1
|
Ohnishi K, Sokabe T. Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals. Bioessays 2024:e202400233. [PMID: 39723698 DOI: 10.1002/bies.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling. We examine how GPCRs function as thermosensors and how their signaling regulates cellular thermosensation, illustrating the complexity of thermosensory systems. Understanding these dual thermosensory mechanisms would advance our comprehension of cellular thermosensation and its regulatory pathways.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical), Hiroshima University, Hiroshima, Japan
| | - Takaaki Sokabe
- Section of Sensory Physiology, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
2
|
Gao N, Li M, Wang W, Liu Z, Guo Y. The dual role of TRPV1 in peripheral neuropathic pain: pain switches caused by its sensitization or desensitization. Front Mol Neurosci 2024; 17:1400118. [PMID: 39315294 PMCID: PMC11417043 DOI: 10.3389/fnmol.2024.1400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel plays a dual role in peripheral neuropathic pain (NeuP) by acting as a "pain switch" through its sensitization and desensitization. Hyperalgesia, commonly resulting from tissue injury or inflammation, involves the sensitization of TRPV1 channels, which modulates sensory transmission from primary afferent nociceptors to spinal dorsal horn neurons. In chemotherapy-induced peripheral neuropathy (CIPN), TRPV1 is implicated in neuropathic pain mechanisms due to its interaction with ion channels, neurotransmitter signaling, and oxidative stress. Sensitization of TRPV1 in dorsal root ganglion neurons contributes to CIPN development, and inhibition of TRPV1 channels can reduce chemotherapy-induced mechanical hypersensitivity. In diabetic peripheral neuropathy (DPN), TRPV1 is involved in pain modulation through pathways including reactive oxygen species and cytokine production. TRPV1's interaction with TRPA1 channels further influences chronic pain onset and progression. Therapeutically, capsaicin, a TRPV1 agonist, can induce analgesia through receptor desensitization, while TRPV1 antagonists and siRNA targeting TRPV1 show promise in preclinical studies. Cannabinoid modulation of TRPV1 provides another potential pathway for alleviating neuropathic pain. This review summarizes recent preclinical research on TRPV1 in association with peripheral NeuP.
Collapse
Affiliation(s)
- Ning Gao
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Li
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiming Wang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Liu
- Department of Gastroenterology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufeng Guo
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Giaretta S, Magni A, Migliore A, Natoli S, Puntillo F, Ronconi G, Santoiemma L, Sconza C, Viapiana O, Zanoli G. A Review of Current Approaches to Pain Management in Knee Osteoarthritis with a Focus on Italian Clinical Landscape. J Clin Med 2024; 13:5176. [PMID: 39274389 PMCID: PMC11396710 DOI: 10.3390/jcm13175176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
The global cases of knee osteoarthritis (KOA) are projected to increase by 74.9% by 2050. Currently, over half of patients remain dissatisfied with their pain relief. This review addresses unmet needs for moderate-to-severe KOA pain; it offers evidence and insights for improved management. Italian experts from the fields of rheumatology, physical medicine and rehabilitation, orthopedics, primary care, and pain therapy have identified several key issues. They emphasized the need for standardized care protocols to address inconsistencies in patient management across different specialties. Early diagnosis is crucial, as cartilage responds better to early protective and structural therapies. Faster access to physiatrist evaluation and reimbursement for physical, rehabilitative, and pharmacological treatments, including intra-articular (IA) therapy, could reduce access disparities. Concerns surround the adverse effects of oral pharmacological treatments, highlighting the need for safer alternatives. Patient satisfaction with corticosteroids and hyaluronic acid-based IA therapies reduces over time and there is no consensus on the optimal IA therapy protocol. Surgery should be reserved for severe symptoms and radiographic KOA evidence, as chronic pain post-surgery poses significant societal and economic burdens. The experts advocate for a multidisciplinary approach, promoting interaction and collaboration between specialists and general practitioners, to enhance KOA care and treatment consistency in Italy.
Collapse
Affiliation(s)
- Stefano Giaretta
- UOC Ortopedia e Traumatologia OC San Bortolo di Vicenza (AULSS 8 Berica), 36100 Vicenza, Italy
| | - Alberto Magni
- Local Health Department, Desenzano sul Garda, 25015 Brescia, Italy
| | - Alberto Migliore
- Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy
| | - Silvia Natoli
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Pain Unit, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Filomena Puntillo
- Anaesthesia, Intensive Care and Pain Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gianpaolo Ronconi
- Department of Rehabilitation, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | | | - Ombretta Viapiana
- Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, University of Verona, 37126 Verona, Italy
| | - Gustavo Zanoli
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, Occhiobello, 45030 Rovigo, Italy
| |
Collapse
|
4
|
Roshni J, Sivakumar M, Alzahrani FM, Halawani IF, Alzahrani KJ, Patil S, Ahmed SSSJ. Virtual screening, molecular dynamics and density functional theory on pain inhibitors against TRPV1 associating inflammatory conditions. J Biomol Struct Dyn 2024; 42:6788-6798. [PMID: 37489910 DOI: 10.1080/07391102.2023.2237595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Transient receptor potential vanilloid 1 protein (TRPV1) is expressed widely in skin and sensory neurons that contribute to pain/heat sensation in the human system. TRPV1 gene polymorphisms are susceptible to multiple diseases and it is considered a therapeutic target for various inflammatory conditions. Among the TRPV1 variants, rs8065080 (1911 A > G) plays a vital role in painful osteoarthritis and migraine. The presence of rs8065080 polymorphism may render drug efficacy. This study aimed to identify better antagonists against wild-type and variant TRPV1 that may help in the relief of pain/inflammation. We constructed suitable TRPV1 protein structures for wild-type and rs8065080 variant through a homology modelling approach. A total of 3363 anti-inflammatory compounds with high chemical diversity and good drug-like properties were collected and screened against the generated structures. Molecular docking showed that nobilamide B had the highest binding affinity (-5.83 kcal/mol) towards the wild-type. Whereas, isoquinoline analogue displayed highest binding potency with the variant TRPV1 (-11.65 kcal/mol). Besides those, C18H15F3N4O showed affinity towards both wild-type (-5.53 kcal/mol) and variant TRPV1 (-9.75 kcal/mol). Then, molecular dynamic simulation revealed stable conformation in wild-type and variant TRPV1 upon binding of nobilmaide B, isoquinoline analogue and C18H15F3N4O. Additionally, density functional theory (DFT) using B3LYP hybrid function showed high chemical reactiveness of nobilamie B, isoquinoline analogue and C18H15F3N4O. Overall, our systematic investigations provide, C18H15F3N4O could be a potential analgesic inhibiting both wild-type and variant TRPV1 against inflammatory conditions.
