1
|
Badanich KA, Doremus-Fitzwater TL, Mulholland PJ, Randall PK, Delpire E, Becker HC. NR2B-deficient mice are more sensitive to the locomotor stimulant and depressant effects of ethanol. GENES BRAIN AND BEHAVIOR 2011; 10:805-816. [PMID: 21762461 DOI: 10.1111/j.1601-183x.2011.00720.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The NR2B subunit of N-methyl d-aspartate glutamate receptors influences pharmacological properties and confers greater sensitivity to the modulatory effects of ethanol. This study examined behavioral responses to acute ethanol in a conditional knockout mouse model that allowed for a delayed genetic deletion of the NR2B subunit to avoid mouse lethality. Mice lacking the NR2B gene (knockout) were produced by mating NR2B[f/f] mice with CAMKIIa-driven tTA transgenic mice and the tetO-CRE transgenic mice. Adult male and female offspring representing each of the resultant genotypes (knockout, CAM, CRE and wildtype mice) were tested for open-field locomotor activity following acute low- and high-dose ethanol challenge as well as loss of righting reflex. Findings indicate that male and female mice lacking the NR2B subunit exhibited greater overall activity in comparison to other genotypes during the baseline locomotor activity test. NR2B knockout mice exhibited an exaggerated stimulant response to 1.5 g/kg (i.p.) and an exaggerated depressant response to 3.0 g/kg (i.p.) ethanol challenge. In addition, NR2B knockout mice slept longer following a high dose of ethanol (4.0 g/kg, i.p.). To evaluate pharmacokinetics, clearance rates of ethanol (1.5, 4.0 g/kg, i.p.) were measured and showed that female NR2B knockouts had a faster rate of metabolism only at the higher ethanol dose. Western blot analyses confirmed significant reduction in NR2B expression in the forebrain of knockout mice. Collectively, these data indicate that the NR2B subunit of the N-methyl d-aspartate glutamate receptor is involved in regulating low-dose stimulant effects of ethanol and the depressant/hypnotic effects of ethanol.
Collapse
Affiliation(s)
- Kimberly A Badanich
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Tamara L Doremus-Fitzwater
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Patrick J Mulholland
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Patrick K Randall
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425.,RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425
| |
Collapse
|
2
|
Howard RJ, Slesinger PA, Davies DL, Das J, Trudell JR, Harris RA. Alcohol-binding sites in distinct brain proteins: the quest for atomic level resolution. Alcohol Clin Exp Res 2011; 35:1561-73. [PMID: 21676006 DOI: 10.1111/j.1530-0277.2011.01502.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Defining the sites of action of ethanol on brain proteins is a major prerequisite to understanding the molecular pharmacology of this drug. The main barrier to reaching an atomic-level understanding of alcohol action is the low potency of alcohols, ethanol in particular, which is a reflection of transient, low-affinity interactions with their targets. These mechanisms are difficult or impossible to study with traditional techniques such as radioligand binding or spectroscopy. However, there has been considerable recent progress in combining X-ray crystallography, structural modeling, and site-directed mutagenesis to define the sites and mechanisms of action of ethanol and related alcohols on key brain proteins. We review such insights for several diverse classes of proteins including inwardly rectifying potassium, transient receptor potential, and neurotransmitter-gated ion channels, as well as protein kinase C epsilon. Some common themes are beginning to emerge from these proteins, including hydrogen bonding of the hydroxyl group and van der Waals interactions of the methylene groups of ethanol with specific amino acid residues. The resulting binding energy is proposed to facilitate or stabilize low-energy state transitions in the bound proteins, allowing ethanol to act as a "molecular lubricant" for protein function. We discuss evidence for characteristic, discrete alcohol-binding sites on protein targets, as well as evidence that binding to some proteins is better characterized by an interaction region that can accommodate multiple molecules of ethanol.
Collapse
Affiliation(s)
- Rebecca J Howard
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Texas 77812, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 2010; 127:53-65. [PMID: 20399807 DOI: 10.1016/j.pharmthera.2010.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/23/2022]
Abstract
Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.
