1
|
Alhakamy NA, Curiel DT, Berkland CJ. The era of gene therapy: From preclinical development to clinical application. Drug Discov Today 2021; 26:1602-1619. [PMID: 33781953 DOI: 10.1016/j.drudis.2021.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Three decades of promise have culminated in the development of gene therapies that can be applied to a broad range of human diseases. After a brief history, we provide an overview of gene therapy types and delivery methods, gene editing technologies, regulatory affairs, clinical trials, approved products, ongoing challenges, and future goals. Information on clinical trials of candidates and on approved products for gene therapy developed between 1988 and 2020 is systematically collated. To obtain this global information, we scanned and reviewed more than 46,000 records of clinical trials from 17 clinical trial database providers. The medical benefits of transformative gene therapies are gradually being accepted by payors, and a significant increase in the number of gene therapy clinical trials and approved gene therapy products has resulted.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David T Curiel
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63108, USA
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
2
|
Ding MH, Lozoya EG, Rico RN, Chew SA. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng Part A 2020; 26:1283-1302. [PMID: 32762306 DOI: 10.1089/ten.tea.2020.0170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is an important process in tissue repair and regeneration as blood vessels are integral to supply nutrients to a functioning tissue. In this review, the application of microRNAs (miRNAs) or anti-miRNAs that can induce angiogenesis to aid in blood vessel formation for vascular tissue engineering in ischemic diseases such as peripheral arterial disease and stroke, cardiac diseases, and skin and bone tissue engineering is discussed. Endothelial cells (ECs) form the endothelium of the blood vessel and are recognized as the primary cell type that drives angiogenesis and studied in the applications that were reviewed. Besides ECs, mesenchymal stem cells can also play a pivotal role in these applications, specifically, by secreting growth factors or cytokines for paracrine signaling and/or as constituent cells in the new blood vessel formed. In addition to delivering miRNAs or cells transfected/transduced with miRNAs for angiogenesis and vascular tissue engineering, the utilization of extracellular vesicles (EVs), such as exosomes, microvesicles, and EVs collectively, has been more recently explored. Proangiogenic miRNAs and anti-miRNAs contribute to angiogenesis by targeting the 3'-untranslated region of targets to upregulate proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor, and hypoxia-inducible factor-1 and increase the transduction of VEGF signaling through the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways such as phosphatase and tensin homolog or regulating the signaling of other pathways important for angiogenesis such as the Notch signaling pathway and the pathway to produce nitric oxide. In conclusion, angiogenesis-inducing miRNAs and anti-miRNAs are promising tools for vascular tissue engineering for several applications; however, future work should emphasize optimizing the delivery and usage of these therapies as miRNAs can also be associated with the negative implications of cancer.
Collapse
Affiliation(s)
- May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Eloy G Lozoya
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Rene N Rico
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
3
|
Marshall KM, Kanczler JM, Oreffo ROC. Evolving applications of the egg: chorioallantoic membrane assay and ex vivo organotypic culture of materials for bone tissue engineering. J Tissue Eng 2020; 11:2041731420942734. [PMID: 33194169 PMCID: PMC7594486 DOI: 10.1177/2041731420942734] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
The chick chorioallantoic membrane model has been around for over a century, applied in angiogenic, oncology, dental and xenograft research. Despite its often perceived archaic, redolent history, the chorioallantoic membrane assay offers new and exciting opportunities for material and growth factor evaluation in bone tissue engineering. Currently, superior/improved experimental methodology for the chorioallantoic membrane assay are difficult to identify, given an absence of scientific consensus in defining experimental approaches, including timing of inoculation with materials and the analysis of results. In addition, critically, regulatory and welfare issues impact upon experimental designs. Given such disparate points, this review details recent research using the ex vivo chorioallantoic membrane assay and the ex vivo organotypic culture to advance the field of bone tissue engineering, and highlights potential areas of improvement for their application based on recent developments within our group and the tissue engineering field.
Collapse
Affiliation(s)
- Karen M Marshall
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Richard OC Oreffo
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| |
Collapse
|
4
|
McMillan A, Nguyen MK, Gonzalez-Fernandez T, Ge P, Yu X, Murphy WL, Kelly DJ, Alsberg E. Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials 2018; 161:240-255. [PMID: 29421560 PMCID: PMC5826638 DOI: 10.1016/j.biomaterials.2018.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 01/03/2023]
Abstract
High-density mesenchymal stem cell (MSC) aggregates can be guided to form bone-like tissue via endochondral ossification in vitro when culture media is supplemented with proteins, such as growth factors (GFs), to first guide the formation of a cartilage template, followed by culture with hypertrophic factors. Recent reports have recapitulated these results through the controlled spatiotemporal delivery of chondrogenic transforming growth factor-β1 (TGF-β1) and chondrogenic and osteogenic bone morphogenetic protein-2 (BMP-2) from microparticles embedded within human MSC aggregates to avoid diffusion limitations and the lengthy, costly in vitro culture necessary with repeat exogenous supplementation. However, since GFs have limited stability, localized gene delivery is a promising alternative to the use of proteins. Here, mineral-coated hydroxyapatite microparticles (MCM) capable of localized delivery of Lipofectamine-plasmid DNA (pDNA) nanocomplexes encoding for TGF-β1 (pTGF-β1) and BMP-2 (pBMP-2) were incorporated, alone or in combination, within MSC aggregates from three healthy porcine donors to induce sustained production of these transgenes. Three donor populations were investigated in this work due to the noted MSC donor-to-donor variability in differentiation capacity documented in the literature. Delivery of pBMP-2 within Donor 1 aggregates promoted chondrogenesis at week 2, followed by an enhanced osteogenic phenotype at week 4. Donor 2 and 3 aggregates did not promote robust glycosaminoglycan (GAG) production at week 2, but by week 4, Donor 2 aggregates with pTGF-β1/pBMP-2 and Donor 3 aggregates with both unloaded MCM and pBMP-2 enhanced osteogenesis compared to controls. These results demonstrate the ability to promote osteogenesis in stem cell aggregates through controlled, non-viral gene delivery within the cell masses. These findings also indicate the need to screen donor MSC regenerative potential in response to gene transfer prior to clinical application. Taken together, this work demonstrates a promising gene therapy approach to control stem cell fate in biomimetic 3D condensations for treatment of bone defects.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Pathology Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Tomas Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Peilin Ge
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBERG), Trinity College Dublin and Royal College of Surgeons in Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Dublin, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; The National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA; School of Dentistry, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
5
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
6
|
Chew SA, Danti S. Biomaterial-Based Implantable Devices for Cancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 27886461 DOI: 10.1002/adhm.201600766] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Indexed: 11/10/2022]
Abstract
This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications.