Collapse
Affiliation(s)
- Jency Roshni
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Mahema Sivakumar
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, USA
| | - Shiek S S J Ahmed
- Drug discovery and Multi-omics Lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
5
|
Moretti A, Snichelotto F, Liguori S, Paoletta M, Toro G, Gimigliano F, Iolascon G. The challenge of pharmacotherapy for musculoskeletal pain: an overview of unmet needs. Ther Adv Musculoskelet Dis 2024; 16:1759720X241253656. [PMID: 38799611 PMCID: PMC11119417 DOI: 10.1177/1759720x241253656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Musculoskeletal disorders are characterized by several impairments, including pain, affecting muscles, bones, joints and adjacent connective tissue, resulting in temporary or permanent functional limitations and disability. Musculoskeletal pain is particularly prevalent worldwide and greatly impacts the quality of life, social participation and economic burden. To date, several issues persist about the classification of musculoskeletal pain and its management strategies and resources. The treatment of musculoskeletal pain conditions is complex and often requires a multimodal approach, including pharmacological and non-pharmacological therapy that might be ineffective in many cases, resulting in poor patient satisfaction and controversial expectations about the potential benefits of available interventions. This manuscript provides an overview of unmet needs in managing musculoskeletal pain, particularly focusing on pharmacotherapeutic pitfalls in this context.
Collapse
Affiliation(s)
- Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples 80138, Italy
| | - Francesco Snichelotto
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Francesca Gimigliano
- Department of Physical and Mental Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
6
|
Lashgari NA, Roudsari NM, Momtaz S, Niazi Shahraki F, Zandi N, Pazoki B, Farzaei MH, Ghasemi M, Abdollahi M, Abdolghaffari AH. Systematic Review on Herbal Preparations for Controlling Visceral Hypersensitivity in Functional Gastrointestinal Disorders. Curr Pharm Biotechnol 2024; 25:1632-1650. [PMID: 38258770 DOI: 10.2174/0113892010261502231102040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Visceral hypersensitivity (VH) is an overreaction of the gastrointestinal (GI) tract to various stimuli and is characterized by hyperalgesia and/or allodynia. VH contributes to the etiology of many GI dysfunctions, particularly irritable bowel syndrome (IBS). Although the exact mechanisms underlying VH are yet to be found, inflammation and oxidative stress, psychosocial factors, and sensorimotor alterations may play significant roles in it. OBJECTIVE In this review, we provide an overview of VH and its pathophysiological function in GI disorders. Adverse effects of synthetic drugs may make herbal agents a good candidate for pain management. Therefore, in this review, we will discuss the efficacy of herbal agents in the management of VH with a focus on their anti-inflammatory and antioxidant potentials. METHODS Data were extracted from clinical and animal studies published in English between 2004 and June, 2020, which were collected from PubMed, Google Scholar, Scopus, and Cochrane Library. RESULTS Overall, Radix, Melissia, Glycyrrhizae, Mentha, and Liquorice were the most efficient herbals for VH management in IBS and dyspepsia, predominantly through modulation of the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and suppression of 5- hydroxytryptamine 3 (5-HT3) or the serotonin receptors. CONCLUSION Considering the positive effects of herbal formulations in VH management, further research on novel herbal and/or herbal/chemical preparations is warranted.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Pharmacology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Benyamin Pazoki
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
7
|
Schumacher MA. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr Neuropharmacol 2024; 22:6-14. [PMID: 37559537 PMCID: PMC10716877 DOI: 10.2174/1570159x21666230808111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 08/11/2023] Open
Abstract
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| |
Collapse
|
8
|
Dario JGN, de Oliveira ER, de Souza RP, Theodorovicz S, Bernini GC, Ruiz G, de Carvalho RH, da Silva CA. Capsaicin and 1,25-Dihydroxyvitamin D 3 Glycoside: Effects on the Reproductive Performance of Hyper-Prolific Sows. Animals (Basel) 2023; 13:2794. [PMID: 37685058 PMCID: PMC10486751 DOI: 10.3390/ani13172794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
