1
|
Kreifeldt M, Okhuarobo A, Dunning JL, Lopez C, Macedo G, Sidhu H, Contet C. Mouse parasubthalamic Crh neurons drive alcohol drinking escalation and behavioral disinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602357. [PMID: 39026704 PMCID: PMC11257461 DOI: 10.1101/2024.07.06.602357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Corticotropin-releasing factor (CRF, encoded by Crh) signaling is thought to play a critical role in the development of excessive alcohol drinking and the emotional and physical pain associated with alcohol withdrawal. Here, we investigated the parasubthalamic nucleus (PSTN) as a potential source of CRF relevant to the control of alcohol consumption, affect, and nociception in mice. We identified PSTN Crh neurons as a neuronal subpopulation that exerts a potent and unique influence on behavior by promoting not only alcohol but also saccharin drinking, while PSTN neurons are otherwise known to suppress consummatory behaviors. Furthermore, PSTN Crh neurons are causally implicated in the escalation of alcohol and saccharin intake produced by chronic intermittent ethanol (CIE) vapor inhalation, a mouse model of alcohol use disorder. In contrast to our predictions, the ability of PSTN Crh neurons to increase alcohol drinking is not mediated by CRF1 signaling. Moreover, the pattern of behavioral disinhibition and reduced nociception driven by their activation does not support a role of negative reinforcement as a motivational basis for the concomitant increase in alcohol drinking. Finally, silencing Crh expression in the PSTN slowed down the escalation of alcohol intake in mice exposed to CIE and accelerated their recovery from withdrawal-induced mechanical hyperalgesia. Altogether, our results suggest that PSTN Crh neurons may represent an important node in the brain circuitry linking alcohol use disorder with sweet liking and novelty seeking.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | | | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Catherine Lopez
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Giovana Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA
| |
Collapse
|
2
|
Duratkar A, Patel R, Jain NS. Neuronal nicotinic acetylcholine receptor of the central amygdala modulates the ethanol-induced tolerance to anxiolysis and withdrawal-induced anxiety in male rats. Behav Pharmacol 2024; 35:132-146. [PMID: 38451025 DOI: 10.1097/fbp.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The nicotine acetylcholinergic receptor (nAchR) in the central nucleus of the amygdala (CeA) is known to modulate anxiety traits as well as ethanol-induced behavioral effects. Therefore, the present study investigated the role of CeA nAChR in the tolerance to ethanol anxiolysis and withdrawal-induced anxiety-related effects in rats on elevated plus maze (EPM). To develop ethanol dependence, rats were given free access to an ethanol-containing liquid diet for 10 days. To assess the development of tolerance, separate groups of rats were challenged with ethanol (2 g/kg, i.p.) on days 1, 3, 5, 7 and 10 during the period of ethanol exposure, followed by an EPM assessment. Moreover, expression of ethanol withdrawal was induced after switching ethanol-dependent rats to a liquid diet on day 11, and withdrawal-induced anxiety-like behavior was noted at different post-withdrawal time points using the EPM test. The ethanol-dependent rats were pretreated with intra-CeA (i.CeA) (bilateral) injections of nicotine (0.25 µg/rat) or mecamylamine (MEC) (5 ng/rat) before the challenge dose of ethanol on subthreshold tolerance on the 5th day or on peak tolerance day, that is, 7th or 10th, and before assessment of postwithdrawal anxiety on the 11th day on EPM. Bilateral i.CeA preadministration of nicotine before the challenge dose of ethanol on days 5, 7 and 10 exhibited enhanced tolerance, while injection of MEC, completely mitigated the tolerance to the ethanol-induced antianxiety effect. On the other hand, ethanol-withdrawn rats pretreated i.CeA with nicotine exacerbated while pretreatment with MEC, alleviated the ethanol withdrawal-induced anxiety on all time points. Thus, the present investigation indicates that stimulation of nAChR in CeA negatively modulates the ethanol-induced chronic behavioral effects on anxiety in rats. It is proposed that nAChR antagonists might be useful in the treatment of alcohol use disorder and ethanol withdrawal-related anxiety-like behavior.
