentally examine how key environmental factors (predation, nitrogen and water turbulence) combine to influence multicellular group formation in 35 wild unicellular green algae strains (19 Chlorophyta species). All environmental factors induced the formation of multicellular groups (more than four cells), but there was no evidence this was adaptive, as multicellularity (% cells in groups) was not related to population growth rate under any condition. Instead, population growth was related to extracellular matrix (ECM) around single cells and palmelloid formation, a unicellular life-cycle stage where two to four cells are retained within a mother-cell wall after mitosis. ECM production increased with nitrogen levels resulting in more cells being in palmelloids and higher rates of multicellular group formation. Examining the distribution of 332 algae species across 478 lakes monitored over 55 years, showed that ECM and nitrogen availability also predicted patterns of obligate multicellularity in nature. Our results highlight that adaptations of unicellular organisms to cope with environmental challenges may be key to understanding evolutionary routes to multicellular life.
Collapse
Affiliation(s)
| | | | - Markus Lindh
- Swedish Meteorological and Hydrological Institute, Västra Frölunda, Sweden
| | - Qinyang Li
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
3
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Jiménez-Marín B, Rakijas JB, Tyagi A, Pandey A, Hanschen ER, Anderson J, Heffel MG, Platt TG, Olson BJSC. Gene loss during a transition to multicellularity. Sci Rep 2023; 13:5268. [PMID: 37002250 PMCID: PMC10066295 DOI: 10.1038/s41598-023-29742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Multicellular evolution is a major transition associated with momentous diversification of multiple lineages and increased developmental complexity. The volvocine algae comprise a valuable system for the study of this transition, as they span from unicellular to undifferentiated and differentiated multicellular morphologies despite their genomes being similar, suggesting multicellular evolution requires few genetic changes to undergo dramatic shifts in developmental complexity. Here, the evolutionary dynamics of six volvocine genomes were examined, where a gradual loss of genes was observed in parallel to the co-option of a few key genes. Protein complexes in the six species exhibited novel interactions, suggesting that gene loss could play a role in evolutionary novelty. This finding was supported by gene network modeling, where gene loss outpaces gene gain in generating novel stable network states. These results suggest gene loss, in addition to gene gain and co-option, may be important for the evolution developmental complexity.
Collapse
Affiliation(s)
- Berenice Jiménez-Marín
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, 66506, USA
| | - Jessica B Rakijas
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Aakash Pandey
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Jaden Anderson
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Matthew G Heffel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, 66506, USA
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | |
Collapse
|
5
|
Jiménez-Marín B, Olson BJSC. The Curious Case of Multicellularity in the Volvocine Algae. Front Genet 2022; 13:787665. [PMID: 35295942 PMCID: PMC8919427 DOI: 10.3389/fgene.2022.787665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of multicellularity is a major evolutionary transition that underlies the radiation of many species in all domains of life, especially in eukaryotes. The volvocine green algae are an unconventional model system that holds great promise in the field given its genetic tractability, late transition to multicellularity, and phenotypic diversity. Multiple efforts at linking multicellularity-related developmental landmarks to key molecular changes, especially at the genome level, have provided key insights into the molecular innovations or lack thereof that underlie multicellularity. Twelve developmental changes have been proposed to explain the evolution of complex differentiated multicellularity in the volvocine algae. Co-option of key genes, such as cell cycle and developmental regulators has been observed, but with few exceptions, known co-option events do not seem to coincide with most developmental features observed in multicellular volvocines. The apparent lack of "master multicellularity genes" combined with no apparent correlation between gene gains for developmental processes suggest the possibility that many multicellular traits might be the product gene-regulatory and functional innovations; in other words, multicellularity can arise from shared genomic repertoires that undergo regulatory and functional overhauls.