This study evaluated the effect of a natural source of vitamin D3 [1,25-(OH)2D3] and capsaicin (CAP) in the dietary supplementation of sows in the final phase (85-114 days) of gestation (Gest) and lactation (Lact) on the reproductive performance of the sows and health of piglets through two experiments (Exp I and II). In Exp I, 120 sows were subjected to four treatments: T1-control (without [1,25-(OH)2D3] and supplemental CAP); T2-3.5 µg 1,25-(OH)2D3/Gest/day and 7.0 µg Vit 1,25-(OH)2D3/Lact/day; T3-7.0 µg CAP/Gest/day and 14.0 µg CAP/Lact/day; T4-1.75 µg Vit 1,25-(OH)2D3 + 3.5 µg CAP/Gest/day and 3.5 µg 1,25-(OH)2D3 + 7.0 µg CAP/Lact/day. In Exp II, 200 sows were randomly blocked, factorial 2 × 2 (without or with Vit 1,25-(OH)2D3 and without or with CAP): T1-control (without Vit 1,25-(OH)2D3 and CAP); T2-3.5 µg Vit 1,25-(OH)2D3/Gest/day and 7.0 µg Vit 1,25-(OH)2D3/Lact/day; T3-7.0 µg CAP/Gest/day and 14.0 µg CAP/Lact/day; T4-3.5 µg Vit 1,25-(OH)2D3 + 7 µg CAP/Gest/day; and 7.0 µg Vit 1,25-(OH)2D3 + 14.0 µg CAP/Lact/day. The duration of delivery (3:48 vs. 4:57 h) and the percentage of stillbirths (5.37% vs. 7.61%) were improved (p < 0.05) in the group that received Vit 1,25-(OH)2D3 (Exp II) compared to the control group. Moreover, the dystocia rate decreased (p < 0.05) in Exp II, which received Vit 1,25-(OH)2D3 (4.21 vs. 27.63%), and in Exp I, which received the combination of Vit 1,25-(OH)2D3 + CAP (12 vs. 40%) compared to the respective control groups. Colostrum production was greater (p < 0.05) in sows that received Vit 1,25-(OH)2D3 supplementation compared to the control group, consequently resulting in higher colostrum intake (p < 0.05) of the piglets (330 vs. 258 g/piglet). The additives reduced the incidence of diarrhea (p < 0.05) in piglets (Exp I and II). Thus, the use of additives improved the reproductive performance of sows and contributed to litter growth.
Collapse
Affiliation(s)
- Julie Gabriela Nagi Dario
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Eduardo Raele de Oliveira
- Project Coordinator and Assistant at NutriQuest TechnoFeed, São Paulo 13025-320, SP, Brazil; (E.R.d.O.); (R.P.d.S.)
| | - Rodrigo Pereira de Souza
- Project Coordinator and Assistant at NutriQuest TechnoFeed, São Paulo 13025-320, SP, Brazil; (E.R.d.O.); (R.P.d.S.)
| | - Sabrina Theodorovicz
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Giovana Chimentão Bernini
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Gabriela Ruiz
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Rafael Humberto de Carvalho
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil; (J.G.N.D.); (S.T.); (G.C.B.); (G.R.); (R.H.d.C.)
| |
Collapse
|
9
|
Saraiva-Santos T, Zaninelli TH, Manchope MF, Andrade KC, Ferraz CR, Bertozzi MM, Artero NA, Franciosi A, Badaro-Garcia S, Staurengo-Ferrari L, Borghi SM, Ceravolo GS, Andrello AC, Zanoveli JM, Rogers MS, Casagrande R, Pinho-Ribeiro FA, Verri WA. Therapeutic activity of lipoxin A 4 in TiO 2-induced arthritis in mice: NF-κB and Nrf2 in synovial fluid leukocytes and neuronal TRPV1 mechanisms. Front Immunol 2023; 14:949407. [PMID: 37388729 PMCID: PMC10304281 DOI: 10.3389/fimmu.2023.949407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Background Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in inflammation. We evaluated the effects and mechanisms of action of LXA4 in titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint inflammation and pain. Methods Mice were stimulated with TiO2 (3mg) in the knee joint followed by LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration. Pain-like behavior, inflammation, and dosages were performed to assess the effects of LXA4 in vivo. Results LXA4 reduced mechanical and thermal hyperalgesia, histopathological damage, edema, and recruitment of leukocytes without liver, kidney, or stomach toxicity. LXA4 reduced leukocyte migration and modulated cytokine production. These effects were explained by reduced nuclear factor kappa B (NFκB) activation in recruited macrophages. LXA4 improved antioxidant parameters [reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent detection induced by TiO2 in synovial fluid leukocytes. We observed an increase of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2 inflammation. LXA4 reduced TiO2-induced TRPV1 mRNA expression and protein detection, as well TRPV1 co-staining with p-NFκB, indicating reduction of neuronal activation. LXA4 down-modulated neuronal activation and response to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1 (TRPA1) agonist] of DRG neurons. Conclusion LXA4 might target recruited leukocytes and primary afferent nociceptive neurons to exert analgesic and anti-inflammatory activities in a model resembling what is observed in patients with prosthesis inflammation.