Collapse
Affiliation(s)
- Antariksha Duratkar
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacology, J.L. Chaturvedi College of Pharmacy, Nagpur, Maharashtra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Dewa KI, Arimura N, Kakegawa W, Itoh M, Adachi T, Miyashita S, Inoue YU, Hizawa K, Hori K, Honjoya N, Yagishita H, Taya S, Miyazaki T, Usui C, Tatsumoto S, Tsuzuki A, Uetake H, Sakai K, Yamakawa K, Sasaki T, Nagai J, Kawaguchi Y, Sone M, Inoue T, Go Y, Ichinohe N, Kaibuchi K, Watanabe M, Koizumi S, Yuzaki M, Hoshino M. Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation. Nat Commun 2024; 15:458. [PMID: 38302444 PMCID: PMC10834496 DOI: 10.1038/s41467-023-44579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
In the central nervous system, astrocytes enable appropriate synapse function through glutamate clearance from the synaptic cleft; however, it remains unclear how astrocytic glutamate transporters function at peri-synaptic contact. Here, we report that Down syndrome cell adhesion molecule (DSCAM) in Purkinje cells controls synapse formation and function in the developing cerebellum. Dscam-mutant mice show defects in CF synapse translocation as is observed in loss of function mutations in the astrocytic glutamate transporter GLAST expressed in Bergmann glia. These mice show impaired glutamate clearance and the delocalization of GLAST away from the cleft of parallel fibre (PF) synapse. GLAST complexes with the extracellular domain of DSCAM. Riluzole, as an activator of GLAST-mediated uptake, rescues the proximal impairment in CF synapse formation in Purkinje cell-selective Dscam-deficient mice. DSCAM is required for motor learning, but not gross motor coordination. In conclusion, the intercellular association of synaptic and astrocyte proteins is important for synapse formation and function in neural transmission.
Collapse
Affiliation(s)
- Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan.
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Itoh
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kento Hizawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Haruya Yagishita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Division of Behavioural Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Miyazaki
- Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Chika Usui
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Aichi, 467-8601, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 980-8578, Tohoku, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshiya Kawaguchi
- Department of Life Science Frontiers, Center for iPS cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Saitama, 274-8510, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
- The University of Texas at Austin, Austin, Texas, 78712-0805, USA
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, 187-8502, Japan.
| |
Collapse
|
4
|
Teng PN, Barakat W, Tran SM, Tran ZM, Bateman NW, Conrads KA, Wilson KN, Oliver J, Gist G, Hood BL, Zhou M, Maxwell GL, Leggio L, Conrads TP, Lee MR. Brain proteomic atlas of alcohol use disorder in adult males. Transl Psychiatry 2023; 13:318. [PMID: 37833300 PMCID: PMC10575941 DOI: 10.1038/s41398-023-02605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Alcohol use disorder (AUD) affects transcriptomic, epigenetic and proteomic expression in several organs, including the brain. There has not been a comprehensive analysis of altered protein abundance focusing on the multiple brain regions that undergo neuroadaptations occurring in AUD. We performed a quantitative proteomic analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of human postmortem tissue from brain regions that play key roles in the development and maintenance of AUD, the amygdala (AMG), hippocampus (HIPP), hypothalamus (HYP), nucleus accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental area (VTA). Brain tissues were from adult males with AUD (n = 11) and matched controls (n = 16). Across the two groups, there were >6000 proteins quantified with differential protein abundance in AUD compared to controls in each of the six brain regions. The region with the greatest number of differentially expressed proteins was the AMG, followed by the HYP. Pathways associated with differentially expressed proteins between groups (fold change > 1.5 and LIMMA p < 0.01) were analyzed by Ingenuity Pathway Analysis (IPA). In the AMG, adrenergic, opioid, oxytocin, GABA receptor and cytokine pathways were among the most enriched. In the HYP, dopaminergic signaling pathways were the most enriched. Proteins with differential abundance in AUD highlight potential therapeutic targets such as oxytocin, CSNK1D (PF-670462), GABAB receptor and opioid receptors and may lead to the identification of other potential targets. These results improve our understanding of the molecular alterations of AUD across brain regions that are associated with the development and maintenance of AUD. Proteomic data from this study is publicly available at www.lmdomics.org/AUDBrainProteomeAtlas/ .