Collapse
Affiliation(s)
- Sue Anne Chew
- University of Texas Rio Grande Valley; Department of Health and Biomedical Sciences; One West University Blvd; Brownsville TX 78520 USA
| | - Serena Danti
- University of Pisa; Department of Civil and Industrial Engineering; Largo L. Lazzarino 2 56122 Pisa Italy
| |
Collapse
|
7
|
Bayer EA, Fedorchak MV, Little SR. The Influence of Platelet-Derived Growth Factor and Bone Morphogenetic Protein Presentation on Tubule Organization by Human Umbilical Vascular Endothelial Cells and Human Mesenchymal Stem Cells in Coculture. Tissue Eng Part A 2016; 22:1296-1304. [PMID: 27650131 PMCID: PMC5107722 DOI: 10.1089/ten.tea.2016.0163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
A three-dimensional in vitro Matrigel plug was used as a model to explore delivery patterns of platelet-derived growth factor (PDGF) and bone morphogenetic protein-2 (BMP-2) to a coculture of human mesenchymal and endothelial cells. While BMP-2 is well recognized for its role in promoting fracture healing through proliferation and differentiation of osteoclast precursors, it is not a growth factor known to promote the process of angiogenesis, which is also critical for complete bone tissue repair. PDGF, in contrast, is a known regulator of angiogenesis, and also a powerful chemoattractant for osteoblast precursor cells. It has been suggested that presentation of PDGF followed by BMP may better promote vascularized bone tissue formation. Yet, it is unclear as to how cells would respond to various durations of delivery of each growth factor as well as to various amounts of overlap in presentation in terms of angiogenesis. Using a three-dimensional in vitro Matrigel plug model, we observed how various presentation schedules of PDGF and BMP-2 influenced tubule formation by human mesenchymal stem cells and human umbilical vascular endothelial cells. We observed that sequential presentation of PDGF to BMP-2 led to increased tubule formation over simultaneous delivery of these growth factors. Importantly, a 2-4 day overlap in the sequential presentation of PDGF and BMP-2 increased tubule formation as compared with groups with zero or complete growth factor overlap, suggesting that a moderate amount of angiogenic and osteogenic growth factor overlap may be beneficial for processes associated with angiogenesis.
Collapse
Affiliation(s)
- Emily A. Bayer
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Morgan V. Fedorchak
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Ophthalmology, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven R. Little
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- The McGowan Institute for Regenerative Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Immunology, The University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmaceutical Sciences, The University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Kim YH, Tabata Y. Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 2015; 94:28-40. [PMID: 26079284 DOI: 10.1016/j.addr.2015.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials.
Collapse
|
9
|
Loozen LD, van der Helm YJ, Öner FC, Dhert WJ, Kruyt MC, Alblas J. Bone Morphogenetic Protein-2 Nonviral Gene Therapy in a Goat Iliac Crest Model for Bone Formation. Tissue Eng Part A 2015; 21:1672-9. [DOI: 10.1089/ten.tea.2014.0593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Loek D. Loozen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Wegman F, van der Helm Y, Öner FC, Dhert WJ, Alblas J. Bone Morphogenetic Protein-2 Plasmid DNA as a Substitute for Bone Morphogenetic Protein-2 Protein in Bone Tissue Engineering. Tissue Eng Part A 2013; 19:2686-92. [DOI: 10.1089/ten.tea.2012.0569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fiona Wegman
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yvonne van der Helm
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wegman F, Oner FC, Dhert WJA, Alblas J. Non-viral gene therapy for bone tissue engineering. Biotechnol Genet Eng Rev 2013; 29:206-20. [PMID: 24568281 DOI: 10.1080/02648725.2013.801227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.