Collapse
Affiliation(s)
- Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Marília F. Manchope
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Ketlem C. Andrade
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Camila R. Ferraz
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Nayara A. Artero
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Stephanie Badaro-Garcia
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Paraná, Brazil
| | - Graziela S. Ceravolo
- Department of Physiological Sciences, Center for Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | | | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Michael S. Rogers
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Boston, MA, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Felipe A. Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
10
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
11
|
Trin K, Perino J, Allouchery M, Géniaux H, Miremont G, Salvo F. Second-degree burn induced by high-concentration topical capsaicin with mobility sequelae: A case report. Pain Pract 2023; 23:216-219. [PMID: 36278478 PMCID: PMC10099465 DOI: 10.1111/papr.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
High-concentration topical capsaicin is used as a second-line treatment for neuropathic pain. Transient, mild burning sensation and erythema are expected adverse drug reactions. Here, we report the first case of second degree burn after the application of a high-concentration topical capsaicin patch with secondary mobility sequelae. Nine months after the application, neuropathic pain still remained and the patient described mobility difficulties in daily activities, preventing her from returning to work. This report aims to raise the question of the benefit/risk ratio of high concentration topical capsaicin.
Collapse
Affiliation(s)
- Kilian Trin
- Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance de Bordeaux, CHU de Bordeaux, Bordeaux, France.,Univ. Bordeaux, Bordeaux, France
| | - Justine Perino
- Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance de Bordeaux, CHU de Bordeaux, Bordeaux, France.,Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, Univ. Bordeaux, Bordeaux Cedex, France
| | - Marion Allouchery
- Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, Univ. Bordeaux, Bordeaux Cedex, France.,Service de Pharmacologie Clinique et Vigilances, CHU de Poitiers, Poitiers, France.,Faculté de Médecine, Université de Poitiers, Poitiers, France
| | - Hélène Géniaux
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU de Limoges, Limoges, France
| | - Ghada Miremont
- Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance de Bordeaux, CHU de Bordeaux, Bordeaux, France
| | - Francesco Salvo
- Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance de Bordeaux, CHU de Bordeaux, Bordeaux, France.,Inserm, Bordeaux Population Health Research Center, Team Pharmacoepidemiology, UMR 1219, Univ. Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
12
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
14
|
Petitjean H, Héberlé E, Hilfiger L, Łapieś O, Rodrigue G, Charlet A. TRP channels and monoterpenes: Past and current leads on analgesic properties. Front Mol Neurosci 2022; 15:945450. [PMID: 35966017 PMCID: PMC9373873 DOI: 10.3389/fnmol.2022.945450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of the transient receptor potential (TRP) channels expressed by sensory neurons is essential to the transduction of thermal and mechanical sensory information. In the setting of chronic inflammatory conditions, the activation of the melastatin family member 8 (TRPM8), the TRP vanilloid 1 (TRPV1), and the TRP ankyrin 1 (TRPA1) is correlated with pain hypersensitivity reactions. Monoterpenes, among which pulegone and menthol, a major class of phytocompounds present in essential oils of medicinal plants, are known modulators of those TRP channels activity. In the present review, we correlate the monoterpene content of plants with their historical therapeutic properties. We then describe how monoterpenes exert their anti-inflammatory and antihyperalgesia effects through modulation of TRP channels activity. Finally, we discuss the importance and the potential of characterizing new plant extracts and reassessing studied plant extracts for the development of ethnopharmacology-based innovative treatments for chronic pain. This review suggests that monoterpene solutions, based on composition from traditional healing herbs, offer an interesting avenue for the development of new phytotherapeutic treatments to alleviate chronic inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Louis Hilfiger
- Benephyt, Strasbourg, France
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | - Olga Łapieś
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| |
Collapse
|
15
|
Seidel MF, Hügle T, Morlion B, Koltzenburg M, Chapman V, MaassenVanDenBrink A, Lane NE, Perrot S, Zieglgänsberger W. Neurogenic inflammation as a novel treatment target for chronic pain syndromes. Exp Neurol 2022; 356:114108. [PMID: 35551902 DOI: 10.1016/j.expneurol.2022.114108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Chronic pain syndrome is a heterogeneous group of diseases characterized by several pathological mechanisms. One in five adults in Europe may experience chronic pain. In addition to the individual burden, chronic pain has a significant societal impact because of work and school absences, loss of work, early retirement, and high social and healthcare costs. Several anti-inflammatory treatments are available for patients with inflammatory or autoimmune diseases to control their symptoms, including pain. However, patients with degenerative chronic pain conditions, some with 10-fold or more elevated incidence relative to these manageable diseases, have few long-term pharmacological treatment options, limited mainly to non-steroidal anti-inflammatory drugs or opioids. For this review, we performed multiple PubMed searches using keywords such as "pain," "neurogenic inflammation," "NGF," "substance P," "nociception," "BDNF," "inflammation," "CGRP," "osteoarthritis," and "migraine." Many treatments, most with limited scientific evidence of efficacy, are available for the management of chronic pain through a trial-and-error approach. Although basic science and pre-clinical pain research have elucidated many biomolecular mechanisms of pain and identified promising novel targets, little of this work has translated into better clinical management of these conditions. This state-of-the-art review summarizes concepts of chronic pain syndromes and describes potential novel treatment strategies.