Collapse
Affiliation(s)
- Pang-Ning Teng
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Waleed Barakat
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Sophie M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Zoe M Tran
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Nicholas W Bateman
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kelly A Conrads
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katlin N Wilson
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Julie Oliver
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Glenn Gist
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Brian L Hood
- Women's Health Integrated Research Center, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Ming Zhou
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA.
| | - Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Patel R, Agrawal S, Jain NS. Stimulation of dorsal hippocampal histaminergic transmission mitigates the expression of ethanol withdrawal-induced despair in mice. Alcohol 2021; 96:1-14. [PMID: 34228989 DOI: 10.1016/j.alcohol.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Garnered literature points toward the role of the dorsal hippocampus (CA1) in ethanol withdrawal-induced responses, wherein a strong presence of the histaminergic system is also reported. Therefore, the present study investigated the effect of an enhanced CA1 histaminergic transmission on the expression of chronic ethanol withdrawal-induced despair in mice on the tail suspension test (TST). The results revealed that mice who were on an ethanol-fed diet (5.96%, v/v) for 8 days exhibited maximum immobility time on the TST, and decreased locomotion at 24 h post-ethanol withdrawal (10th day), indicating ethanol withdrawal-induced despair. Enhancement of CA1 histaminergic activity achieved by the treatment of intra-CA1 microinjection of histaminergic agents such as histamine (0.1, 10 μg/mouse, bilateral), the histamine precursor l-histidine (1, 10 μg/mouse, bilateral), the histamine neuronal releaser/H3 receptor antagonist thioperamide (2, 10 μg/mouse, bilateral), the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, bilateral), or the H2 receptor agonist amthamine (0.1, 0.5 μg/mouse, bilateral) to ethanol-withdrawn mice, 10 min before the 24-h post-ethanol withdrawal time point, significantly alleviated the expression of ethanol withdrawal-induced despair in mice on the TST. On the other hand, only the pre-treatment of the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, intra-CA1 bilateral) reversed the reduction in locomotor activity induced in ethanol-withdrawn mice, whereas other employed histaminergic agents were devoid of any effect on this behavior. Therefore, our findings indicate that an enhanced CA1 histaminergic transmission, probably via stimulation of CA1 postsynaptic histamine H1 or H2 receptor, could preclude the behavioral despair, while H1 stimulation affects motor deficit expressed after ethanol withdrawal.