Collapse
Affiliation(s)
- Berenice Jiménez-Marín
- Division of Biology, Kansas State University, Manhattan, KS, United States
- Interdepartmental Genetics Graduate Program, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
6
|
Abstract
The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
7
|
Grochau-Wright ZI, Ferris PJ, Tumberger J, Jiménez-Marin B, Olson BJSC, Michod RE. Characterization and Transformation of reg Cluster Genes in Volvox powersii Enable Investigation of Convergent Evolution of Cellular Differentiation in Volvox. Protist 2021; 172:125834. [PMID: 34695730 DOI: 10.1016/j.protis.2021.125834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The evolution of germ-soma cellular differentiation represents a key step in the evolution of multicellular individuality. Volvox carteri and its relatives, the volvocine green algae, provide a model system for studying the evolution of cellular differentiation. In V. carteri, the regA gene controls somatic cell differentiation and is found in a group of paralogs called the reg cluster, along with rlsA, rlsB, and rlsC. However, the developmental program of V. carteri is derived compared to other volvocine algae. Here we examine Volvox powersii which possesses an ancestral developmental program and independent evolution of the Volvox body plan. We sequenced the reg cluster from V. powersii wild-type and a mutant with fewer cells and altered germ-soma ratio. We found that the mutant strain's rlsB gene has a deletion predicted to cause a truncated protein product. We developed a genetic transformation procedure to insert wild-type rlsB into the mutant strain. Transformation did not result in phenotypic rescue, suggesting the rlsB mutation is insufficient for generating the mutant phenotype. The transformation techniques and sequences described here provide essential tools to study V. powersii, a species well suited for studying the evolution of cellular differentiation and convergent evolution of Volvox morphology.
Collapse
Affiliation(s)
| | | | - John Tumberger
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Richard E Michod
- Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Desnitskiy AG. Volvox as a Model for Studying Cell Death and Senescence. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The spherical green alga Volvox consists of several hundred or thousand of somatic cells that undergo terminal differentiation, senescence and death, and a small number of gonidia (asexual reproductive cells) that give rise to the next generation. In the first part of this paper, the ontogenetic diversity of the genus Volvox is briefly considered, as well as the mechanisms of differentiation into the two types of cells mentioned above, which have been thoroughly studied during recent years in Volvox carteri. Then, a detailed critical analysis of the literature and some of my own data on senescence and cell death (mainly in V. carteri and, to a lesser extent, in V. aureus) was carried out, and it was noted that this aspect of Volvox developmental biology has not been sufficiently studied. Some perspectives of further research of the processes of cell death and senescence in representatives of the genus Volvox in a comparative aspect are indicated.
Collapse
|
9
|
de Maleprade H, Moisy F, Ishikawa T, Goldstein RE. Motility and phototaxis of Gonium, the simplest differentiated colonial alga. Phys Rev E 2020. [PMID: 32168596 DOI: 10.1101/845891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.
Collapse
Affiliation(s)
- Hélène de Maleprade
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Frédéric Moisy
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
10
|
de Maleprade H, Moisy F, Ishikawa T, Goldstein RE. Motility and phototaxis of Gonium, the simplest differentiated colonial alga. Phys Rev E 2020; 101:022416. [PMID: 32168596 PMCID: PMC7616084 DOI: 10.1103/physreve.101.022416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/05/2020] [Indexed: 11/07/2022]
Abstract
Green algae of the Volvocine lineage, spanning from unicellular Chlamydomonas to vastly larger Volvox, are models for the study of the evolution of multicellularity, flagellar dynamics, and developmental processes. Phototactic steering in these organisms occurs without a central nervous system, driven solely by the response of individual cells. All such algae spin about a body-fixed axis as they swim; directional photosensors on each cell thus receive periodic signals when that axis is not aligned with the light. The flagella of Chlamydomonas and Volvox both exhibit an adaptive response to such signals in a manner that allows for accurate phototaxis, but in the former the two flagella have distinct responses, while the thousands of flagella on the surface of spherical Volvox colonies have essentially identical behavior. The planar 16-cell species Gonium pectorale thus presents a conundrum, for its central 4 cells have a Chlamydomonas-like beat that provide propulsion normal to the plane, while its 12 peripheral cells generate rotation around the normal through a Volvox-like beat. Here we combine experiment, theory, and computations to reveal how Gonium, perhaps the simplest differentiated colonial organism, achieves phototaxis. High-resolution cell tracking, particle image velocimetry of flagellar driven flows, and high-speed imaging of flagella on micropipette-held colonies show how, in the context of a recently introduced model for Chlamydomonas phototaxis, an adaptive response of the peripheral cells alone leads to photoreorientation of the entire colony. The analysis also highlights the importance of local variations in flagellar beat dynamics within a given colony, which can lead to enhanced reorientation dynamics.
