1
|
van der Heide FCT, Eussen SJPM, Houben AJHM, Henry RMA, Kroon AA, van der Kallen CJH, Dagnelie PC, van Dongen MCJM, Berendschot TTJM, Schouten JSAG, Webers CAB, van Greevenbroek MMJ, Wesselius A, Schalkwijk CG, Koster A, Jansen JFA, Backes WH, Beulens JWJ, Stehouwer CDA. Alcohol consumption and microvascular dysfunction: a J-shaped association: The Maastricht Study. Cardiovasc Diabetol 2023; 22:67. [PMID: 36964536 PMCID: PMC10039613 DOI: 10.1186/s12933-023-01783-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Microvascular dysfunction (MVD) is an important contributor to major clinical disease such as stroke, dementia, depression, retinopathy, and chronic kidney disease. Alcohol consumption may be a determinant of MVD. OBJECTIVE Main objectives were (1) to study whether alcohol consumption was associated with MVD as assessed in the brain, retina, skin, kidney and in the blood; and (2) to investigate whether associations differed by history of cardiovascular disease or sex. DESIGN We used cross-sectional data from The Maastricht Study (N = 3,120 participants, 50.9% men, mean age 60 years, and 27.5% with type 2 diabetes [the latter oversampled by design]). We used regression analyses to study the association between total alcohol (per unit and in the categories, i.e. none, light, moderate, high) and MVD, where all measures of MVD were combined into a total MVD composite score (expressed in SD). We adjusted all associations for potential confounders; and tested for interaction by sex, and history of cardiovascular disease. Additionally we tested for interaction with glucose metabolism status. RESULTS The association between total alcohol consumption and MVD was non-linear, i.e. J-shaped. Moderate versus light total alcohol consumption was significantly associated with less MVD, after full adjustment (beta [95% confidence interval], -0.10 [-0.19; -0.01]). The shape of the curve differed with sex (Pinteraction = 0.03), history of cardiovascular disease (Pinteraction < 0.001), and glucose metabolism status (Pinteraction = 0.02). CONCLUSIONS The present cross-sectional, population-based study found evidence that alcohol consumption may have an effect on MVD. Hence, although increasing alcohol consumption cannot be recommended as a policy, this study suggests that prevention of MVD may be possible through dietary interventions.
Collapse
Affiliation(s)
- Frank C T van der Heide
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | - Alfons J H M Houben
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Ronald M A Henry
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
- Heart and Vascular Center, MUMC+ Maastricht, Maastricht, The Netherlands
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Martien C J M van Dongen
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | | | - Jan S A G Schouten
- University Eye Clinic Maastricht, MUMC+, Maastricht, The Netherlands
- Department of Ophthalmology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, NUTRIM School for Nutrition and Translational Research in Metabolism, UM, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annemarie Koster
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Walter H Backes
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam University Medical Centres - location VUmc, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
2
|
Argemi J, Kedia K, Gritsenko MA, Clemente-Sanchez A, Asghar A, Herranz JM, Liu ZX, Atkinson SR, Smith RD, Norden-Krichmar TM, Day LZ, Stolz A, Tayek JA, Bataller R, Morgan TR, Jacobs JM. Integrated Transcriptomic and Proteomic Analysis Identifies Plasma Biomarkers of Hepatocellular Failure in Alcohol-Associated Hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1658-1669. [PMID: 36243044 PMCID: PMC9765311 DOI: 10.1016/j.ajpath.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
Alcohol-associated hepatitis (AH) is a form of liver failure with high short-term mortality. Recent studies have shown that defective function of hepatocyte nuclear factor 4 alpha (HNF4a) and systemic inflammation are major disease drivers of AH. Plasma biomarkers of hepatocyte function could be useful for diagnostic and prognostic purposes. Herein, an integrative analysis of hepatic RNA sequencing and liquid chromatography-tandem mass spectrometry was performed to identify plasma protein signatures for patients with mild and severe AH. Alcohol-related liver disease cirrhosis, nonalcoholic fatty liver disease, and healthy subjects were used as comparator groups. Levels of identified proteins primarily involved in hepatocellular function were decreased in patients with AH, which included hepatokines, clotting factors, complement cascade components, and hepatocyte growth activators. A protein signature of AH disease severity was identified, including thrombin, hepatocyte growth factor α, clusterin, human serum factor H-related protein, and kallistatin, which exhibited large abundance shifts between severe and nonsevere AH. The combination of thrombin and hepatocyte growth factor α discriminated between severe and nonsevere AH with high sensitivity and specificity. These findings were correlated with the liver expression of genes encoding secreted proteins in a similar cohort, finding a highly consistent plasma protein signature reflecting HNF4A and HNF1A functions. This unbiased proteomic-transcriptome analysis identified plasma protein signatures and pathways associated with disease severity, reflecting HNF4A/1A activity useful for diagnostic assessment in AH.
Collapse
Affiliation(s)
- Josepmaria Argemi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Komal Kedia
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co, Inc., West Point, Pennsylvania
| | - Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Ana Clemente-Sanchez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliya Asghar
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California
| | - Jose M Herranz
- Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Zhang-Xu Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Stephen R Atkinson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Trina M Norden-Krichmar
- Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Le Z Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - John A Tayek
- Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R Morgan
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California.
| | - Jon M Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
3
|
Abstract
Endothelial adhesion molecules (AM) play an important role in the pathogenesis of several diseases namely infections, neoplasms and chronic inflammatory diseases. Because alcoholic hepatitis and even atherosclerosis are considered as inflammatory diseases and ethanol may modulate inflammatory response, several researchers have investigated the link between ethanol consumption, endothelial AM and the development of both processes. In vitro, animal and human studies have analysed the effects of ethanol and non-alcoholic components of alcoholic beverages on inflammatory biomarkers of atherosclerosis such as monocyte and endothelial AM. These studies have shown that both ethanol and non-alcoholic components of alcoholic beverages, mainly polyphenols, reduce intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin expression of vascular endothelium, as well as monocyte adhesion to this endothelium. These data suggest that moderate alcohol intake has an anti-inflammatory effect on the cardiovascular system and reduces early serum markers of atherosclerosis. However, at higher doses ethanol may exert an inflammatory effect. In fact, chronic alcoholics exhibit significantly higher serum levels of endothelial AM than abstainers and moderate drinkers. In addition, an upregulation of E-selectin, ICAM-1 and VCAM-1 is also detected in liver biopsies obtained from patients with alcoholic hepatitis and cirrhosis. The clinical usefulness of the measurement of serum endothelial AM is discussed.
Collapse
Affiliation(s)
- E Sacanella
- Department of Internal Medicine, Villarroel 170, Hospital Clínic, Institut d'Investgacions Biomèdiques Agustí Pi Sunyer, University of Barcelona, 08036, Spain.
| | | |
Collapse
|