Collapse
|
6
|
Khan MI, Nikoui V, Naveed A, Mumtaz F, Zaman H, Haider A, Aman W, Wahab A, Khan SN, Ullah N, Dehpour AR. Antidepressant-like effect of ethanol in mice forced swimming test is mediated via inhibition of NMDA/nitric oxide/cGMP signaling pathway. Alcohol 2021; 92:53-63. [PMID: 33581263 DOI: 10.1016/j.alcohol.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
There is evidence for a dramatic relationship between depression and alcohol consumption. Depressed patients may abuse ethanol because this agent reduces the symptoms of depression. In the current study, we aimed to investigate the NMDA/nitric oxide/cGMP pathway in the antidepressant-like effect of ethanol in an animal model of behavioral despair. Animals were subjected to locomotor activity in an open-field test separately, followed by a forced swimming test. During the forced swimming test (FST), ethanol (2 and 2.5 g/kg) significantly decreased the immobility time without altering the locomotor activity of animals. The antidepressant-like effect of ethanol (2.5 g/kg) was reversed by co-administration of N-methyl-D-aspartate (NMDA, 75 mg/kg), L-arginine (750 mg/kg), or sildenafil (5 mg/kg). In contrast, co-administration of MK-801 (0.05 mg/kg), ketamine (1 mg/kg), and ifenprodil (0.5 mg/kg) as antagonists of NMDAR, and NG-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), 7-nitroindazole (7-NI, 30 mg/kg), and methylene blue (10 mg/kg) as inhibitors of nitric oxide synthase (NOS), or 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) (20 mg/kg), a nitric oxide/cyclic-guanosine monophosphate (NO-cGMP) inhibitor, with a subeffective dose of ethanol (1.5 g/kg), significantly decreased the immobility time in the FST. Furthermore, injection of ethanol 2.5 g/kg alone or 1.5 g/kg with a 7-NI subeffective dose, significantly decreased the nitrite levels in the hippocampus and prefrontal cortex. Hence, it is concluded that blockade of NMDA receptors and the nitric oxide/cyclic-guanosine monophosphate (NO-cGMP) pathway might be involved in the antidepressant-like effect of ethanol in mice.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, G7-Islamabad, Pakistan; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan.
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aamir Naveed
- Department of Psychiatry, PIMS, Islamabad, Pakistan
| | - Faiza Mumtaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Zaman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, 46000, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Najeeb Ullah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KPK, Pakistan
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sun M, Huang P, Wang Y, Chen W. Anticonvulsants lamotrigine and riluzole disrupt maternal behavior in postpartum female rats. Pharmacol Biochem Behav 2018; 168:43-50. [PMID: 29572014 DOI: 10.1016/j.pbb.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022]
Abstract
Maternal behavior is a highly motivated and well-organized social behavior. Previous studies have reported that anticonvulsants are frequently used in postpartum bipolar disorder. However, the maternal disruptive effect of the anticonvulsants has not been explored. The purpose of the present study was to examine the effect of anticonvulsants lamotrigine and riluzole on maternal behavior in postpartum female rats. On postpartum Day 3, Sprague-Dawley mother rats were given a single intraperitoneal injection of vehicle, lamotrigine (15, 25, 35 mg/kg), or riluzole (2, 4, 8 mg/kg). Maternal behavior was tested 30 min before and after injection. Animals treated with lamotrigine or riluzole had a longer pup retrieval latency, retrieved fewer pups into the nest, spent less time on nursing pups, as well as on building the disturbed nest, and animals treated with riluzole spent less time on pup licking. Whereas, the drugs in the tested doses did not shorten the total duration of behavior unrelated to maternal behavior. Overall, these data indicate that lamotrigine and riluzole disrupt major components of maternal behavior in postpartum female rats, but do not inhibit the behaviors unrelated to maternal behavior, which indicates that the maternal disruptive effect is not due to nonspecific sedative effect.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Pan Huang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Kang S, Li J, Bekker A, Ye JH. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 2017; 129:47-56. [PMID: 29128307 DOI: 10.1016/j.neuropharm.2017.