Collapse
Affiliation(s)
- Hélène de Maleprade
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Frédéric Moisy
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France
| | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
11
|
Desnitskiy AG. Advances in the Research of Sexual Reproduction in Colonial Volvocine Algae. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419050047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Abstract
Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Susana Coelho
- Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, CS 90074, F-29688 Roscoff, France;
| |
Collapse
|
13
|
Featherston J, Arakaki Y, Hanschen ER, Ferris PJ, Michod RE, Olson BJSC, Nozaki H, Durand PM. The 4-Celled Tetrabaena socialis Nuclear Genome Reveals the Essential Components for Genetic Control of Cell Number at the Origin of Multicellularity in the Volvocine Lineage. Mol Biol Evol 2019; 35:855-870. [PMID: 29294063 DOI: 10.1093/molbev/msx332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.
Collapse
Affiliation(s)
- Jonathan Featherston
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Yoko Arakaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Erik R Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Patrick J Ferris
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | | | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Hongo, Japan
| | - Pierre M Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Multicellularity Drives the Evolution of Sexual Traits. Am Nat 2018; 192:E93-E105. [PMID: 30125231 PMCID: PMC6685534 DOI: 10.1086/698301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
From the male peacock's tail plumage to the floral displays of flowering plants, traits related to sexual reproduction are often complex and exaggerated. Why has sexual reproduction become so complicated? Why have such exaggerated sexual traits evolved? Early work posited a connection between multicellularity and sexual traits such as anisogamy (i.e., the evolution of small sperm and large eggs). Anisogamy then drives the evolution of other forms of sexual dimorphism. Yet the relationship between multicellularity and the evolution of sexual traits has not been empirically tested. Given their extensive variation in both multicellular complexity and sexual systems, the volvocine green algae offer a tractable system for understanding the interrelationship of multicellular complexity and sex. Here we show that species with greater multicellular complexity have a significantly larger number of derived sexual traits, including anisogamy, internal fertilization, and secondary sexual dimorphism. Our results demonstrate that anisogamy repeatedly evolved from isogamous multicellular ancestors and that anisogamous species are larger and produce larger zygotes than isogamous species. In the volvocine algae, the evolution of multicellularity likely drives the evolution of anisogamy, and anisogamy subsequently drives secondary sexual dimorphism. Multicellularity may set the stage for the overall diversity of sexual complexity throughout the Tree of Life.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
- Division of Bioscience, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| | - Hisayoshi Nozaki
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
15
|
Gaouda H, Hamaji T, Yamamoto K, Kawai-Toyooka H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Nozaki H, Smith DR. Exploring the Limits and Causes of Plastid Genome Expansion in Volvocine Green Algae. Genome Biol Evol 2018; 10:2248-2254. [PMID: 30102347 PMCID: PMC6128376 DOI: 10.1093/gbe/evy175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (∼525 kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.
