1
|
Khalatbari A, Castle JD, Li T, Shaker A. Direct and indirect effects of alcohol and its toxic metabolite acetaldehyde on human esophageal myofibroblasts and epithelial cells. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1297-1311. [PMID: 37128647 PMCID: PMC10524176 DOI: 10.1111/acer.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mechanisms by which alcohol increases the risk of esophageal squamous cell carcinoma remain undefined. Human esophageal myofibroblasts (HEMFs) subjacent to the squamous epithelium are exposed directly to these agents via epithelial barrier defects and indirectly via factors derived from the exposed epithelium. Our aim was to investigate the cellular biology of HEMFs and HEMF-esophageal epithelial cell interactions in response to alcohol and its toxic metabolite acetaldehyde. METHODS An immortalized HEMF and a human esophageal epithelial cell line (Epi) were treated with alcohol (0 to 200 mM) or acetaldehyde (0 to 100 μM) in a cyclic fashion or incubated with supernatants collected from treated cells. Healthy cell %, reactive oxygen species (ROS), and proliferation were assessed via flow cytometry, luminescence, scratch wound, and colorimetric assays, respectively. A 15-plex multiplex assay was performed on cell supernatants, followed by IL-6 and IL-8 qRT-PCR and ELISA. RESULTS Healthy HEMF decreased to less than 80% at 30 mM alcohol and 70 μM acetaldehyde, with microscopic changes at 40 μM acetaldehyde. HEMF ROS was detected at 100 mM alcohol and 80 μM acetaldehyde. Supernatants from 30 mM alcohol- or 40 μM acetaldehyde-treated HEMFs increased Epi proliferation more than two-fold that of lower doses. In the complementary studies, healthy Epi cells decreased to less than 80% at 50 mM and 70 μM acetaldehyde, with microscopic changes at 40 μM. Supernatants from Epi treated with 50 mM alcohol or 40 μM acetaldehyde increased HEMF proliferation more than two-fold that of lower doses. A multiplex assay of supernatants showed the greatest increase in concentrations of IL-6 and IL-8 in HEMFs and in Epi treated with higher doses of alcohol or acetaldehyde. Neutralization of IL-6 and IL-8 in supernatants of HEMFS and esophageal epithelial cells inhibited the proliferation of Epi and HEMFs, respectively. CONCLUSIONS Alcohol and acetaldehyde doses in which the majority of HEMFs and epithelial cells are healthy, elicit the production of paracrine mediators with pro-proliferative effects on neighboring cells. Understanding the effect of alcohol and acetaldehyde on HEMFs and HEMF-epithelial interactions could help to identify the molecular basis by which alcohol increases the risk for esophageal cancer.
Collapse
Affiliation(s)
- Atousa Khalatbari
- University of Southern California, Keck School of Medicine of USC, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Swallowing and Esophageal Disorders Center, 2011 Zonal Avenue, HMR 810, Los Angeles, CA 90089
| | - Joshua D. Castle
- University of Southern California, Keck School of Medicine of USC, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Swallowing and Esophageal Disorders Center, 2011 Zonal Avenue, HMR 810, Los Angeles, CA 90089
| | - Tao Li
- University of Southern California, Keck School of Medicine of USC, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Swallowing and Esophageal Disorders Center, 2011 Zonal Avenue, HMR 810, Los Angeles, CA 90089
| | - Anisa Shaker
- University of Southern California, Keck School of Medicine of USC, Department of Medicine, Division of Gastrointestinal and Liver Diseases, Swallowing and Esophageal Disorders Center, 2011 Zonal Avenue, HMR 810, Los Angeles, CA 90089
| |
Collapse
|
2
|
Models of Head and Neck Squamous Cell Carcinoma Using Bioengineering Approaches. Crit Rev Oncol Hematol 2022; 175:103724. [DOI: 10.1016/j.critrevonc.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
|
3
|