Collapse
Affiliation(s)
- Matthias F Seidel
- Department of Rheumatology, Spitalzentrum Biel-Centre Hospitalier Bienne, 2501 Biel-Bienne, Switzerland.
| | - Thomas Hügle
- Department of Rheumatology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Barton Morlion
- The Leuven Center for Algology and Pain Management, University of Leuven, Leuven, Belgium
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Nancy E Lane
- Center for Musculoskeletal Health, University of California Davis School of Medicine, Sacramento, CA, USA; Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Serge Perrot
- Unité INSERM U987, Hôpital Ambroise Paré, Paris Descartes University, Boulogne Billancourt, France; Centre d'Evaluation et Traitement de la Douleur, Hôpital Cochin, Paris Descartes University, Paris, France
| | | |
Collapse
|
16
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Oguma N, Takahashi K, Okabe S, Ohta T. Inhibitory effect of polysulfide, an endogenous sulfur compound, on oxidative stress-induced TRPA1 activation. Neurosci Lett 2021; 757:135982. [PMID: 34023406 DOI: 10.1016/j.neulet.2021.135982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Polysulfide (PS), an endogenous sulfur compound, generated by oxidation of hydrogen sulfide, has a stimulatory action on the nociceptive TRPA1 channel. TRPA1 is also activated by reactive oxygen species such as hydrogen peroxide (H2O2) produced during inflammation. Here, we examined the effect of PS on H2O2-induced responses in native and heterologously expressed TRPA1 using a cell-based calcium assay. We also carried out behavioral experiments in vivo. In mouse sensory neurons, H2O2 elicited early TRPA1-dependent and late TRPA1-independent increases of [Ca2+]i. The former was suppressed by the pretreatment with PS. In cells heterologously expressed TRPA1, PS suppressed [Ca2+]i responses to H2O2. Simultaneous measurement of [Ca2+]i and the intracellular PS level revealed that scavenging effect of PS was not related to the inhibitory effect. Removal of extracellular Ca2+, a calmodulin inhibitor and dithiothreitol attenuated the inhibitory effect of PS. Pretreatment with PS diminished nociceptive behaviors induced by H2O2. The present data suggest that PS suppresses oxidative stress-induced TRPA1 activation due to cysteine modification and Ca2+/calmodulin signaling. Thus, endogenous sulfurs may have regulatory roles in nociception via functional changes in TRPA1 under inflammatory conditions.
Collapse
Affiliation(s)
- N Oguma
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - K Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan
| | - S Okabe
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - T Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, Japan; Joint Graduate School of Veterinary Sciences, Gifu University, Tottori University, Tottori, Japan.
| |
Collapse
|
18
|
Small A, Fisher AD, Lee C, Colditz I. Analgesia for Sheep in Commercial Production: Where to Next? Animals (Basel) 2021; 11:ani11041127. [PMID: 33920025 PMCID: PMC8070992 DOI: 10.3390/ani11041127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing societal and customer pressure to provide animals with ‘a life worth living’ continues to apply pressure on industry to alleviate pain associated with husbandry practices, injury and illness. Although a number of analgesic solutions are now available for sheep, providing some amelioration of the acute pain responses, this review has highlighted a number of potential areas for further research. Abstract Increasing societal and customer pressure to provide animals with ‘a life worth living’ continues to apply pressure on livestock production industries to alleviate pain associated with husbandry practices, injury and illness. Over the past 15–20 years, there has been considerable research effort to understand and develop mitigation strategies for painful husbandry procedures in sheep, leading to the successful launch of analgesic approaches specific to sheep in a number of countries. However, even with multi-modal approaches to analgesia, using both local anaesthetic and non-steroidal anti-inflammatory drugs (NSAID), pain is not obliterated, and the challenge of pain mitigation and phasing out of painful husbandry practices remains. It is timely to review and reflect on progress to date in order to strategically focus on the most important challenges, and the avenues which offer the greatest potential to be incorporated into industry practice in a process of continuous improvement. A structured, systematic literature search was carried out, incorporating peer-reviewed scientific literature in the period 2000–2019. An enormous volume of research is underway, testament to the fact that we have not solved the pain and analgesia challenge for any species, including our own. This review has highlighted a number of potential areas for further research.
Collapse
Affiliation(s)
- Alison Small
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
- Correspondence: ; Tel.: +61-2-6776-1435
| | - Andrew David Fisher
- Animal Welfare Science Centre, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Caroline Lee
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
| | - Ian Colditz
- CSIRO Agriculture & Food, Locked Bag 1, Armidale, NSW 2350, Australia; (C.L.); (I.C.)
| |
Collapse
|
19
|
In Vitro Cytotoxic Protective Effect of Alginate-Encapsulated Capsaicin Might Improve Skin Side Effects Associated with the Topical Application of Capsaicin. Molecules 2021; 26:molecules26051455. [PMID: 33800110 PMCID: PMC7962180 DOI: 10.3390/molecules26051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic neuropathic pain, particularly peripheral pain, is a cause of great concern for diabetic patients. Current treatments include numerous agents such as capsaicinoids, a known deterrent of neuropathic pain despite the inconvenience associated with local side effects. In this context, the current work aims to elucidate the potential mechanisms involved in cytotoxicity by capsaicin and proposes an efficient formulation of capsaicin in alginate microcapsules, which significantly reduces side effects from capsaicin topical administration. For this, human dermal fibroblast cells were treated with alginate-microencapsulated capsaicin extracts and screened for potential cytotoxic effects produced by the treatment. Cell viability and morphology were examined, as well as oxidative stress status and anti-inflammatory potential. Our results show that the alginate encapsulated formulation of capsaicin exerted lower cytotoxic effects on human dermal fibroblasts as measured by cell viability and reactive oxygen species (ROS) production. Furthermore, the expression profiles of inflammatory cytokines were significantly altered by the treatment as compared with the control culture.