Collapse
Affiliation(s)
- Hager Gaouda
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Japan
| | - Kayoko Yamamoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Cell-Type Transcriptomes of the Multicellular Green Alga Volvox carteri Yield Insights into the Evolutionary Origins of Germ and Somatic Differentiation Programs. G3-GENES GENOMES GENETICS 2018; 8:531-550. [PMID: 29208647 PMCID: PMC5919742 DOI: 10.1534/g3.117.300253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germ-soma differentiation is a hallmark of complex multicellular organisms, yet its origins are not well understood. Volvox carteri is a simple multicellular green alga that has recently evolved a simple germ-soma dichotomy with only two cell-types: large germ cells called gonidia and small terminally differentiated somatic cells. Here, we provide a comprehensive characterization of the gonidial and somatic transcriptomes of V. carteri to uncover fundamental differences between the molecular and metabolic programming of these cell-types. We found extensive transcriptome differentiation between cell-types, with somatic cells expressing a more specialized program overrepresented in younger, lineage-specific genes, and gonidial cells expressing a more generalist program overrepresented in more ancient genes that shared striking overlap with stem cell-specific genes from animals and land plants. Directed analyses of different pathways revealed a strong dichotomy between cell-types with gonidial cells expressing growth-related genes and somatic cells expressing an altruistic metabolic program geared toward the assembly of flagella, which support organismal motility, and the conversion of storage carbon to sugars, which act as donors for production of extracellular matrix (ECM) glycoproteins whose secretion enables massive organismal expansion. V. carteri orthologs of diurnally controlled genes from C. reinhardtii, a single-celled relative, were analyzed for cell-type distribution and found to be strongly partitioned, with expression of dark-phase genes overrepresented in somatic cells and light-phase genes overrepresented in gonidial cells- a result that is consistent with cell-type programs in V. carteri arising by cooption of temporal regulons in a unicellular ancestor. Together, our findings reveal fundamental molecular, metabolic, and evolutionary mechanisms that underlie the origins of germ-soma differentiation in V. carteri and provide a template for understanding the acquisition of germ-soma differentiation in other multicellular lineages.
Collapse
|
17
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
18
|
Polysaccharide associated protein (PSAP) from the green microalga Botryococcus braunii is a unique extracellular matrix hydroxyproline-rich glycoprotein. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Leslie MP, Shelton DE, Michod RE. Generation time and fitness tradeoffs during the evolution of multicellularity. J Theor Biol 2017; 430:92-102. [PMID: 28709942 DOI: 10.1016/j.jtbi.2017.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022]
Abstract
The evolution of multicellular organisms from their unicellular ancestors is an example of an evolutionary transition in individuality (ETI), i.e. a change in the units of selection and adaptation. The theory of ETIs poses particular challenges because, by definition, key theoretical constructs such as fitness are shifting during an ETI. Past work emphasized the importance of life history tradeoffs during ETIs in which lower level units form groups and become individuals at a higher level. In particular, it has been hypothesized that the convexity of the lower-level tradeoff between viability and fecundity changes with group size and determines the optimality of lower-level specialization in the fitness components of the group. This is important because lower-level specialization is a key indicator of higher-level individuality. Here we show that increasing generation time can increase the convexity of the lower-level viability-fecundity tradeoff. This effect is a novel hypothesis for the positive association between cell-group size and cellular specialization in a major model system for ETIs, the volvocine algae. The pattern in this clade is thought to be an example of a more general size-complexity rule. Our hypothesis is that larger groups have longer generation times and longer generation times lead to more convex lower-level viability-fecundity tradeoffs, which could account for specialization being optimal only in larger cell groups (colonies). We discuss the robustness of this effect to various changes in the assumptions of our model. Our work is important for the study of ETIs in general because viability and fecundity are fundamental components of fitness in all systems and because generation time is expected to be changing during many ETIs.