Collapse
|
4
|
Perkins DI, Trudell JR, Crawford DK, Alkana RL, Davies DL. Targets for ethanol action and antagonism in loop 2 of the extracellular domain of glycine receptors. J Neurochem 2008; 106:1337-49. [PMID: 18485105 DOI: 10.1111/j.1471-4159.2008.05476.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present studies used increased atmospheric pressure in place of a traditional pharmacological antagonist to probe the molecular sites and mechanisms of ethanol action in glycine receptors (GlyRs). Based on previous studies, we tested the hypothesis that physical-chemical properties at position 52 in extracellular domain Loop 2 of alpha1GlyRs, or the homologous alpha2GlyR position 59, determine sensitivity to ethanol and pressure antagonism of ethanol. Pressure antagonized ethanol in alpha1GlyRs that contain a non-polar residue at position 52, but did not antagonize ethanol in receptors with a polar residue at this position. Ethanol sensitivity in receptors with polar substitutions at position 52 was significantly lower than GlyRs with non-polar residues at this position. The alpha2T59A mutation switched sensitivity to ethanol and pressure antagonism in the WTalpha2GlyR, thereby making it alpha1-like. Collectively, these findings indicate that (i) polarity at position 52 plays a key role in determining sensitivity to ethanol and pressure antagonism of ethanol; (ii) the extracellular domain in alpha1- and alpha2GlyRs is a target for ethanol action and antagonism and (iii) there is structural-functional homology across subunits in Loop 2 of GlyRs with respect to their roles in determining sensitivity to ethanol and pressure antagonism of ethanol. These findings should help in the development of pharmacological agents that antagonize ethanol.
Collapse
Affiliation(s)
- Daya I Perkins
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
5
|
Davies DL, Trudell JR, Mihic SJ, Crawford DK, Alkana RL. Ethanol potentiation of glycine receptors expressed in Xenopus oocytes antagonized by increased atmospheric pressure. Alcohol Clin Exp Res 2003; 27:743-55. [PMID: 12766618 DOI: 10.1097/01.alc.0000065722.31109.a1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Behavioral and biochemical studies indicate that exposure to 12 times normal atmospheric pressure (12 ATA) of helium-oxygen gas (heliox) is a direct, selective ethanol antagonist. The current study begins to test the hypothesis that ethanol acts by a common mechanism on ligand-gated ion channels by expanding previous hyperbaric investigations on gamma-aminobutyric acid type A (GABA(A)) receptors (GABA(A)Rs) at the biochemical level to alpha(1)glycine (GlyRs) expressed in Xenopus oocytes. METHODS Oocytes expressing wild-type alpha(1) homomeric GlyRs were voltage-clamped (-70 mV) and tested in the presence of glycine (EC(2)) +/- ethanol (50-200 mM) under 1 ATA control and 3 to 12 ATA heliox conditions. Glycine concentration response curves, strychnine/glycine interactions, and zinc (Zn2+) modulation of GlyR function was also tested. RESULTS Pressure reversibly antagonized the action of ethanol. The degree of antagonism increased as pressure increased. Pressure did not significantly alter the effects of glycine, strychnine, or Zn2+, indicating that ethanol antagonism by pressure cannot be attributed to alterations by pressure of normal GlyR function. The antagonism did not reflect tolerance to ethanol, receptor desensitization, or receptor rundown. CONCLUSION This is the first use of hyperbarics to investigate the mechanism of action of ethanol in recombinant receptors. The findings indicate that pressure directly and selectively antagonizes ethanol potentiation of alpha(1)GlyR function in a reversible and concentration- and pressure-dependent manner. The sensitivity of ethanol potentiation of GlyR function to pressure antagonism indicates that ethanol acts by a common, pressure-antagonism-sensitive mechanism in GlyRs and GABA(A)Rs. The findings also support the hypothesis that ethanol potentiation of GlyR function plays a role in mediating the sedative-hypnotic effects of ethanol.