Ahn EH, Yang H, Hsieh CY, Sun W, Chang CC, Schroeder JJ. Evaluation of chemotherapeutic and cancer-protective properties of sphingosine and C2-ceramide in a human breast stem cell derived carcinogenesis model. Int J Oncol 2018; 54:655-664. [PMID: 30483770 PMCID: PMC6317677 DOI: 10.3892/ijo.2018.4641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The overall goal of the present study was to evaluate the chemotherapeutic and cancer-protective properties of D-erythro-sphingosine (sphingosine) and C2-ceramide using a human breast epithelial cell (HBEC) culture system, which represents multiple-stages of breast carcinogenesis. The HBEC model includes Type I HBECs (normal stem), Type II HBECs (normal differentiated) and transformed cells (immortal/non-tumorigenic cells and tumorigenic cells, which are transformed from the same parental normal stem cells). The results of the present study indicate that sphingosine preferentially inhibits proliferation and causes death of normal stem cells (Type I), tumorigenic cells, and MCF7 breast cancer cells, but not normal differentiated cells (Type II). In contrast to the selective anti-proliferative effects of sphingosine, C2-ceramide inhibits proliferation of normal differentiated cells as well as normal stem cells, tumorigenic cells, and MCF7 cancer cells with similar potency. Both sphingosine and C2-ceramide induce apoptosis in tumorigenic cells. Among the sphingosine stereoisomers (D-erythro, D-threo, L-erythro, and L-threo) and sphinganine that were tested, L-erythro-sphingosine most potently inhibits proliferation of tumorigenic cells. The inhibition of breast tumorigenic/cancer cell proliferation by sphingosine was accompanied by inhibition of telomerase activity. Sphingosine at non-cytotoxic concentrations, but not C2-ceramide, induces differentiation of normal stem cells (Type I), thereby reducing the number of stem cells that are more susceptible to neoplastic transformation. To the best of our knowledge, the present study demonstrates one of the first results that sphingosine can be a potential chemotherapeutic and cancer-protective agent, whereas C2-ceramide is not an ideal chemotherapeutic and cancer-protective agent due to its anti-proliferative effects on Type II HBECs and its inability to induce the differentiation of Type I to Type II HBECs.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology and 2Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hong Yang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Ching-Yi Hsieh
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Sun
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Chia-Cheng Chang
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph J Schroeder
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Sawabe M, Ito H, Oze I, Hosono S, Kawakita D, Tanaka H, Hasegawa Y, Murakami S, Matsuo K. Heterogeneous impact of alcohol consumption according to treatment method on survival in head and neck cancer: A prospective study. Cancer Sci 2017; 108:91-100. [PMID: 27801961 PMCID: PMC5276823 DOI: 10.1111/cas.13115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
Alcohol consumption is an established risk factor, and also a potential prognostic factor, for squamous cell carcinoma of the head and neck (HNSCC). However, little is known about whether the prognostic impact of alcohol consumption differs by treatment method. We evaluated the association between alcohol drinking and survival by treatment method to the primary site in 427 patients with HNSCC treated between 2005 and 2013 at Aichi Cancer Center Central Hospital (Nagoya, Japan). The impact of alcohol on prognosis was measured by multivariable Cox regression analysis adjusted for established prognostic factors. Among all HNSCC patients, the overall survival rate was significantly poorer with increased levels of alcohol consumption in multivariable analysis (trend P = 0.038). Stratification by treatment method and primary site revealed that the impact of drinking was heterogeneous. Among laryngopharyngeal cancer (laryngeal, oropharyngeal, and hypopharyngeal cancer) patients receiving radiotherapy (n = 141), a significant dose-response relationship was observed (trend P = 0.034). In contrast, among laryngopharyngeal cancer patients treated with surgery (n = 80), no obvious impact of alcohol was observed. This heterogeneity in the impact of alcohol between surgery and radiotherapy was significant (for interaction, P = 0.048). Furthermore, among patients with oral cavity cancer treated by surgery, a significant impact of drinking on survival was seen with tongue cancer, but not with non-tongue oral cancer. We observed a significant inverse association between alcohol drinking and prognosis among HNSCC patients, and its impact was heterogeneous by treatment method and primary site.