Collapse
Affiliation(s)
- Martin P Leslie
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA .
| | - Deborah E Shelton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
20
|
Venuleo M, Raven JA, Giordano M. Intraspecific chemical communication in microalgae. THE NEW PHYTOLOGIST 2017; 215:516-530. [PMID: 28328079 DOI: 10.1111/nph.14524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Contents 516 I. 516 II. 518 III. 518 IV. 521 V. 523 VI. 523 VII. 526 526 References 526 SUMMARY: The relevance of infochemicals in the relationships between organisms is emerging as a fundamental aspect of aquatic ecology. Exchanges of chemical cues are likely to occur not only between organisms of different species, but also between conspecific individuals. Especially intriguing is the investigation of chemical communication in microalgae, because of the relevance of these organisms for global primary production and their key role in trophic webs. Intraspecific communication between algae has been investigated mostly in relation to sexuality and mating. The literature also contains information on other types of intraspecific chemical communication that have not always been explicitly tagged as ways to communicate to conspecifics. However, the proposed role of certain compounds as intraspecific infochemicals appears questionable. In this article, we make use of this plethora of information to describe the various instances of intraspecific chemical communication between conspecific microalgae and to identify the common traits and ecological significance of intraspecific communication. We also discuss the evolutionary implications of intraspecific chemical communication and the mechanisms by which it can be inherited. A special focus is the genetic diversity among conspecific algae, including the possibility that genetic diversity is an absolute requirement for intraspecific chemical communication.
Collapse
Affiliation(s)
- Marianna Venuleo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - John A Raven
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Dundee, Invergowrie, DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mario Giordano
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131, Ancona, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Algatech, 379 81, Trebon, Czech Republic
- National Research Council, Institute of Marine Science, 30122, Venice, Italy
| |
Collapse
|
21
|
Grochau-Wright ZI, Hanschen ER, Ferris PJ, Hamaji T, Nozaki H, Olson BJSC, Michod RE. Genetic basis for soma is present in undifferentiated volvocine green algae. J Evol Biol 2017; 30:1205-1218. [PMID: 28425150 PMCID: PMC5540444 DOI: 10.1111/jeb.13100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 02/26/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Somatic cellular differentiation plays a critical role in the transition from unicellular to multicellular life, but the evolution of its genetic basis remains poorly understood. By definition, somatic cells do not reproduce to pass on genes and so constitute an extreme form of altruistic behaviour. The volvocine green algae provide an excellent model system to study the evolution of multicellularity and somatic differentiation. In Volvox carteri, somatic cell differentiation is controlled by the regA gene, which is part of a tandem duplication of genes known as the reg cluster. Although previous work found the reg cluster in divergent Volvox species, its origin and distribution in the broader group of volvocine algae has not been known. Here, we show that the reg cluster is present in many species without somatic cells and determine that the genetic basis for soma arose before the phenotype at the origin of the family Volvocaceae approximately 200 million years ago. We hypothesize that the ancestral function was involved in regulating reproduction in response to stress and that this function was later co-opted to produce soma. Determining that the reg cluster was co-opted to control somatic cell development provides insight into how cellular differentiation, and with it greater levels of complexity and individuality, evolves.
Collapse
Affiliation(s)
- Z I Grochau-Wright
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - E R Hanschen
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - P J Ferris
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - T Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - H Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - B J S C Olson
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - R E Michod
- Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
22
|
Matt G, Umen J. Volvox: A simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev Biol 2016; 419:99-113. [PMID: 27451296 PMCID: PMC5101179 DOI: 10.1016/j.ydbio.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
Abstract
Patterning of a multicellular body plan involves a coordinated set of developmental processes that includes cell division, morphogenesis, and cellular differentiation. These processes have been most intensively studied in animals and land plants; however, deep insight can also be gained by studying development in simpler multicellular organisms. The multicellular green alga Volvox carteri (Volvox) is an excellent model for the investigation of developmental mechanisms and their evolutionary origins. Volvox has a streamlined body plan that contains only a few thousand cells and two distinct cell types: reproductive germ cells and terminally differentiated somatic cells. Patterning of the Volvox body plan is achieved through a stereotyped developmental program that includes embryonic cleavage with asymmetric cell division, morphogenesis, and cell-type differentiation. In this review we provide an overview of how these three developmental processes give rise to the adult form in Volvox and how developmental mutants have provided insights into the mechanisms behind these events. We highlight the accessibility and tractability of Volvox and its relatives that provide a unique opportunity for studying development.