Collapse
Affiliation(s)
- Daryl L Davies
- Alcohol and Brain Research Laboratory, Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
6
|
Davies DL, Alkana RL. Direct Evidence for a Cause-Effect Link Between Ethanol Potentiation of GABAA Receptor Function and Intoxication From Hyperbaric Studies in C57, LS, and SS Mice. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02322.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Davies DL, Alkana RL. Direct Antagonism of Ethanol's Effects On GABAA Receptors by Increased Atmospheric Pressure. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03967.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Janak PH, Redfern JEM, Samson HH. The Reinforcing Effects of Ethanol Are Altered by the Endogenous Neurosteroid, Allopregnanolone. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03708.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Grung M, Skurtveit S, Aasmundstad TA, Handal M, Alkana RL, Mørland J. Morphine-6-glucuronide-induced locomotor stimulation in mice: role of opioid receptors. PHARMACOLOGY & TOXICOLOGY 1998; 82:3-10. [PMID: 9527644 DOI: 10.1111/j.1600-0773.1998.tb01390.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphine-6beta-glucuronide is a major metabolite of morphine with potent analgesic actions. To explore the importance of this opiate when administered as a drug by its own or in morphine action, we studied the locomotor activity response to morphine and morphine-6-glucuronide in drug-naive C57 BL/6JBom mice. The effects of administration of the two opiates on a battery of 7 different locomotor activities were studied and compared to saline controls. A dose of 20 micromol/kg morphine-6-glucuronide resulted in more locomotion than the same dose of morphine, while at higher doses (up to 120 micromol/kg), similar increases for most locomotor behaviours were recorded for both drugs. Pretreatment with naltrindole indicated that the delta-receptors play an equivalent but minor role in mediating both morphine-6-glucuronide and morphine hyperlocomotion. Administration of high naltrexone doses (10 mg/kg) completely abolished the locomotor stimulation induced by both opiates. However, at intermediate naltrexone doses of 0.25 and 0.5 mg/kg, morphine-induced behaviours was completely inhibited while morphine-6-glucuronide induced behaviours demonstrated partial resistance to naltrexone inhibition. The mu1-specific receptor antagonist naloxonazine caused 75% reduction of morphine induced behaviours and only 50% inhibition of morphine-6-glucuronide induced behaviors. Taken together our observations indicated general similarity but also marked differences between morphine and morphine-6-glucuronide with respect to opiate receptors mediating the locomotor stimulatory effect.
Collapse
Affiliation(s)
- M Grung
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
10
|
Alkana RL, Davies DL, Mørland J, Parker ES, Bejanian M. Low-level hyperbaric exposure antagonizes locomotor effects of ethanol and n-propanol but not morphine in C57BL mice. Alcohol Clin Exp Res 1995; 19:693-700. [PMID: 7573795 DOI: 10.1111/j.1530-0277.1995.tb01569.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Low-level hyperbaric exposure antagonizes a broad range of behavioral effects of ethanol in a direct, reversible, and competitive manner. This study investigates the selectivity of the antagonism across other drugs. C57BL/6 mice were injected with saline, ethanol, n-propanol, or morphine sulfate, and then were exposed to 1 atmosphere absolute (ATA) air, 1 ATA helium-oxygen gas mixture (heliox), or 12 ATA heliox. Locomotor activity was measured from 10 to 40 min following injection. N-propanol produced a dose-dependent depression of locomotor activity from 1.0 g/kg. Morphine produced a dose-dependent stimulation of locomotor activity at doses of 3.75-12.0 mg/kg. Exposure to 12 ATA heliox significantly antagonized the locomotor depressant effects of 1.0 g/kg n-propanol and 2.5 g/kg ethanol, without significantly affecting blood concentrations of these drugs measured at 40 min postinjection. Exposure to 12 ATA heliox did not significantly antagonize the locomotor-stimulating effects of the two morphine doses tested (3.75 and 7.5 mg/kg). These findings suggest that exposure to 12 ATA heliox antagonizes the behavioral effects of intoxicant-anesthetic drugs like ethanol and n-propanol, which are believed to act via perturbation or allosteric modulation of functional proteins, but does not antagonize the effects of drugs like morphine, which act via more direct mechanisms. This demonstration of selective antagonism adds important support for the hypothesis that low-level hyperbaric exposure is a direct mechanistic ethanol antagonist, with characteristics similar to a competitive pharmacological antagonist.