Collapse
Affiliation(s)
- Michi Sawabe
- Division of Molecular and Clinical EpidemiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Otolaryngology, Head and Neck SurgeryNagoya City University Graduate School of MedicineNagoyaJapan
| | - Hidemi Ito
- Division of Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of EpidemiologyNagoya City University Graduate School of MedicineNagoyaJapan
| | - Isao Oze
- Division of Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Satoyo Hosono
- Division of Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Daisuke Kawakita
- Division of Molecular and Clinical EpidemiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Otolaryngology, Head and Neck SurgeryNagoya City University Graduate School of MedicineNagoyaJapan
| | - Hideo Tanaka
- Division of Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
- Department of EpidemiologyNagoya City University Graduate School of MedicineNagoyaJapan
| | - Yasuhisa Hasegawa
- Department of Head and Neck SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Shingo Murakami
- Department of Otolaryngology, Head and Neck SurgeryNagoya City University Graduate School of MedicineNagoyaJapan
| | - Keitaro Matsuo
- Division of Molecular and Clinical EpidemiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of EpidemiologyNagoya City University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
5
|
Liu Y, Chen H, Sun Z, Chen X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 2015; 361:164-73. [PMID: 25766659 DOI: 10.1016/j.canlet.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China; Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
6
|
VandeVoort CA, Hill DL, Chaffin CL, Conley AJ. Ethanol, acetaldehyde, and estradiol affect growth and differentiation of rhesus monkey embryonic stem cells. Alcohol Clin Exp Res 2011; 35:1534-40. [PMID: 21438889 DOI: 10.1111/j.1530-0277.2011.01490.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The timing of the origins of fetal alcohol syndrome has been difficult to determine, in part because of the challenge associated with in vivo studies of the peri-implantation stage of embryonic development. Because embryonic stem cells (ESCs) are derived from blastocyst stage embryos, they are used as a model for early embryo development. METHODS Rhesus monkey ESC lines (ORMES-6 and ORMES-7) were treated with 0, 0.01, 0.1, or 1.0% ethanol, 1.0% ethanol with estradiol, or 0.00025% acetaldehyde with or without estradiol for 4 weeks. RESULTS Although control ESCs remained unchanged, abnormal morphology of ESCs in the ethanol and acetaldehyde treatment groups was observed before 2 weeks of treatment. Immunofluorescence staining of key pluripotency markers (TRA-1-81 and alkaline phosphatase) indicated a loss of ESC pluripotency in the 1.0% ethanol group. ORMES-7 was more sensitive to effects of ethanol than ORMES-6. CONCLUSIONS Estradiol appeared to increase sensitivity to ethanol in the ORMES-6 and ORMES-7 cell line. The morphological changes and labeling for pluripotency, proliferation, and apoptosis demonstrated that how ethanol affects these early cells that develop in culture, their differentiation state in particular. The effects of ethanol may be mediated in part through metabolic pathways regulating acetaldehyde formation, and while potentially accentuated by estradiol in some individuals, how remains to be determined.