Collapse
Affiliation(s)
- Fiona Wegman
- a Department of Orthopaedics , UMC Utrecht , Utrecht , The Netherlands
| | | | | | | |
Collapse
|
12
|
Bai X, Zhang X. Adenovirus-Mediated VEGF Gene Therapy to Improve Bone Healing: A Comparison of in vivo and ex vivo Approaches. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Cho K, Kim J, Kim M, Kang S, Kim G, Choi S. Scintigraphic Evaluation of Osseointegrative Response around Calcium Phosphate-Coated Titanium Implants in Tibia Bone: Effect of Platelet-Rich Plasma on Bone Healing in Dogs. Eur Surg Res 2013; 51:138-45. [DOI: 10.1159/000357197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
|
14
|
Kim TH, Kim M, Eltohamy M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 2012. [PMID: 23184619 DOI: 10.1002/jbm.a.34466] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the ability of aminated mesoporous silica nanoparticles (MSN-NH2) with large mesopore space and positive-charged surface to deliver genes within rat mesenchymal stem cells (MSCs). The amine functionalized inorganic nanoparticles were complexed with bone morphogenetic protein-2 (BMP2) plasmid DNA (pDNA) to study their transfection efficiency in MSCs. Intracellular uptake of the complex BMP2 pDNA/MSN-NH2 occurred significantly, with a transfection efficiency of approximately 68%. Furthermore, over 66% of the transfected cells produced BMP2 protein. The osteogenic differentiation of the transfected MSCs was demonstrated by the expression of bone-related genes and proteins including bone sialoprotein, osteopontin, and osteocalcin. The MSN-NH2 delivery vehicle for BMP2 pDNA developed in this study may be a potential gene delivery system for bone tissue regeneration.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Wegman F, Geuze RE, van der Helm YJ, Cumhur Öner F, Dhert WJA, Alblas J. Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J Tissue Eng Regen Med 2012; 8:763-70. [PMID: 22888035 DOI: 10.1002/term.1571] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 04/12/2012] [Accepted: 06/12/2012] [Indexed: 11/06/2022]
Abstract
In the field of bone regeneration, BMP-2 is considered one of the most important growth factors because of its strong osteogenic activity, and is therefore extensively used in clinical practice. However, the short half-life of BMP-2 protein necessitates the use of supraphysiological doses, leading to severe side-effects. This study investigated the efficiency of bone formation at ectopic and orthotopic sites as a result of a low-cost, prolonged presence of BMP-2 in a large animal model. Constructs consisting of alginate hydrogel and BMP-2 cDNA, together acting as a non-viral gene-activated matrix, were combined with goat multipotent stromal cells (gMSCs) and implanted in spinal cassettes or, together with ceramic granules, intramuscularly in goats, both for 16 weeks. Bone formation occurred in all cell-seeded ectopic constructs, but the constructs containing both gMSCs and BMP-2 plasmid DNA showed higher collagen I and bone levels, indicating an osteogenic effect of the BMP-2 plasmid DNA. This was not seen in unseeded constructs, even though transfected, BMP-2-producing cells were detected in all constructs containing plasmid DNA. Orthotopic constructs showed mainly bone formation in the unseeded groups. Besides bone, calcified alginate was present in these groups, acting as a surface for new bone formation. In conclusion, transfection of seeded or resident cells from this DNA delivery system led to stable expression of BMP-2 during 16 weeks, and promoted osteogenic differentiation and subsequent bone formation in cell-seeded constructs at an ectopic location and in cell-free constructs at an orthotopic location in a large animal model.
Collapse
Affiliation(s)
- Fiona Wegman
- Department of Orthopaedics, University Medical Centre Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Jiang QH, Liu L, Shen JW, Peel S, Yang GL, Zhao SF, He FM. Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface. J Biomed Mater Res A 2012; 100:2766-74. [DOI: 10.1002/jbm.a.34213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/25/2012] [Accepted: 04/03/2012] [Indexed: 01/31/2023]
|
17
|
Yang X, Han G, Pang X, Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A 2012; 108:2519-2526. [PMID: 22345091 DOI: 10.1002/jbm.a.34064] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 01/08/2023]
Abstract
In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with the plasmid vector encoding human bone morphogenetic protein-7 (BMP-7) gene. To investigate the feasibility and efficacy of this gene-activated scaffold on dental tissue engineering, human dental pulp stem cells (DPSCs) were seeded in this scaffold for in vitro and in vivo study. In vitro results indicated that cells can be transfected successfully by loaded plasmid and secrete BMP-7 until day 24. Evaluation of DNA content, ALP activity, calcium content, SEM, and real-time PCR revealed that cells on gene-activated scaffold showed better proliferation properties and odontoblastic differentiation behaviors than cells on pure scaffolds. Then, these cell-scaffold complexes were implanted subcutaneously and retrieved after 4 weeks for histology evaluation. In vivo results that gene-activated scaffold group could still trace the existence of tranfected cells at week 4 and showed the upregulated expression of DSPP compared to pure scaffold groups. On the basis of our results, chitosan/collagen-loaded BMP-7 DNA appears to be an effective substrate candidate for gene delivery and indeed enhanced DPSCs differentiation toward an odontoblast-like phenotype in vitro and in vivo. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2012.
Collapse
Affiliation(s)
- Xuechao Yang
- Key Lab for Oral Biomedicine of Ministry of Education and Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Guangli Han
- Key Lab for Oral Biomedicine of Ministry of Education and Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Xin Pang
- Key Lab for Oral Biomedicine of Ministry of Education and Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, People's Republic of China
| | - Mingwen Fan
- Key Lab for Oral Biomedicine of Ministry of Education and Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
18
|
Bae JH, Song HR, Kim HJ, Lim HC, Park JH, Liu Y, Teoh SH. Discontinuous release of bone morphogenetic protein-2 loaded within interconnected pores of honeycomb-like polycaprolactone scaffold promotes bone healing in a large bone defect of rabbit ulna. Tissue Eng Part A 2011; 17:2389-97. [PMID: 21682591 DOI: 10.1089/ten.tea.2011.0032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The choice of an appropriate carrier and its microarchitectural design is integral in directing bone ingrowth into the defect site and determining its subsequent rate of bone formation and remodeling. We have selected a three-dimensional polycaprolactone (PCL) scaffold with an interconnected honeycomb-like porous structure to provide a conduit for vasculature ingrowth as well as an osteoconductive pathway to guide recruited cells responding to a unique triphasic release of osteoinductive bone morphogenetic proteins (BMP) from these PCL scaffolds. We hypothesize that the use of recombinant human bone morphogenetic protein 2 (rhBMP2)-PCL constructs promotes rapid union and bone regeneration of a large defect. Results of our pilot study on a unilateral 15 mm mid-diaphyseal segmental rabbit ulna defect demonstrated enhanced bone healing with greater amount of bone formation and bridging under plain radiography and microcomputed tomography imaging when compared with an empty PCL and untreated group after 8 weeks postimplantation. Quantitative measurements showed significantly higher bone volume fraction and trabecular thickness, with lower trabecular separation in the rhBMP2-treated groups. Histology evaluation also revealed greater mature bone formation spanning across the entire scaffold region compared with other groups, which showed no bone regeneration within the central defect zone. We highlight that it is the uniqueness of the scaffold having a highly porous network of channels that promoted vascular integration and allowed for cellular infiltration, leading to a discontinuous triphasic BMP2 release profile that mimicked the release profile during natural repair mechanisms in vivo. This study serves as preclinical evidence demonstrating the potential of combining osteoinductive rhBMP2 with our PCL constructs for the repair of large defects in a large animal model.