Collapse
|
20
|
Özcan SS, Gürel G, Çakır M. Gene expression profiles of transient receptor potential (TRP) channels in the peripheral blood mononuclear cells of psoriasis patients. Hum Exp Toxicol 2021; 40:1234-1240. [PMID: 33550865 DOI: 10.1177/0960327121991911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Psoriasis is a chronic autoimmune disease in which peripheral blood mononuclear cells (PBMCs) are involved in the pathological process. Transient receptor potential (TRP) channels expressed in immune cells have been shown to be associated with inflammatory diseases. We aimed to evaluate mRNA expression levels of TRP channels in PBMCs of patients with psoriasis. 30 patients with plaque psoriasis and 30 healthy age- and gender-matched control subjects were included in this study. mRNA expression levels of TRP channels in psoriasis patients were determined by Real-time polymerase chain reaction. A decreased TRPM4, TRPM7, TRPV3, TRPV4, and TRPC6 genes expression levels were found in the patient group compared to controls, respectively (p = 0.045, p = 0.000, p = 0.000, p = 0.045, p = 0.009), whereas, an increased expression level was found in TRPM2 and TRPV1 genes in the patient group compared to controls (p = 0.001 and p = 0.028). This is the first study showing the TRP channel mRNA expressions in PBMCs of psoriasis patients. Different expression patterns of TRP channels may have a role in pathogenesis of psoriasis.
Collapse
Affiliation(s)
- S S Özcan
- Department of Medical Biology, Faculty of Medicine, 162338Yozgat Bozok University, Yozgat, Turkey
| | - G Gürel
- Department of Dermatology, Faculty of Medicine, 162338Yozgat Bozok University, Yozgat, Turkey
| | - M Çakır
- Department of Physiology, Faculty of Medicine, 162338Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
21
|
Antinociceptive effect of triterpene acetyl aleuritolic acid isolated from Croton zehntneri in adult zebrafish (Danio rerio). Biochem Biophys Res Commun 2020; 534:478-484. [PMID: 33261884 DOI: 10.1016/j.bbrc.2020.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023]
Abstract
Croton zehntneri is a plant known as canelinha de cunhã, prevalent in the northeast region of Brazil. Many constituents of the vegetable have already been studied, and their pharmacological properties have been proven, but this is the first study to analyze the antinociceptive effect in adult zebrafish (ZFa) of the triterpene acetyl aleuritolic acid (AAA) isolated from the stem bark. The animals (ZFa; n = 6/group) were treated intraperitoneally (ip; 20 μL) with AAA (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.9% saline; 20 μL), and submitted to the locomotor activity test, as well as 96 h acute toxicity. Other groups (n = 6/each) received the same treatments and underwent acute nociception tests (formalin, cinnamaldehyde, glutamate, acid saline, capsaicin, and hypertonic saline). Possible neuromodulation mechanisms were evaluated. AAA (0.1 or 0.3 or 1.0 mg/mL) reduced the nociceptive behavior induced by acid saline and capsaicin, as well as inhibited corneal nociception induced by hypertonic saline, both without altering the animals' locomotor system and without toxicity. These analgesic effects of AAA were significantly (p > 0.05) similar to those of morphine, used as a positive control. The antinociceptive effect of AAA was inhibited by methylene blue, ketamine, camphor, ruthenium red, amiloride, and mefenamic acid. The antinociceptive effect of AAA on the cornea of animals was inhibited by capsazepine. Therefore, AAA showed pharmacological potential for the treatment of acute pain, and this effect is modulated by cGMP, NMDA receptors, transient receptor potential channels (TRPs), ASICs and has pharmacological potential for the treatment of corneal pain modulated by the TRPV1 channel.
Collapse
|
22
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
23
|
Zhao X, Xia B, Cheng J, Zhu MX, Li Y. PKCε SUMOylation Is Required for Mediating the Nociceptive Signaling of Inflammatory Pain. Cell Rep 2020; 33:108191. [DOI: 10.1016/j.celrep.2020.108191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
|
24
|
Yoshihara M, Tsujimura T, Suzuki T, Nagoya K, Shiraishi N, Magara J, Terunuma M, Inoue M. Sustained laryngeal transient receptor potential vanilloid 1 activation inhibits mechanically induced swallowing in anesthetized rats. Am J Physiol Gastrointest Liver Physiol 2020; 319:G412-G419. [PMID: 32755305 DOI: 10.1152/ajpgi.00082.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major component of gastric acid is hydrochloric acid (HCl), which can activate transient receptor potential vanilloid 1 (TRPV1). In the present study, we investigated how sustained laryngeal TRPV1 activation affects the frequency of the swallowing reflex. Experiments were carried out on 85 male Sprague-Dawley rats. The effects of short and sustained application of chemicals (3 µl of 0.1 N HCl or capsaicin) on the frequency of swallowing and on time-dependent changes in the occurrence of swallowing evoked by supralaryngeal nerve stimulation were determined. To evaluate vascular permeability of the larynx, Evans blue dye was intravenously injected after 5 or 60 min of sustained TRPV1 activation. SB366791 (a TRPV1 inhibitor) and Cap/QX-314 (a TRPV1-expressed neuronal inhibitor) significantly inhibited HCl/capsaicin-induced swallowing, but air flow-induced swallowing was not affected. Although the number of air flow-induced swallows followed by capsaicin stimulation was not affected within 5 min, it was significantly reduced by 60-min capsaicin or HCl application. The swallowing threshold associated with supralaryngeal nerve stimulation did not significantly change throughout the recording period. Evans blue dye concentrations in the larynx were significantly higher at 60 min in the 10-5 M capsaicin group than in the control group. Our results suggest that sustained TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors, which may be attributed to increases in vascular permeability and edema, as part of an inflammatory process.NEW & NOTEWORTHY Although a transient receptor potential vanilloid 1 (TRPV1) inhibitor or TRPV1-expressed neuronal inhibitor significantly inhibited HCl/capsaicin-evoked swallowing, air flow-induced swallowing was not affected. The number of air flow-induced swallows was significantly reduced within 60 min of TRPV1 activation. Evans blue dye concentration in the larynx increased 60 min after capsaicin application. TPRV1 activation not only desensitizes TRPV1 but also inactivates mechanoreceptors caused by increases in vascular permeability and edema.