Collapse
|
7
|
Discrimination of epithelium-like and fibroblast-like phenotypes derived from ethanol-treated immortalised human gingival keratinocytes in epithelial equivalents. Cell Tissue Res 2008; 332:57-71. [PMID: 18188601 DOI: 10.1007/s00441-007-0551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Ethanol treatment of immortalised human gingival keratinocytes (IHGK) yields in an epithelium-like (EPI) and fibroblast-like (FIB) phenotype. With respect to the stratified gingival epithelium, putative structural and molecular differences assigning cells to these phenotypes have not, to date, been analysed in a three-dimensional tissue/epithelial context. Therefore, we generated epithelial equivalents (EEs) in organotypic co-cultures of IHGK, EPI and FIB cells for 1 and 2 weeks and conducted protein and gene expression studies on the EEs for epithelial biomarkers including keratin K14, integrin subunits alpha6 and beta1, E-cadherin, and mesenchymal vimentin. As in the EEs of IHGK and EPI, indirect immunofluorescence revealed continuous expression of beta1 integrin in EEs of FIB cells. However, FIB cells exhibited a significant down-regulation in K14 and integrin alpha6 protein and a loss of E-cadherin at week 2, whereas vimentin was increased. FIB EEs were devoid of transcripts for E-cadherin at both time points, although transcription of the other genes remained constant in all phenotypes. Thus, the FIB phenotype exhibited a poor epithelial structure coinciding with disturbances in the expression of epithelial biomarkers and the persistence of mesenchymal vimentin. Transcription analysis revealed post-transcriptional regulation of vimentin in IHGK and EPI and of K14 and alpha6 in FIB cells. Our findings indicate that differences in the epithelial integrity and expression of molecules in EEs allow for the discrimination of EPI and FIB cells. This suggests that FIB cells share features of epithelial-mesenchymal transition and reflect a more progressive stage in epithelial cell transformation.
Collapse
|
8
|
Adler S, Pellizzer C, Paparella M, Hartung T, Bremer S. The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro 2006; 20:265-71. [PMID: 16112835 DOI: 10.1016/j.tiv.2005.06.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 05/10/2005] [Accepted: 06/20/2005] [Indexed: 02/07/2023]
Abstract
Dimethyl sulfoxide (DMSO) and ethanol are common organic solvents used for dissolving lipophilic substances for in vitro testing. However, DMSO is known to induce differentiation in embryonic stem (ES) and embryonic teratocarcinoma (EC) cells. In order to clarify if solvents like DMSO and ethanol have an influence on in vitro developmental toxicity test systems, the presented study has evaluated their effects on differentiation by using different test systems. ES and EC cells were transfected with a construct containing the mTert promoter combined with the green fluorescent protein gene (GFP). A down-regulation of mTert, a marker for undifferentiated cells, results in a lower expression of GFP, which could be measured by flow cytometry. Taking the specific characteristics of ES and EC cells into account this effect could be a hint for the interaction of DMSO with embryonic development. Additionally, the effects of the solvents ethanol and DMSO on Oct-4 expression, another marker for undifferentiated cells, were measured in wild-type ES cells. Both selected molecular markers demonstrated an induction of differentiation after exposure to DMSO; in wild-type ES cells at a concentration of 0.125% and in transgenic EC cells at a concentration of 0.25% DMSO. All other differences from controls, including those which attained a level of statistical significance, were minor or not dosage related in degree, or were not consistent over time and are, therefore, considered to be of little toxicological importance. In addition, a cytotoxicity test demonstrated that the solvents affected the employed molecular markers in non-cytotoxic concentrations. The ES cells were the most sensitive towards the cytotoxic effects of the solvent DMSO while the EC cells were more sensitive when treated with the solvent ethanol.
Collapse
Affiliation(s)
- S Adler
- ECVAM, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 1, 21020 Ispra (VA), Italy.