Collapse
Affiliation(s)
- Ji-Hoon Bae
- Department of Orthopaedic Surgery, Korea University Ansan Hospital, Ansan Si, Gyeonggi Do, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Abdelmagid SM, Barbe MF, Hadjiargyrou M, Owen TA, Razmpour R, Rehman S, Popoff SN, Safadi FF. Temporal and spatial expression of osteoactivin during fracture repair. J Cell Biochem 2011; 111:295-309. [PMID: 20506259 DOI: 10.1002/jcb.22702] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post-fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively. Using a rat fracture model, Northern blot analysis showed that expression of OA mRNA was significantly higher in day-3 and day-10 PF calluses than in intact rat femurs. Using in situ hybridization, we examined OA mRNA expression during fracture healing and found that OA was temporally regulated, with positive signals seen as early as day-3 PF, reaching a maximal intensity at day-10 PF, and finally declining at day-21 PF. At day-5 PF, which correlates with chondrogenesis, OA mRNA levels were significantly higher in the soft callus than in intact femurs. Similarly, we detected high OA protein immunoexpression throughout the reparative phase of the hard callus compared to intact femurs. Interestingly, the secreted OA protein was also detected within the newly made cartilage matrix and osteoid tissue. Taken together, these results suggest the possibility that OA plays an important role in bone formation and serves as a positive regulator of fracture healing.
Collapse
Affiliation(s)
- Samir M Abdelmagid
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Geris L, Schugart R, Van Oosterwyck H. In silico design of treatment strategies in wound healing and bone fracture healing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2683-2706. [PMID: 20439269 DOI: 10.1098/rsta.2010.0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Wound and bone fracture healing are natural repair processes initiated by trauma. Over the last decade, many mathematical models have been established to investigate the healing processes in silico, in addition to ongoing experimental work. In recent days, the focus of the mathematical models has shifted from simulation of the healing process towards simulation of the impaired healing process and the in silico design of treatment strategies. This review describes the most important causes of failure of the wound and bone fracture healing processes and the experimental models and methods used to investigate and treat these impaired healing cases. Furthermore, the mathematical models that are described address these impaired healing cases and investigate various therapeutic scenarios in silico. Examples are provided to illustrate the potential of these in silico experiments. Finally, limitations of the models and the need for and ability of these models to capture patient specificity and variability are discussed.
Collapse
Affiliation(s)
- L Geris
- Division of Biomechanics and Engineering Design, Department of Mechanical Engineering, Katholieke Universiteit Leuven, , Celestijnenlaan 300C (2419), 3001 Leuven, Belgium.
| | | | | |
Collapse
|
21
|
Geris L, Sloten JV, Van Oosterwyck H. Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 2010; 9:713-24. [PMID: 20333537 DOI: 10.1007/s10237-010-0208-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Both mechanical and biological factors play an important role in normal as well as impaired fracture healing. This study aims to provide a mathematical framework in which both regulatory mechanisms are included. Mechanics and biology are coupled by making certain parameters of a previously established bioregulatory model dependent on local mechanical stimuli. To illustrate the potential added value of such a framework, this coupled model was applied to investigate whether local mechanical stimuli influencing only the angiogenic process can explain normal healing as well as overload-induced nonunion development. Simulation results showed that mechanics acting directly on angiogenesis alone was not able to predict the formation of overload-induced nonunions. However, the direct action of mechanics on both angiogenesis and osteogenesis was able to predict overload-induced nonunion formation, confirming the hypotheses of several experimental studies investigating the interconnection between angiogenesis and osteogenesis. This study shows that mathematical models can assist in testing hypothesis on the nature of the interaction between biology and mechanics.
Collapse
Affiliation(s)
- L Geris
- Division of Biomechanics and Engineering Design, K.U. Leuven, Celestijnenlaan 300C (2419), 3001, Leuven, Belgium.
| | | | | |
Collapse
|
22
|
Zhang F, Yao Y, Hao J, Zhou R, Liu C, Gong Y, Wang DA. A dual-functioning adenoviral vector encoding both transforming growth factor-β3 and shRNA silencing type I collagen: Construction and controlled release for chondrogenesis. J Control Release 2010; 142:70-7. [DOI: 10.1016/j.jconrel.2009.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 11/26/2022]
|
23
|
Chang PC, Cirelli JA, Jin Q, Seol YJ, Sugai JV, D'Silva NJ, Danciu TE, Chandler LA, Sosnowski BA, Giannobile WV. Adenovirus encoding human platelet-derived growth factor-B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 2010; 20:486-96. [PMID: 19199824 DOI: 10.1089/hum.2008.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Platelet-derived growth factor (PDGF) gene therapy offers promise for tissue engineering of tooth-supporting alveolar bone defects. To date, limited information exists regarding the safety profile and systemic biodistribution of PDGF gene therapy vectors when delivered locally to periodontal osseous defects. The aim of this preclinical study was to determine the safety profile of adenovirus encoding the PDGF-B gene (AdPDGF-B) delivered in a collagen matrix to periodontal lesions. Standardized alveolar bone defects were created in rats, followed by delivery of matrix alone or containing AdPDGF-B at 5.5 x 10(8) or 5.5 x 10(9) plaque-forming units/ml. The regenerative response was confirmed histologically. Gross clinical observations, hematology, and blood chemistries were monitored to evaluate systemic involvement. Bioluminescence and quantitative polymerase chain reaction were used to assess vector biodistribution. No significant histopathological changes were noted during the investigation. Minor alterations in specific hematological and blood chemistries were seen; however, most parameters were within the normal range for all groups. Bioluminescence analysis revealed vector distribution at the axillary lymph nodes during the first 2 weeks with subsequent return to baseline levels. AdPDGF-B was well contained within the localized osseous defect area without viremia or distant organ involvement. These results indicate that AdPDGF-B delivered in a collagen matrix exhibits acceptable safety profiles for possible use in human clinical studies.