Collapse
Affiliation(s)
- Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Miho Terunuma
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| |
Collapse
|
25
|
Novel Agents in Neuropathic Pain, the Role of Capsaicin: Pharmacology, Efficacy, Side Effects, Different Preparations. Curr Pain Headache Rep 2020; 24:53. [PMID: 32761268 DOI: 10.1007/s11916-020-00886-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Capsaicin is a natural substance used to treat neuropathic pain because of its ability to be used in a more direct form on patients and efficiently treat their pain without the amount of side effects seen in the use of oral medications. RECENT FINDINGS Currently, the treatments for neuropathic pain are, control of the underlying disease process, then focused on symptomatic relief with pharmacotherapy, topical analgesics, or other interventions. When all pharmacological agents fail to relieve the pain, interventional strategies can be considered, such as neural blocks, spinal cord stimulation, and intrathecal administered medications. The response to current treatment of neuropathic pain is only modest relief of symptoms. Multiple treatment options may be attempted, while ultimately leaving patients with refractory neuropathic pain. For these reasons, a better treatment approach to neuropathic pain is greatly needed. Overall, capsaicin has great potential for becoming a first- or second-line treatment for neuropathic pain, and for becoming a therapeutic option for many other neuropathic pain-related disease states.
Collapse
|
26
|
Thomas SE, Laycock H. The use of high dose topical capsaicin in the management of peripheral neuropathy: narrative review and local experience. Br J Pain 2020; 14:133-140. [PMID: 32537152 DOI: 10.1177/2049463720914332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Capsaicin, derived from the chilli pepper plant, is available in high concentration (8%) patches to provide topical therapy for neuropathic pain. Its analgesic effects relate to defunctionalisation and nerve terminal retraction of predominantly C fibres in the dermis and epidermis. Systematic reviews and meta-analysis support its use for the management of post-herpetic neuralgia and HIV neuropathy with some evidence for use in painful peripheral diabetic neuropathy. The article concludes with advice on the practicalities of running a topical 8% capsaicin clinic for peripheral neuropathic pain.
Collapse
|
27
|
Takaoka K, Cyril AC, Jinesh S, Radhakrishnan R. Mechanisms of pain in sickle cell disease. Br J Pain 2020; 15:213-220. [PMID: 34055342 DOI: 10.1177/2049463720920682] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives The hallmark of sickle cell disease (SCD) is acute and chronic pain, and the pain dominates the clinical characteristics of SCD patients. Although pharmacological treatments of SCD targeting the disease mechanisms have been improved, many SCD patients suffer from pain. To overcome the pain of the disease, there have been renewed requirements to understand the novel molecular mechanisms of the pain in SCD. Methods We concisely summarized the molecular mechanisms of SCD-related acute and chronic pain, focusing on potential drug targets to treat pain. Results Acute pain of SCD is caused by vaso-occulusive crisis (VOC), impaired oxygen supply or infarction-reperfusion tissue injuries. In VOC, inflammatory cytokines include tryptase activate nociceptors and transient receptor potential vanilloid type 1. In tissue injury, the secondary inflammatory response is triggered and causes further tissue injuries. Tissue injury generates cytokines and pain mediators including bradykinin, and they activate nociceptive afferent nerves and trigger pain. The main causes of chronic pain are from extended hyperalgesia after a VOC and central sensitization. Neuropathic pain could be due to central or peripheral nerve injury, and protein kinase C might be associated with the pain. In central sensitization, neuroplasticity in the brain and the activation of glial cells may be related with the pain. Discussion In this review, we summarized the molecular mechanisms of SCD-related acute and chronic pain. The novel treatments targeting the disease mechanisms would interrupt complications of SCD and reduce the pain of the SCD patients.
Collapse
Affiliation(s)
- Kensuke Takaoka
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | | | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
28
|
An update on targets for treating osteoarthritis pain: NGF and TRPV1. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2020; 6:129-145. [PMID: 34178580 DOI: 10.1007/s40674-020-00146-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose of review a)Osteoarthritis (OA) is the most common form of arthritis, and pain is the primary symptom of the disease, yet analgesic options for treating OA pain remain limited. In this review, we aimed to give an update on the current clinical and preclinical studies targeting two pathways that are being investigated for treating OA pain: the nerve growth factor (NGF) pathway and the transient receptor potential vanilloid-1 (TRPV1) pathway. Recent findings b)Antibodies against NGF, small molecule inhibitors of TrkA, TRPV1 agonists, and TRPV1 antagonists are all in different stages of clinical and pre-clinical testing for the treatment of OA pain. NGF antibodies have shown efficacy in the primary endpoints tested compared to placebo, however, rapidly progressive OA has been consistently observed in a subset of patients and the cause remains unclear. TRPV1 agonists have also demonstrated reduced pain with no serious adverse events - the most common adverse events include a burning or warming sensation upon administration. Summary c)Targeting the NGF and TRPV1 pathways appear effective for reducing OA pain, but further work is needed to better understand which patients may benefit most from these treatments. The anti-NGF antibody tanezumab and the TRPV1 agonist CNTX-4975 have both received fast-track designation from the FDA for the treatment of OA pain.