| | | | | | | | | |
Collapse
|
9
|
Adler S, Paparella M, Pellizzer C, Hartung T, Bremer S. The Detection of Differentiation-inducing Chemicals by using Green Fluorescent Protein Expression in Genetically Engineered Teratocarcinoma Cells. Altern Lab Anim 2005; 33:91-103. [PMID: 16180984 DOI: 10.1177/026119290503300204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The murine embryonal teratocarcinoma cell line, P19, was genetically manipulated in order to provide preliminary information on compounds that induce differentiation. Without chemical induction, P19 cells remain in an undifferentiated state, but can be induced to differentiate into specific cell types. For example, dimethyl sulphoxide (DMSO) induces cardiac and skeletal muscle differentiation, whereas retinoic acid stimulates neuronal differentiation. P19 cells were transfected with a construct containing a segment of the murineTert (mTert) promoter sequence combined with the green fluorescent protein (GFP) gene, which acts as a reporter gene. mTert expression, the reverse transcriptase component of murine telomerase, is closely linked to telomerase activity and is down-regulated during differentiation. Three retinoids and DMSO induced the differentiation of P19 cells, which was determined by a reduction in mTert_GFP expression, detected by flow cytometry and confocal microscopy as independent methods of detection. A test substance, ethanol, and a control substance, saccharin, did not cause a decrease in mTert_GFP expression. In addition, it could be demonstrated that the mTert_GFP test detects developmentally relevant effects at non-cytotoxic concentrations. The ID50 values derived for the reduction of mTert_GFP expression were lower than the IC50 values detected with the MTT test, by a factor of 21.4 for all-trans retinoic acid, 12.7 for 9-cis retinoic acid, 29.6 for 13-cis retinoic acid, and 8.7 for DMSO. In comparison to the IC50 value for the P19 cell line, a similar IC50 value was obtained with 3T3 cells for ethanol, but there was a 2-fold increase for DMSO. The retinoids were not cytotoxic to 3T3 cells at the concentrations tested. This newly developed test is capable of detecting differentiation-inducing compounds at non-cytotoxic concentrations within 4 days. It offers a method for detecting chemicals with specific toxicological mechanisms, such as the retinoids, which could provide additional information in embryotoxicity testing as different promoters could be employed. Here, we report the use of this novel test system for the successful analysis of DMSO and three retinoids with different in vivo teratogenic potentials.
Collapse
Affiliation(s)
- Sarah Adler
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | | | | | | | | |
Collapse
|
10
|
Kornfehl J, Hager G, Gedlicka C, Formanek M. Ethanol decreases negative cell-cycle-regulating proteins in a head and neck squamous cell carcinoma cell line. Acta Otolaryngol 2002; 122:338-42. [PMID: 12030586 DOI: 10.1080/000164802753648277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Epidemiologic studies have provided evidence of an alcohol-associated increased risk of upper aerodigestive tract cancers. Recently we reported ethanol-induced proliferation in a squamous cell carcinoma of the head and neck (SCCHN) cell line, but the underlying mechanisms are unknown. In order to further clarify these findings, major G0/G1-regulating proteins were investigated in the present study. Synchronized cells of a SCCHN line (JP-PA) and a human immortalized keratinocyte line (HaCaT)-used as a control-were cultured with or without 10(-3) M ethanol for up to 96 h. At distinct time intervals the expression of cyclin D1 and the inhibitors p16, p18, p19 and p21 were determined by Western blot analyses. In both lines ethanol had no influence on the protein expression of cyclin D1. In contrast, distinct downregulations of p21, p18 and p19 were detectable at the protein level. The p16 protein was not expressed in the SCCHN line and was unchanged in the control line after the addition of ethanol. In these in vitro experiments the marked downregulation of important cell-cycle inhibitors may accelerate progression from the G1 to the S phase of the cell cycle. The relevance of our findings to in vivo conditions remains speculative, but the observed mechanisms of significantly reduced expression of cell-cycle inhibitor proteins may be involved in the carcinogenesis of head and neck malignancies.
Collapse
Affiliation(s)
- Johannes Kornfehl
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, General Hospital, University of Vienna, Austria.