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism and psychiatric disorders like depression and anxiety are often comorbid. Although the mechanisms underlying this comorbidity are unclear, emerging evidence suggests that maladaptation of the glial glutamate transporter GLT-1 may play a role. Findings from animal and human studies have linked aversive states, including those related to drugs of abuse and depression, to aberrant activity in the lateral habenula (LHb). The relationship between GLT-1 maladaptation, LHb activity, and abnormal behaviors related to alcohol withdrawal, however, remains unknown. Here we show that dihydrokainic acid (DHK), a GLT-1 blocker, potentiated glutamatergic transmission to LHb neurons in slices from ethanol naïve rats; this potentiation, though, was not observed in slices from rats withdrawn from repeated in vivo ethanol administration, suggesting reduced GLT-1 function. Furthermore, GLT-1 protein expression was reduced in the LHb of withdrawn rats. This reduction was restored by systemic administration of ceftriaxone, a β-lactam antibiotic known to increase GLT-1 expression. Systemic ceftriaxone treatment also normalized the hyperactivity of LHb neurons in slices from withdrawn rats, which was reversed by bath-applied DHK. Finally, systemic administration of ceftriaxone alleviated depression- and anxiety-like behaviors, which was fully blocked by intra-LHb administrations of DHK, suggesting that GLT-1's function in the LHb is critical. These findings highlight the significant role of LHb astrocytic GLT-1 in the hyperactivity of LHb neurons, and in depressive- and anxiety-like behaviors during ethanol withdrawal. Thus, GLT-1 in the LHb could serve as a therapeutic target for psychiatric disorders comorbid with ethanol withdrawal.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
9
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
10
|
Kreiner G, Rafa-Zabłocka K, Chmielarz P, Bagińska M, Nalepa I. Lack of riluzole efficacy in the progression of the neurodegenerative phenotype in a new conditional mouse model of striatal degeneration. PeerJ 2017; 5:e3240. [PMID: 28462043 PMCID: PMC5410142 DOI: 10.7717/peerj.3240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a rare familial autosomal dominant neurodegenerative disorder characterized by progressive degeneration of medium spiny neurons (MSNs) located in the striatum. Currently available treatments of HD are only limited to alleviating symptoms; therefore, high expectations for an effective therapy are associated with potential replacement of lost neurons through stimulation of postnatal neurogenesis. One of the drugs of potential interest for the treatment of HD is riluzole, which may act as a positive modulator of adult neurogenesis, promoting replacement of damaged MSNs. The aim of this study was to evaluate the effects of chronic riluzole treatment on a novel HD-like transgenic mouse model, based on the genetic ablation of the transcription factor TIF-IA. This model is characterized by selective and progressive degeneration of MSNs. METHODS Selective ablation of TIF-IA in MSNs (TIF-IAD1RCre mice) was achieved by Cre-based recombination driven by the dopamine 1 receptor (D1R) promoter in the C57Bl/6N mouse strain. Riluzole was administered for 14 consecutive days (5 mg/kg, i.p.; 1× daily) starting at six weeks of age. Behavioral analysis included a motor coordination test performed on 13-week-old animals on an accelerated rotarod (4-40 r.p.m.; 5 min). To visualize the potential effects of riluzole treatment, the striata of the animals were stained by immunohistochemistry (IHC) and/or immunofluorescence (IF) with Ki67 (marker of proliferating cells), neuronal markers (NeuN, MAP2, DCX), and markers associated with neurodegeneration (GFAP, 8OHdG, FluoroJade C). Additionally, the morphology of dendritic spines of neurons was assessed by a commercially available FD Rapid Golgi Stain™ Kit. RESULTS A comparative analysis of IHC staining patterns with chosen markers for the neurodegeneration process in MSNs did not show an effect of riluzole on delaying the progression of MSN cell death despite an observed enhancement of cell proliferation as visualized by the Ki67 marker. A lack of a riluzole effect was also reflected by the behavioral phenotype associated with MSN degeneration. Moreover, the analysis of dendritic spine morphology did not show differences between mutant and control animals. DISCUSSION Despite the observed increase in newborn cells in the subventricular zone (SVZ) after riluzole administration, our study did not show any differences between riluzole-treated and non-treated mutants, revealing a similar extent of the neurodegenerative phenotype evaluated in 13-week-old TIF-IAD1RCre animals. This could be due to either the treatment paradigm (relatively low dose of riluzole used for this study) or the possibility that the effects were simply too weak to have any functional meaning. Nevertheless, this study is in line with others that question the effectiveness of riluzole in animal models and raise concerns about the utility of this drug due to its rather modest clinical efficacy.