Collapse
Affiliation(s)
- Po-Chun Chang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 2009; 6:851-64. [DOI: 10.1517/17425240903044935] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Geris L, Vander Sloten J, Van Oosterwyck H. In silico biology of bone modelling and remodelling: regeneration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:2031-2053. [PMID: 19380324 DOI: 10.1098/rsta.2008.0293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bone regeneration is the process whereby bone is able to (scarlessly) repair itself from trauma, such as fractures or implant placement. Despite extensive experimental research, many of the mechanisms involved still remain to be elucidated. Over the last decade, many mathematical models have been established to investigate the regeneration process in silico. The first models considered only the influence of the mechanical environment as a regulator of the healing process. These models were followed by the development of bioregulatory models where mechanics was neglected and regeneration was regulated only by biological stimuli such as growth factors. The most recent mathematical models couple the influences of both biological and mechanical stimuli. Examples are given to illustrate the added value of mathematical regeneration research, specifically in the in silico design of treatment strategies for non-unions. Drawbacks of the current continuum-type models, together with possible solutions in extending the models towards other time and length scales are discussed. Finally, the demands for dedicated and more quantitative experimental research are presented.
Collapse
Affiliation(s)
- L Geris
- Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300C, PB 2419, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
26
|
Jean M, Smaoui F, Lavertu M, Méthot S, Bouhdoud L, Buschmann MD, Merzouki A. Chitosan–plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther 2009; 16:1097-110. [DOI: 10.1038/gt.2009.60] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Matsubara H, Tsuchiya H, Watanabe K, Takeuchi A, Tomita K. Percutaneous nonviral delivery of hepatocyte growth factor in an osteotomy gap promotes bone repair in rabbits: a preliminary study. Clin Orthop Relat Res 2008; 466:2962-72. [PMID: 18813894 PMCID: PMC2628245 DOI: 10.1007/s11999-008-0493-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 08/19/2008] [Indexed: 01/31/2023]
Abstract
Hepatocyte growth factor (HGF) was initially identified in cultured hepatocytes and subsequently reported to induce angiogenic, morphogenic, and antiapoptotic activity in various tissues. These properties suggest a potential influence of HGF on bone healing. We asked if gene transfer of human HGF (hHGF) into an osteotomy gap with a hemagglutinating virus of Japan-envelope (HVJ-E) vector promotes bone healing in rabbits. HVJ-E that contained either hHGF or control plasmid was percutaneously injected into the osteotomy gap of rabbit tibias on Day 14. The osteotomy gap was evaluated by radiography, pQCT, mechanical tests, and histology at Week 8. The expression of hHGF was evaluated by reverse transcriptase-polymerase chain reaction and immunohistochemistry at Week 3. Radiography, pQCT, and histology suggested the hHGF group had faster fracture healing. Mechanical tests demonstrated the hHGF group had greater mechanical strength. The injected tissues at 3 weeks expressed hHGF mRNA by reverse transcriptase-polymerase chain reaction. hHGF-positive immunohistochemical staining was observed in various cells at the osteotomy gap at Week 3. The data suggest delivery of hHGF plasmid into the osteotomy gap promotes fracture repair, and HGF could become a novel agent for fracture treatment.
Collapse
Affiliation(s)
- Hidenori Matsubara
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Koji Watanabe
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Katsuro Tomita
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
28
|
Abstract
Nanotechnology has been increasingly utilized to enhance bone tissue engineering strategies. In particular, nanotechnology has been employed to overcome some of the current limitations associated with bone regeneration methods including insufficient mechanical strength of scaffold materials, ineffective cell growth and osteogenic differentiation at the defect site, as well as unstable and insufficient production of growth factors to stimulate bone cell growth. Among the tremendous technologies of nanoparticles in biological systems, we focus here on the three major nanoparticle research areas that have been developed to overcome these limitations and disadvantages: (a) the generation of nanoparticle-composite scaffolds to provide increased mechanical strength for bone graft, (b) the fabrication of nanofibrous scaffolds to support cell growth and differentiation through morphologically-favored architectures, and (c) the development of novel delivery and targeting systems of genetic material, especially those encoding osteogenic growth factors. These nanoparticle-based bone tissue engineering technologies possess a great potential to ensure the efficacy of clinical bone regeneration.
Collapse
Affiliation(s)
- Kyobum Kim
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
29
|
Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008; 85:573-82. [PMID: 17937408 DOI: 10.1002/jbm.b.30962] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over the last decade, bone engineered tissues have been developed as alternatives to autografts and allografts to repair and reconstruct bone defects. This article provides a review of the current technologies in bone tissue engineering. Factors used for fabrication of three-dimensional bone scaffolds such as materials, cells, and biomolecular signals, as well as required properties for ideal bone scaffolds, are reviewed. In addition, current fabrication techniques including rapid prototyping are elaborated upon. Finally, this review article further discusses some effective strategies to enhance cell ingrowth in bone engineered tissues; for example, nanotopography, biomimetic materials, embedded growth factors, mineralization, and bioreactors. In doing so, it suggests that there is a possibility to develop bone substitutes that can repair bone defects and promote new bone formation for orthopedic applications.
Collapse
Affiliation(s)
- Brian Stevens
- Department of Biological and Irrigation Engineering, Utah State University, Logan, Utah, USA
| | | | | | | | | |
Collapse
|
30
|
Safety assessment of food products from r-DNA animals. Comp Immunol Microbiol Infect Dis 2008; 32:163-89. [PMID: 18258300 DOI: 10.1016/j.cimid.2007.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2007] [Indexed: 01/26/2023]
Abstract
Recombinant-DNA (transgenic) animals intended for food production are approaching the market. Among them, recombinant-DNA fishes constitute the most advanced case. As a result, intergovernmental organizations are working on guidelines which would eventually become international standards for national food safety assessments of these products. This article reviews the emerging elements for the food safety assessment of products derived from recombinant-DNA animals. These elements will become highly relevant both for researchers and regulators interested in developing or analyzing recombinant-DNA animals intended to be used in the commercial elaboration of food products. It also provides references to science-based tools that can be used to support food safety assessments. Finally, it proposes recommendations for the further development of biosafety assessment methodologies in this area.