| | | | | | | |
Collapse
|
11
|
Hager G, Formanek M, Gedlicka C, Knerer B, Kornfehl J. Ethanol Decreases Expression of p21 and Increases Hyperphosphorylated pRb in Cell Lines of Squamous Cell Carcinomas of the Head and Neck. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02241.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Crilly KS, Benyhe S, Kiss Z. Promitogenic effects of ethanol, methanol, and ethanolamine in insulin-treated fibroblasts. Biochem Pharmacol 2000; 60:1391-8. [PMID: 11008133 DOI: 10.1016/s0006-2952(00)00456-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The zinc-dependent potentiating effect of ethanol (EtOH) on insulin-stimulated DNA synthesis was studied with a focus on the possible site of EtOH action and the ability of other alcohols to elicit similar promitogenic effects. In serum-starved (27 hr) NIH 3T3 fibroblasts, 200-300 mM methanol (MeOH) and 0.1-1.5 mM ethanolamine (Etn), but not 3- to 9-carbon normal alcohols, enhanced the effect of insulin on DNA synthesis to varying extents. The promitogenic effects of EtOH and MeOH, but not that of Etn, required the presence of 15-25 microM zinc. The potentiating effects of Etn were enhanced by 5 mM choline (Cho) and inhibited by 1-3 mM hemicholinium-3 (HC-3), an inhibitor of Cho transporter and Cho kinase. In the presence of 15 microM zinc, 40 mM EtOH, which had no effect on its own, inhibited the potentiating effects of Cho and enhanced the inhibitory effects of HC-3 on synergistic stimulation of DNA synthesis by Etn and insulin. On the other hand, both Cho and HC-3 partially inhibited the promitogenic effect of 80 mM EtOH in the presence of 25 microM zinc. After a 10-min incubation, EtOH decreased the amount of cell-associated [(14)C]Cho in the absence but not in the presence of HC-3. After a 40-min incubation, Cho (5 mM) partially inhibited the cellular uptake as well as the metabolism of [(14)C]Etn. Whereas after the 40-min incubation 80 mM EtOH had no effects on Etn metabolism, in the absence of Cho it decreased the amount of cell-associated [(14)C]Etn. However, EtOH had no detectable effects on cell association of [(14)C]Etn after the 10-min incubation. The results suggest that in NIH 3T3 fibroblasts EtOH is a remarkably specific promitogen, and that it may act via a cell membrane site(s), also regulated by Cho (agonist) and HC-3 (antagonist), which can influence membrane binding and the promitogenic activity of Etn.
Collapse
Affiliation(s)
- K S Crilly
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | |
Collapse
|
13
|
Crilly KS, Kiss Z. Ethanol has multiple effects on DNA synthesis in fibroblasts depending on the presence of secreted growth regulators and zinc as well as the level of protein kinase C activation. Arch Biochem Biophys 2000; 381:127-34. [PMID: 11019828 DOI: 10.1006/abbi.2000.1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier we showed that in serum-starved (27 h), washed mouse fibroblasts and other cell lines 40-80 mM concentrations of ethanol (EtOH) potentiate, in a zinc (Zn2+)-dependent manner, the combined stimulatory effects of calcium (Ca2+) and insulin (Ins) on DNA synthesis. We now report that the promitogenic EtOH effects require removal of the used medium at least 6 h prior to treatments with EtOH, Zn2+, and Ins. If serum-starved (27 h) cells were continuously incubated for another 18-h period without replacing the medium, a secreted cellular factor moderately enhanced the mitogenic effect of Ins and simultaneously blocked the potentiating effect of EtOH on DNA synthesis measured during the last hour of treatments. However, the presence of Ca2+ (2.8 mM) plus Zn2+ (25 microM) or 25-300 nM phorbol 12-myristate 13-acetate (PMA) during the serum starvation period partially restored the promitogenic effect of EtOH. The PMA effect was blocked by the protein kinase C (PKC) inhibitor GF 109203X added for the second (18 h) period. Even at 300 nM, PMA failed to fully downregulate PKC-alpha, the major PKC isoform, over a 28-h period, suggesting that an activated PKC enzyme was involved in the restoration of EtOH effect. When EtOH (40-80 mM) was added for the entire serum starvation period and the incubations were continued for 18 h without removing the medium, EtOH inhibited both the combined actions of Ins and cellular factor as well as the promoting effect of newly added EtOH on Ins-dependent DNA synthesis. Coaddition of Zn2+ and PMA with EtOH prevented these inhibitory effects of EtOH. The results indicate that in mouse fibroblasts EtOH can both enhance and inhibit Ins-dependent DNA synthesis depending on the timing of EtOH treatment as well as the presence of Zn2+, cellular factors, and activators of the PKC system.
Collapse
Affiliation(s)
- K S Crilly
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | |
Collapse
|