Collapse
Affiliation(s)
- Grzegorz Kreiner
- Institute of Pharmacology, Polish Academy of Sciences, Dept. Brain Biochemistry, Kraków, Poland
| | - Katarzyna Rafa-Zabłocka
- Institute of Pharmacology, Polish Academy of Sciences, Dept. Brain Biochemistry, Kraków, Poland
| | - Piotr Chmielarz
- Institute of Pharmacology, Polish Academy of Sciences, Dept. Brain Biochemistry, Kraków, Poland
| | - Monika Bagińska
- Institute of Pharmacology, Polish Academy of Sciences, Dept. Brain Biochemistry, Kraków, Poland
| | - Irena Nalepa
- Institute of Pharmacology, Polish Academy of Sciences, Dept. Brain Biochemistry, Kraków, Poland
| |
Collapse
|
11
|
Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system. Psychopharmacology (Berl) 2017; 234:447-459. [PMID: 27838747 DOI: 10.1007/s00213-016-4478-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
Abstract
AIM The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). METHODS AND RESULTS Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. CONCLUSIONS Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT1A receptor or contributory role of the 5-HT2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.
Collapse
|
12
|
Verma L, Jain NS. Central histaminergic transmission modulates the ethanol induced anxiolysis in mice. Behav Brain Res 2016; 313:38-52. [DOI: 10.1016/j.bbr.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
|
13
|
Salling MC, Faccidomo SP, Li C, Psilos K, Galunas C, Spanos M, Agoglia AE, Kash TL, Hodge CW. Moderate Alcohol Drinking and the Amygdala Proteome: Identification and Validation of Calcium/Calmodulin Dependent Kinase II and AMPA Receptor Activity as Novel Molecular Mechanisms of the Positive Reinforcing Effects of Alcohol. Biol Psychiatry 2016; 79:430-42. [PMID: 25579851 PMCID: PMC4417085 DOI: 10.1016/j.biopsych.2014.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite worldwide consumption of moderate amounts of alcohol, the neural mechanisms that mediate the transition from use to abuse are not fully understood. METHODS Here, we conducted a high-throughput screen of the amygdala proteome in mice after moderate alcohol drinking (n = 12/group) followed by behavioral studies (n = 6-8/group) to uncover novel molecular mechanisms of the positive reinforcing properties of alcohol that strongly influence the development of addiction. RESULTS Two-dimensional difference in-gel electrophoresis with matrix assisted laser desorption ionization tandem time-of-flight identified 29 differentially expressed proteins in the amygdala of nondependent C57BL/6J mice following 24 days of alcohol drinking. Alcohol-sensitive proteins included calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) and a network of functionally linked proteins that regulate neural plasticity and glutamate-mediated synaptic activity. Accordingly, alcohol drinking increased α-amino-3-hydroxy-5-methyl-4-isooxazole receptor (AMPAR) in central amygdala (CeA) and phosphorylation of AMPAR GluA1 subunit at a CaMKII locus (GluA1-Ser831) in CeA and lateral amygdala. Further, CaMKIIα-Thr286 and GluA1-Ser831 phosphorylation was increased in CeA and lateral amygdala of mice that lever-pressed for alcohol versus the nondrug reinforcer sucrose. Mechanistic studies showed that targeted pharmacologic inhibition of amygdala CaMKII or AMPAR activity specifically inhibited the positive reinforcing properties of alcohol but not sucrose. CONCLUSIONS Moderate alcohol drinking increases the activity and function of plasticity-linked protein networks in the amygdala that regulate the positive reinforcing effects of the drug. Given the prominence of positive reinforcement in the etiology of addiction, we propose that alcohol-induced adaptations in CaMKIIα and AMPAR signaling in the amygdala may serve as a molecular gateway from use to abuse.