Collapse
|
31
|
Kirker-Head CA, Boudrieau RJ, Kraus KH. Use of bone morphogenetic proteins for augmentation of bone regeneration. J Am Vet Med Assoc 2007; 231:1039-55. [PMID: 17916029 DOI: 10.2460/javma.231.7.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large body of preclinical and clinical data now documents that recombinant BMPs can be used for skeletal regeneration in humans and animals. Recombinant human BMP-2 and BMP-7 have been approved for use in human patients with long-bone fractures and nonunions and in patients undergoing lumbar fusion or various maxillofacial and dental regenerative procedures. These products have also been made available for veterinary use.
Collapse
Affiliation(s)
- Carl A Kirker-Head
- Orthopaedic Research Laboratory, Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| | | | | |
Collapse
|
32
|
Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Potential Use of Gene Transfer in Athletic Performance Enhancement. Mol Ther 2007; 15:1751-66. [PMID: 17680029 DOI: 10.1038/sj.mt.6300278] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After only a short history of three decades from concept to practice, gene therapy has recently been shown to have potential to treat serious human diseases. Despite this success, gene therapy remains in the realm of experimental medicine, and much additional preclinical and clinical study will be necessary for proving the efficacy and safety of this approach in the treatment of diseases in humans. However, a potential complicating factor is that advances in gene transfer technology could be misused to enhance athletic performance in sports, in a practice termed "gene doping". Moreover, gene doping could be a precursor to a broader controversial agenda of human "genetic enhancement" with the potential for a significant long-term impact on society. This review addresses the possible ways in which knowledge and experience gained in gene therapy in animals and humans may be abused for enhancing sporting prowess. We provide an overview of recent progress in gene therapy, with potential application to gene doping and with the major focus on candidate performance-enhancement genes. We also discuss the current status of preclinical studies and of clinical trials that use these genes for therapeutic purposes. Current knowledge about the association between the natural "genetic make-up" of humans and their physical characteristics and performance potential is also presented. We address issues associated with the safety of gene transfer technologies in humans, especially when used outside a strictly controlled clinical setting, and the obstacles to translating gene transfer strategies from animal studies to humans. We also address the need for development and implementation of measures to prevent abuse of gene transfer technologies, and to pursue research on strategies for its detection in order to discourage this malpractice among athletes.
Collapse
Affiliation(s)
- Anna Baoutina
- National Measurement Institute, Pymble, New South Wales, Australia.
| | | | | | | |
Collapse
|
33
|
Kirker-Head C, Karageorgiou V, Hofmann S, Fajardo R, Betz O, Merkle HP, Hilbe M, von Rechenberg B, McCool J, Abrahamsen L, Nazarian A, Cory E, Curtis M, Kaplan D, Meinel L. BMP-silk composite matrices heal critically sized femoral defects. Bone 2007; 41:247-55. [PMID: 17553763 DOI: 10.1016/j.bone.2007.04.186] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 04/09/2007] [Accepted: 04/14/2007] [Indexed: 10/23/2022]
Abstract
Clinical drawbacks of bone grafting prompt the search for alternative bone augmentation technologies such as use of growth and differentiation factors, gene therapy, and cell therapy. Osteopromotive matrices are frequently employed for the local delivery and controlled release of these augmentation agents. Some matrices also provide an osteoconductive scaffold to support new bone growth. In this study, silkworm-derived silk fibroin was evaluated as an osteoconductive matrix for healing critical sized mid-femoral segmental defects in nude rats. Four treatment groups were assessed over eight weeks: silk scaffolds (SS) with recombinant human BMP-2 (rhBMP-2) and human mesenchymal stem cells (HMSC) that had been pre-differentiated along an osteoblastic lineage ex vivo (Group I; pdHMSC/rhBMP-2/SS); SS with rhBMP-2 and undifferentiated HMSCs (Group II; udHMSC/rhBMP-2/SS); SS and rhBMP-2 alone (Group III; rhBMP-2/SS); and empty defects (Group IV). Bi-weekly radiographs revealed a progressive and similar increase in Group I-III mean defect mineralization through post-operative week (POW) 8. Radiographs, dual energy x-ray absorptiometry, and micro-computed tomography confirmed that Groups I-III exhibited similar substantial and significantly (p<0.05) greater defect mineralization at POW 8 than the unfilled Group IV defects which remained void of bone. No significant differences in Groups I-III defect healing at POW 8 were apparent using these same assays or mechanical testing. Histology at POW 8 revealed moderately good bridging of the parent diaphyseal cortices with woven and lamellar bone bridging islands of silk matrix in Groups I and III. Group II defects possessed comparatively less new bone which was most abundant adjacent to the parent bone margins. Elsewhere the silk matrix was more often enveloped by poorly differentiated loose fibrous connective tissue. Group IV defects showed minimal new bone formation. None of the treatment groups attained the mean mineralization or the mean biomechanical strength of identical defects implanted with SS and pdHMSCs alone in a previous study. However, addition of rhBMP-2 to SS prompted more bone than was previously generated using udHMSC/SS or SS alone. These data imply the clinical potential of silk scaffolds and rhBMP-2 as composite osteopromotive implants when used alone or with select stem cell populations. Additional studies in larger species are now warranted.