Collapse
Affiliation(s)
- R L Alkana
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033-1086, USA
| | | | | | | | | |
Collapse
|
11
|
Davies DL, Mørland J, Jones BL, Alkana RL. Low-level hyperbaric antagonism of ethanol's anticonvulsant property in C57BL/6J mice. Alcohol Clin Exp Res 1994; 18:1190-5. [PMID: 7847605 DOI: 10.1111/j.1530-0277.1994.tb00103.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigated the ability of hyperbaric exposure to antagonize ethanol's anticonvulsant effect on isoniazid (INH)-induced seizures. Drug-naive, male C57BL/6 mice were injected intraperitoneally with saline, 1.5, 2.0, or 2.5 g/kg ethanol followed immediately by an intramuscular injection of 300 mg/kg of INH. The mice were then exposed to either 1 atmosphere absolute (1 ATA) air, 1 ATA helium-oxygen gas mixture (heliox), or 12 ATA heliox at temperatures that offset the hypothermic effects of helium. Ethanol increased the latency to onset of myoclonus in a dose-dependent manner. Exposure to 12 ATA heliox antagonized ethanol's anticonvulsant effect at 2.0 and 2.5 g/kg, but not at 1.5 g/kg. Ethanol also increased the latency to onset of clonus in a dose-dependent manner beginning at 2.0 g/kg. Exposure to 12 ATA heliox antagonized this anticonvulsant effect. When exposed to 12 ATA heliox, the blood ethanol concentrations at time to onset of myoclonus were significantly higher in mice treated with 2.5 g/kg of ethanol as compared with blood ethanol concentrations of mice exposed to 1 ATA air. These findings extend the acute behavioral effects of ethanol known to be antagonized by hyperbaric exposure and support the hypothesis that low-level hyperbaric exposure blocks or reverses the initial action(s) of ethanol leading to its acute behavioral effects.
Collapse
Affiliation(s)
- D L Davies
- Alcohol and Brain Research Laboratory, University of Southern California, Los Angeles 90033
| | | | | | | |
Collapse
|
12
|
Mørland J, Jones BL, Palomares ML, Alkana RL. Morphine-6-glucuronide: a potent stimulator of locomotor activity in mice. Life Sci 1994; 55:PL163-8. [PMID: 8046991 DOI: 10.1016/0024-3205(94)00493-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study tested the hypothesis that morphine glucuronides have stimulant properties by studying their effects on locomotor activity in mice. Drug-naive C57BL/6J male mice were injected with saline, morphine, morphine-6-glucuronide (M6G) or morphine-3-glucuronide (M3G). In some experiments, mice were injected with saline or naloxone 5 min prior to drug treatment. Injection of 40 mg/kg morphine or M6G, but not M3G, significantly increased activity versus saline. The extent of activation induced by M6G was markedly higher than for morphine. Subsequent dose-response studies across a somewhat lower dose range using equimolar doses of morphine and M6G (3-80 mumoles/kg) found that both drugs significantly increased locomotor activity beginning at 20 mumoles/kg. M6G increased locomotor activity from 1.3 to 2.1 times more than for equimolar doses of morphine. Pretreatment with naloxone (10 mg/kg) completely abolished the locomotor stimulation induced by 32 mumoles/kg morphine and M6G. These findings present evidence that M6G is an active metabolite of morphine which has behaviorally stimulating effects and may play an important role in mediating the reinforcing properties of morphine in humans.
Collapse
Affiliation(s)
- J Mørland
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | |
Collapse
|