Collapse
Affiliation(s)
- Gavriel Matt
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA; Washington University in St. Louis, Division of Biology & Biomedical Science, Campus Box 8226, 660 South Euclid Ave, St. Louis, MO 63110, USA.
| | - James Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA.
| |
Collapse
|
23
|
Nieuwenhuis BPS, Immler S. The evolution of mating-type switching for reproductive assurance. Bioessays 2016; 38:1141-1149. [DOI: 10.1002/bies.201600139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Simone Immler
- Department of Evolutionary Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
24
|
Olson BJ, Nedelcu AM. Co-option during the evolution of multicellular and developmental complexity in the volvocine green algae. Curr Opin Genet Dev 2016; 39:107-115. [PMID: 27379901 DOI: 10.1016/j.gde.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
Despite its major impact on the evolution of Life on Earth, the transition to multicellularity remains poorly understood, especially in terms of its genetic basis. The volvocine algae are a group of closely related species that range in morphology from unicellular individuals (Chlamydomonas) to undifferentiated multicellular forms (Gonium) and complex organisms with distinct developmental programs and one (Pleodorina) or two (Volvox) specialized cell types. Modern genetic approaches, complemented by the recent sequencing of genomes from several key species, revealed that co-option of existing genes and pathways is the primary driving force for the evolution of multicellularity in this lineage. The initial transition to undifferentiated multicellularity, as typified by the extant Gonium, was driven primarily by the co-option of cell cycle regulation. Further morphological and developmental innovations in the lineage leading to Volvox resulted from additional co-option events involving genes important for embryonic inversion, asymmetric cell division, somatic and germ cell differentiation and the structure and function of the extracellular matrix. Because of their relatively low but variable levels of morphological and developmental complexity, simple underlying genetics and recent evolutionary history, the volvocine algae are providing significant insight into our understanding of the genetics and evolution of major developmental and morphological traits.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
25
|
Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes. G3-GENES GENOMES GENETICS 2016; 6:1179-89. [PMID: 26921294 PMCID: PMC4856071 DOI: 10.1534/g3.115.026229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT–, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale–V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs.
Collapse
|
26
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
27
|
Abstract
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
28
|
Frenkel J, Vyverman W, Pohnert G. Pheromone signaling during sexual reproduction in algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:632-44. [PMID: 24597605 DOI: 10.1111/tpj.12496] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/13/2014] [Accepted: 02/24/2014] [Indexed: 05/26/2023]
Abstract
Algae are found in all aquatic and many terrestrial habitats. They are dominant in phytoplankton and biofilms thereby contributing massively to global primary production. Since algae comprise photosynthetic representatives of the various protoctist groups their physiology and appearance is highly diverse. This diversity is also mirrored in their characteristic life cycles that exhibit various facets of ploidy and duration of the asexual phase as well as gamete morphology. Nevertheless, sexual reproduction in unicellular and colonial algae usually has as common motive that two specialized, sexually compatible haploid gametes establish physical contact and fuse. To guarantee mating success, processes during sexual reproduction are highly synchronized and regulated. This review focuses on sex pheromones of algae that play a key role in these processes. Especially, the diversity of sexual strategies as well as of the compounds involved are the focus of this contribution. Discoveries connected to algal pheromone chemistry shed light on the role of key evolutionary processes, including endosymbiotic events and lateral gene transfer, speciation and adaptation at all phylogenetic levels. But progress in this field might also in the future provide valid tools for the manipulation of aquaculture and environmental processes.