Collapse
Affiliation(s)
- C Kirker-Head
- Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Milovancev M, Muir P, Manley PA, Seeherman HJ, Schaefer S. Clinical application of recombinant human bone morphogenetic protein-2 in 4 dogs. Vet Surg 2007; 36:132-40. [PMID: 17335420 DOI: 10.1111/j.1532-950x.2007.00245.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To describe outcome in dogs with insufficient bone healing treated with recombinant human bone morphogenetic protein-2 (rhBMP-2). STUDY DESIGN Retrospective study. ANIMALS Four dogs clinically affected with delayed union or nonunion bone healing. METHODS Medical records were reviewed for signalment, clinical problem, treatment, and outcome. RESULTS Four dogs that had delayed- or nonunion of bone fracture, osteotomy, or arthrodesis were treated with either minimally invasive, fluoroscopically guided, percutaneous administration or direct surgical application of rhBMP-2. Doses used ranged from 0.2 to 1.6 mg of rhBMP-2. In 3 dogs, a calcium phosphate matrix (CPM) carrier was used whereas in 1 dog commercially prepared rhBMP-2 impregnated in an absorbable collagen sponge (INFUSE Bone Graft) was used. This latter dog had osteomyelitis associated with implant infection before rhBMP-2 administration. Rapid radiographic union was noted in all dogs with excellent long-term outcome. Adverse effects were minimal and included transient worsening of lameness after percutaneous administration of rhBMP-2 in 2 dogs. CONCLUSIONS rhBMP-2 stimulated rapid bone formation at delayed- or nonunion sites resulting in radiographic bone union with minimal adverse effects and excellent long-term outcome in 4 dogs. CLINICAL RELEVANCE Direct intraoperative administration or fluoroscopically guided, minimally invasive delivery of rhBMP-2 may be an effective treatment modality for bone delayed- or nonunions and could potentially be used to stimulate new bone production in a variety of orthopedic surgical conditions in dogs.
Collapse
Affiliation(s)
- Milan Milovancev
- Department of Surgical Sciences, College of Veterinary Medicine, University of Wisconsin, Madison, WI 53706-1102, USA
| | | | | | | | | |
Collapse
|
35
|
Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, Moran KM, Fouletier-Dilling CM, Schumara-Martin S, Lindsey RW, Heggeness MH, Brenner MK, Davis AR. Hypoxic adipocytes pattern early heterotopic bone formation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:620-32. [PMID: 17255330 PMCID: PMC1851874 DOI: 10.2353/ajpath.2007.060692] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites.
Collapse
MESH Headings
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, Brown/transplantation
- Animals
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Proteins/biosynthesis
- Cell Differentiation
- Cell Hypoxia/genetics
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Chondrogenesis
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/metabolism
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/therapy
- Stem Cells/metabolism
- Stem Cells/pathology
- Transforming Growth Factor beta/biosynthesis
Collapse
Affiliation(s)
- Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rupprecht S, Petrovic L, Burchhardt B, Wiltfang J, Neukam FW, Schlegel KA. Antibiotic-containing collagen for the treatment of bone defects. J Biomed Mater Res B Appl Biomater 2007; 83:314-9. [PMID: 17415766 DOI: 10.1002/jbm.b.30797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies have explored the use of biodegradable implants that incorporate antibiotics for the treatment of bone infections. In this study, a biodegradable composite containing bovine collagen and teicoplanin (Targobone) was used for the treatment of mandibular nonunion defects. Patients with mandibular nonunion defects subsequent to osteosynthesis were treated with Targobone (n = 9) or with autologous bone grafts (n = 12). Clinical and radiological evaluations were performed preoperatively, immediately postoperatively, and 4 and 24 weeks postoperatively. Bone regeneration was defined relative to the original defect area in the panoramic radiograph by using image analysis software. In the Targobone group, the defect area decreased to 78% (SD +/- 21.8%) of the preoperative area within 4 weeks and to 21% (SD +/- 9.7%) of the preoperative area within 24 weeks. In the autologous bone graft group, the defect area decreased to 69% (SD +/- 32.4%) of the preoperative area within 4 weeks and to 4.7% (SD +/- 5.6%) of the preoperative area within 24 weeks. Thus, Targobone is a promising option for the treatment of bone defects.
Collapse
Affiliation(s)
- Stephan Rupprecht
- Oral and Maxillofacial Surgery, Friedrich Alexander University Erlangen-Nuremberg, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Thoesen MS, Berg-Foels WSV, Stokol T, Rassnick KM, Jacobson MS, Kevy SV, Todhunter RJ. Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates. Am J Vet Res 2006; 67:1655-61. [PMID: 17014312 DOI: 10.2460/ajvr.67.10.1655] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze a centrifugation-based, point-of-care device that concentrates canine platelets and bone marrow-derived cells. ANIMALS 19 adult sexually intact dogs. PROCEDURES Anticoagulated peripheral blood (60 mL) and 60 mL of anticoagulated bone marrow aspirate (BMA) were concentrated by centrifugation with the centrifugation-based, point-of-care device to form a platelet and a bone marrow concentrate (BMC) from 11 dogs. Blood samples were analyzed on the basis of hemograms, platelet count, and PCV. The BMA and BMC were analyzed to determine PCV, total nucleated cell count, RBC count, and differential cell counts. The BMC stromal cells were cultured in an osteoinductive medium. Eight additional dogs were used to compare the BMC yield with that in which heparin was infused into the bone marrow before aspiration. RESULTS The centrifugation-based, point-of-care device concentrated platelets by 6-fold over baseline (median recovery, 63.1%) with a median of 1,336 x 10(3) platelets/microL in the 7-mL concentrate. The nucleated cells in BMCs increased 7-fold (median recovery, 42.9%) with a median of 720 x 10(3) cells/microL in the 4-mL concentrate. The myeloid nucleated cells and mononuclear cells increased significantly in BMCs with a significant decrease in PCV, compared with that of BMAs. Stromal cell cultures expressed an osteoblastic phenotype in culture. Infusion of heparin into the bone marrow eliminated clot formation and created less variation in the yield (median recovery, 61.9%). CONCLUSIONS AND CLINICAL RELEVANCE Bone marrow-derived cell and platelet-rich concentrates may form bone if delivered in an engineered graft, thus decreasing the need for cancellous bone grafts.