Collapse
|
14
|
Orrù A, Fujani D, Cassina C, Conti M, Di Clemente A, Cervo L. Operant, oral alcoholic beer self-administration by C57BL/6J mice: effect of BHF177, a positive allosteric modulator of GABA(B) receptors. Psychopharmacology (Berl) 2012; 222:685-700. [PMID: 22411427 DOI: 10.1007/s00213-012-2672-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/14/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE With its high palatability, near-beer has been successfully used in rats as a vehicle to induce ethanol oral self-administration. OBJECTIVES The study aimed to develop an operant model of oral alcoholic beer self-administration promoting a stable intake of pharmacologically relevant amounts of ethanol in free-feeding C57BL/6J mice. It also aimed to assess the model's predictive validity by evaluating the influence of baclofen, a GABA(B) agonist, and BHF177, a GABA(B) positive allosteric modulator, on alcoholic beer self-administration. METHODS Mice were trained to self-administer, under a fixed ratio three schedule of reinforcement, 10 μl of beer containing increasing ethanol concentrations (0-18% v/v) in daily 30-min sessions. The effects on motor coordination (rotarod), locomotor activity (open field, automated cages) and anxiety-like behavior (elevated plus maze, EPM) were examined. Baclofen (1.25-5 mg/kg, intraperitoneal, i.p.) and BHF177 (3.75-30 mg/kg, i.p.) were used to see the effects on 9% alcoholic beer and near-beer self-administration. RESULTS Near-beer stably maintained operant oral self-administration in mice. Adding ethanol to near-beer reduced the number of active lever presses, while the corresponding amount of ethanol self-administration increased (0.8-1.0 g/kg/session). Motor impairment was observed when more than 1.3 g/kg/session of ethanol was self-administered with beer and slight but consistent hyperlocomotion with more than 0.9-1.0 g/kg/session. BHF177 (15 mg/kg) preferentially reduced 9% alcoholic beer self-administration, while the higher dose (30 mg/kg)-like baclofen 5 mg/kg-also reduced near-beer self-administration. CONCLUSIONS The operant model of oral alcoholic beer self-administration in C57BL/6J mice should prove useful for studying ethanol-reinforced behaviors and to identify candidate compounds for the pharmacological management of alcohol addiction.
Collapse
Affiliation(s)
- Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience, "Mario Negri" Institute for Pharmacological Research, Via La Masa 19, 20156 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
16
|
Kotlinska JH, Bochenski M, Danysz W. The role of group I mGlu receptors in the expression of ethanol-induced conditioned place preference and ethanol withdrawal seizures in rats. Eur J Pharmacol 2011; 670:154-61. [DOI: 10.1016/j.ejphar.2011.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 09/02/2011] [Accepted: 09/11/2011] [Indexed: 11/27/2022]
|
17
|
Webster YW, Dow ER, Koehler J, Gudivada RC, Palakal MJ. Leveraging health social networking communities in translational research. J Biomed Inform 2011; 44:536-44. [PMID: 21284958 DOI: 10.1016/j.jbi.2011.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 12/17/2010] [Accepted: 01/25/2011] [Indexed: 01/19/2023]
Abstract
Health social networking communities are emerging resources for translational research. We have designed and implemented a framework called HyGen, which combines Semantic Web technologies, graph algorithms and user profiling to discover and prioritize novel associations across disciplines. This manuscript focuses on the key strategies developed to overcome the challenges in handling patient-generated content in Health social networking communities. Heuristic and quantitative evaluations were carried out in colorectal cancer. The results demonstrate the potential of our approach to bridge silos and to identify hidden links among clinical observations, drugs, genes and diseases. In Amyotrophic Lateral Sclerosis case studies, HyGen has identified 15 of the 20 published disease genes. Additionally, HyGen has highlighted new candidates for future investigations, as well as a scientifically meaningful connection between riluzole and alcohol abuse.