Collapse
Affiliation(s)
- Johannes Frenkel
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University, Lessingstrasse 8, D-07743, Jena, Germany
| | | | | |
Collapse
|
29
|
Desnitskiy AG. Ontogenetic diversity of colonies and intercellular cytoplasmic bridges in the algae of the genus Volvox. Russ J Dev Biol 2014. [DOI: 10.1134/s106236041404002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Geng S, De Hoff P, Umen JG. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol 2014; 12:e1001904. [PMID: 25003332 PMCID: PMC4086717 DOI: 10.1371/journal.pbio.1001904] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/30/2014] [Indexed: 01/20/2023] Open
Abstract
Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s) to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT) gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi)-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was reprogrammed to control sexually dimorphic gamete development in a multicellular descendant.
Collapse
Affiliation(s)
- Sa Geng
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Peter De Hoff
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James G. Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
31
|
Smith DR. Volvox, rolling out from under the shadow of Chlamydomonas with support from the AGA. J Hered 2013; 105:143-4. [PMID: 24280250 DOI: 10.1093/jhered/est080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Roy Smith
- the Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
32
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
33
|
Hamaji T, Ferris PJ, Nishii I, Nishimura Y, Nozaki H. Distribution of the sex-determining gene MID and molecular correspondence of mating types within the isogamous genus Gonium (Volvocales, Chlorophyta). PLoS One 2013; 8:e64385. [PMID: 23696888 PMCID: PMC3655996 DOI: 10.1371/journal.pone.0064385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isogamous organisms lack obvious cytological differences in the gametes of the two complementary mating types. Consequently, it is difficult to ascertain which of the two mating types are homologous when comparing related but sexual isolated strains or species. The colonial volvocalean algal genus Gonium consists of such isogamous organisms with heterothallic mating types designated arbitrarily as plus or minus in addition to homothallic strains. Homologous molecular markers among lineages may provide an "objective" framework to assign heterothallic mating types. METHODOLOGY/PRINCIPAL FINDINGS Using degenerate primers designed based on previously reported MID orthologs, the "master regulator" of mating types/sexes in the colonial Volvocales, MID homologs were identified and their presence/absence was examined in nine strains of four species of Gonium. Only one of the two complementary mating types in each of the four heterothallic species has a MID homolog. In addition to heterothallic strains, a homothallic strain of G. multicoccum has MID. Molecular evolutionary analysis suggests that MID of this homothallic strain retains functional constraint comparable to that of the heterothallic strains. CONCLUSION/SIGNIFICANCE We coordinated mating genotypes based on presence or absence of a MID homolog, respectively, in heterothallic species. This scheme should be applicable to heterothallic species of other isogamous colonial Volvocales including Pandorina and Yamagishiella. Homothallism emerged polyphyletically in the colonial Volvocales, although its mechanism remains unknown. Our identification of a MID homolog for a homothallic strain of G. multicoccum suggests a MID-dependent mechanism is involved in the sexual developmental program of this homothallic species.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
34
|
Smith DR, Hamaji T, Olson BJSC, Durand PM, Ferris P, Michod RE, Featherston J, Nozaki H, Keeling PJ. Organelle genome complexity scales positively with organism size in volvocine green algae. Mol Biol Evol 2013; 30:793-7. [PMID: 23300255 DOI: 10.1093/molbev/mst002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been argued that for certain lineages, noncoding DNA expansion is a consequence of the increased random genetic drift associated with long-term escalations in organism size. But a lack of data has prevented the investigation of this hypothesis in most plastid-bearing protists. Here, using newly sequenced mitochondrial and plastid genomes, we explore the relationship between organelle DNA noncoding content and organism size within volvocine green algae. By looking at unicellular, colonial, and differentiated multicellular algae, we show that organelle DNA complexity scales positively with species size and cell number across the volvocine lineage. Moreover, silent-site genetic diversity data suggest that the volvocine species with the largest cell numbers and most bloated organelle genomes have the smallest effective population sizes. Together, these findings support the view that nonadaptive processes, like random genetic drift, promote the expansion of noncoding regions in organelle genomes.
Collapse
Affiliation(s)
- David Roy Smith
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|