Collapse
Affiliation(s)
- Michael S Thoesen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Simpson AHRW, Mills L, Noble B. The role of growth factors and related agents in accelerating fracture healing. ACTA ACUST UNITED AC 2006; 88:701-5. [PMID: 16720758 DOI: 10.1302/0301-620x.88b6.17524] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- A H R W Simpson
- The Musculoskeletal Tissue Engineering Consortium, Room SU304, University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | |
Collapse
|
39
|
Abstract
Impressive advances in our knowledge of the molecular genetic basis of skeletal disorders and fracture healing have led to the development of novel therapeutics based on ectopic expression of one or more genes in patient cells that can influence repair or regenerative processes in bone. Gene therapy is an attractive new approach to the treatment of bone disorders. Orthopaedics has become one of the most promising areas of research into gene therapy. This is because many potential orthopaedic targets for gene therapy, unlike traditional targets such as cancer and severe genetic disorders, neither present difficult delivery problems nor require prolonged periods of gene expression. Gene therapy offers new possibilities for the clinical management of orthopaedic conditions that are difficult to treat by traditional surgical or medical means. Impaired bone healing, need for extensive bone formation, cartilage repair and metabolic bone diseases are all conditions where alterations of the signalling peptides involved may provide cure or improvement. In orthopaedic oncology, gene therapy may achieve induction of tumour necrosis and increased tumour sensitivity to chemotherapy. An increasing amount of evidence indicates that gene transfer can aid the repair of articular cartilage, menisci, intervertebral disks, ligaments and tendons. These developments have the potential to transform many areas of musculoskeletal care, leading to treatments that are less invasive, more effective and less expensive than existing modalities.
Collapse
Affiliation(s)
- Peter V Giannoudis
- Department of Trauma and Orthopaedic Surgery, School of Medicine, University of Leeds, St. James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | | | | | |
Collapse
|
40
|
Geris L, Gerisch A, Maes C, Carmeliet G, Weiner R, Vander Sloten J, Van Oosterwyck H. Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med Biol Eng Comput 2006; 44:280-9. [PMID: 16937169 DOI: 10.1007/s11517-006-0040-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
The combined use of experimental and mathematical models can lead to a better understanding of fracture healing. In this study, a mathematical model, which was originally established by Bailón-Plaza and van der Meulen (J Theor Biol 212:191-209, 2001), was applied to an experimental model of a semi-stabilized murine tibial fracture. The mathematical model was implemented in a custom finite volumes code, specialized in dealing with the model's requirements of mass conservation and non-negativity of the variables. A qualitative agreement between the experimentally measured and numerically simulated evolution in the cartilage and bone content was observed. Additionally, an extensive parametric study was conducted to assess the influence of the model parameters on the simulation outcome. Finally, a case of pathological fracture healing and its treatment by administration of growth factors was modeled to demonstrate the potential therapeutic value of this mathematical model.
Collapse
Affiliation(s)
- Liesbet Geris
- Faculty of Engineering, Division of Biomechanics and Engineering Design, K.U. Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
41
|
Bramlage CP, Häupl T, Kaps C, Ungethüm U, Krenn V, Pruss A, Müller GA, Strutz F, Burmester GR. Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 2006; 8:R58. [PMID: 16542506 PMCID: PMC1526630 DOI: 10.1186/ar1923] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 02/03/2006] [Accepted: 02/14/2006] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been identified as important morphogens with pleiotropic functions in regulating the development, homeostasis and repair of various tissues. The aim of this study was to characterize the expression of BMPs in synovial tissues under normal and arthritic conditions. Synovial tissue from normal donors (ND) and from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) were analyzed for BMP expression by using microarray hybridization. Differential expression of BMP-4 and BMP-5 was validated by semiquantitative RT-PCR, in situ hybridization and immunohistochemistry. Activity of arthritis was determined by routine parameters for systemic inflammation, by histological scoring of synovitis and by semiquantitative RT-PCR of IL-1β, TNF-α, stromelysin and collagenase I in synovial tissue. Expression of BMP-4 and BMP-5 mRNA was found to be significantly decreased in synovial tissue of patients with RA in comparison with ND by microarray analysis (p < 0.0083 and p < 0.0091). Validation by PCR confirmed these data in RA (p < 0.002) and also revealed a significant decrease in BMP-4 and BMP-5 expression in OA compared with ND (p < 0.015). Furthermore, histomorphological distribution of both morphogens as determined by in situ hybridization and immunohistochemistry showed a dominance in the lining layer of normal tissues, whereas chronically inflamed tissue from patients with RA revealed BMP expression mainly scattered across deeper layers. In OA, these changes were less pronounced with variable distribution of BMPs in the lining and sublining layer. BMP-4 and BMP-5 are expressed in normal synovial tissue and were found decreased in OA and RA. This may suggest a role of distinct BMPs in joint homeostasis that is disturbed in inflammatory and degenerative joint diseases. In comparison with previous reports, these data underline the complex impact of these factors on homeostasis and remodeling in joint physiology and pathology.
Collapse
Affiliation(s)
- Carsten P Bramlage
- Department of Medicine, Nephrology and Rheumatology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | - Christian Kaps
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | - Ute Ungethüm
- Laboratory for Functional Genome Research, Charité University Hospital, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | - Veit Krenn
- Institute of Pathology, Moltkestrasse 32, D-54292 Trier, Germany
| | - Axel Pruss
- Institute of Transfusion Medicine, Charité University Hospital, Schumannstrasse 20/21, D-10098 Berlin, Germany
| | - Gerhard A Müller
- Department of Medicine, Nephrology and Rheumatology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Frank Strutz
- Department of Medicine, Nephrology and Rheumatology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Schumannstrasse 20/21, D-10098 Berlin, Germany
| |
Collapse
|
42
|
Abstract
Recently our knowledge has vastly expanded in the pathophysiological mechanisms governing the healing process of fractures. Research is ongoing in every aspect of tissue engineering and regeneration. Several molecular mediators have entered phase III clinical trials in order to evaluate their efficacy in enhancing the biological activity of fractures. Despite these developments several issues of importance remain obscured. For instance the timing of intervention, the appropriate dose of agents, the length of intervention, the routine use of available growth factors in clinical practice or not represent some of the important areas requiring further investigation. This article highlights issues relating to bone regeneration which could potentially be the focus of research in the near future.
Collapse
Affiliation(s)
- Toby Branfoot
- Department of Trauma & Orthopaedics, St. James's University Hospital, Leeds, Beckett Str., Leeds LS9 7TF, UK.
| |
Collapse
|