Collapse
Affiliation(s)
- Yue W Webster
- School of Informatics, Indiana University Purdue University, IN, USA.
| | | | | | | | | |
Collapse
|
18
|
Bhutada P, Mundhada Y, Bansod K, Hiware R, Rathod S, Dixit P, Mundhada D. Berberine protects C57BL/6J mice against ethanol withdrawal-induced hyperexcitability. Phytother Res 2010; 25:302-7. [PMID: 20734325 DOI: 10.1002/ptr.3272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/27/2010] [Accepted: 06/16/2010] [Indexed: 11/07/2022]
Abstract
Berberine ([C20H18NO4](+) ), one of the major constituents of the Chinese herb Rhizoma coptidis, is an isoquinoline alkaloid. Plethora of recent reports has indicated its ability to modulate several neurotransmitter systems, especially those implicated in ethanol dependence. Thus, the influence of berberine treatment on the development and expression of ethanol dependence was tested by using the ethanol withdrawal-induced hyperexcitability paradigm. Mice were provided with a nutritionally balanced control liquid diet as the sole nutrient source on day 0; from day 1-4 (ethanol, 3% v/v), from day 5-7 (ethanol, 6% v/v) and from day 8-10 (ethanol, 10% v/v) was incorporated into the liquid diet. On day 11, the ethanol liquid diet was replaced with nutritionally balanced control liquid diet, and ethanol withdrawal-induced hyperexcitability signs were recorded. The results revealed that acute administration of berberine (10 and 20 mg/kg, i.p.) dose-dependently attenuated ethanol withdrawal-induced hyperexcitability signs, and these results were comparable to diazepam (1.25 and 2.5 mg/kg, i.p.). Further, chronic administration of berberine (10 and 20 mg/kg, i.p.) to the ethanol diet fed mice markedly attenuated the ethanol withdrawal-induced hyperexcitability signs. In conclusion, the results and evidence suggest that berberine exhibited an inhibitory influence against ethanol withdrawal-induced hyperexcitability signs, which could be mediated through its neuromodulatory action.
Collapse
Affiliation(s)
- Pravinkumar Bhutada
- Agnihotri College of Pharmacy, Pharmacology Division, Bapuji Wadi, Sindhi (Meghe), Wardha 442 001, Maharashtra, India.
| | | | | | | | | | | | | |
Collapse
|
19
|
Inhibitory influence of mecamylamine on ethanol withdrawal-induced symptoms in C57BL/6J mice. Behav Pharmacol 2010; 21:90-5. [PMID: 20168214 DOI: 10.1097/fbp.0b013e328337be54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several reports show the involvement of neuronal nicotinic acetylcholine receptors (nAChRs) in the behavioral effects of ethanol, including ethanol drinking and relapse. Therefore, this study evaluated the effects of mecamylamine, a nAChR antagonist, on ethanol withdrawal signs. Ethanol dependence was induced in C57BL/6J mice by ethanol liquid diet administration. Animals were provided with nutritionally balanced control liquid diet (600 kcal/l) as their sole nutrient source on day 0; from days 1 to 4, 3% v/v of ethanol, followed by 6% v/v of ethanol (from days 5 to 7), and 10% v/v of ethanol (from days 8 to 10) were incorporated into the liquid diet. On day 11, ethanol liquid diet was replaced with nutritionally balanced control liquid diet, and ethanol withdrawal-induced physical signs were recorded. Results showed that acute administration of mecamylamine (1-4 mg/kg, intraperitoneally) dose-dependently attenuated ethanol withdrawal-induced signs, and these effects were comparable with those of diazepam (1-2 mg/kg, intraperitoneally). In addition, chronic administration of mecamylamine into ethanol diet-fed mice markedly attenuated the ethanol withdrawal sign scores, thus supporting the contention that nAChR is involved in ethanol dependence. In conclusion, our results suggest that mecamylamine exhibited inhibitory effects on ethanol withdrawal signs which could be mediated through nAChR.
Collapse
|