Collapse
|
29
|
Wang X, Bai X, Su D, Zhang Y, Li P, Lu S, Gong Y, Zhang W, Tang B. Simultaneous Fluorescence Imaging Reveals N-Methyl-d-aspartic Acid Receptor Dependent Zn 2+/H + Flux in the Brains of Mice with Depression. Anal Chem 2020; 92:4101-4107. [PMID: 32037810 DOI: 10.1021/acs.analchem.9b05771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Depression is immensely attributed to the overactivation of N-methyl-d-aspartic acid (NMDA) receptor in the brains. As regulatory binding partners of NMDA receptor, both Zn2+ and H+ are intimately interrelated to NMDA receptor's activity. Therefore, exploring synergistic changes on the levels of Zn2+ and H+ in brains will promote the knowledge and treatment of depression. However, the lack of efficient, appropriate imaging tools limits simultaneously tracking Zn2+ and H+ in living mouse brains. Thus, a well-designed dual-color fluorescent probe (DNP) was fabricated for the simultaneous monitoring of Zn2+ and H+ in the brains of mice with depression. Encountering Zn2+, the probe evoked bright blue fluorescence at 460 nm. Meanwhile, the red fluorescence at 680 nm was decreased with H+ addition. With blue/red dual fluorescence signal of DNP, we observed the synchronous increased Zn2+ and H+ in PC12 cells under oxidative stress. Notably, in vivo imaging for the first time revealed the simultaneous reduction of Zn2+ and pH in brains of mice with depression-like behaviors. Further results implied that the NMDA receptor might be responsible for the coinstantaneous fluctuation of Zn2+ and H+ during depression. Altogether, this work is conducive to the knowledge of neural signal transduction mechanisms, advancing our understanding of the pathogenesis in depression.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiaoyi Bai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yandi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuyi Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yulin Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
30
|
Alaimo A, Rubert J. The Pivotal Role of TRP Channels in Homeostasis and Diseases throughout the Gastrointestinal Tract. Int J Mol Sci 2019; 20:ijms20215277. [PMID: 31652951 PMCID: PMC6862298 DOI: 10.3390/ijms20215277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The transient receptor potential (TRP) channels superfamily are a large group of proteins that play crucial roles in cellular processes. For example, these cation channels act as sensors in the detection and transduction of stimuli of temperature, small molecules, voltage, pH, and mechanical constrains. Over the past decades, different members of the TRP channels have been identified in the human gastrointestinal (GI) tract playing multiple modulatory roles. Noteworthy, TRPs support critical functions related to the taste perception, mechanosensation, and pain. They also participate in the modulation of motility and secretions of the human gut. Last but not least, altered expression or activity and mutations in the TRP genes are often related to a wide range of disorders of the gut epithelium, including inflammatory bowel disease, fibrosis, visceral hyperalgesia, irritable bowel syndrome, and colorectal cancer. TRP channels could therefore be promising drug targets for the treatment of GI malignancies. This review aims at providing a comprehensive picture of the most recent advances highlighting the expression and function of TRP channels in the GI tract, and secondly, the description of the potential roles of TRPs in relevant disorders is discussed reporting our standpoint on GI tract–TRP channels interactions.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| | - Josep Rubert
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo (Tn), Italy.
| |
Collapse
|
31
|
Kameda T, Zvick J, Vuk M, Sadowska A, Tam WK, Leung VY, Bölcskei K, Helyes Z, Applegate LA, Hausmann ON, Klasen J, Krupkova O, Wuertz-Kozak K. Expression and Activity of TRPA1 and TRPV1 in the Intervertebral Disc: Association with Inflammation and Matrix Remodeling. Int J Mol Sci 2019; 20:E1767. [PMID: 30974795 PMCID: PMC6480240 DOI: 10.3390/ijms20071767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023] Open
Abstract
Transient receptor potential (TRP) channels have emerged as potential sensors and transducers of inflammatory pain. The aims of this study were to investigate (1) the expression of TRP channels in intervertebral disc (IVD) cells in normal and inflammatory conditions and (2) the function of Transient receptor potential ankyrin 1 (TRPA1) and Transient receptor potential vanilloid 1 (TRPV1) in IVD inflammation and matrix homeostasis. RT-qPCR was used to analyze human fetal, healthy, and degenerated IVD tissues for the gene expression of TRPA1 and TRPV1. The primary IVD cell cultures were stimulated with either interleukin-1 beta (IL-1β) or tumor necrosis factor alpha (TNF-α) alone or in combination with TRPA1/V1 agonist allyl isothiocyanate (AITC, 3 and 10 µM), followed by analysis of calcium flux and the expression of inflammation mediators (RT-qPCR/ELISA) and matrix constituents (RT-qPCR). The matrix structure and composition in caudal motion segments from TRPA1 and TRPV1 wild-type (WT) and knock-out (KO) mice was visualized by FAST staining. Gene expression of other TRP channels (A1, C1, C3, C6, V1, V2, V4, V6, M2, M7, M8) was also tested in cytokine-treated cells. TRPA1 was expressed in fetal IVD cells, 20% of degenerated IVDs, but not in healthy mature IVDs. TRPA1 expression was not detectable in untreated cells and it increased upon cytokine treatment, while TRPV1 was expressed and concomitantly reduced. In inflamed IVD cells, 10 µM AITC activated calcium flux, induced gene expression of IL-8, and reduced disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and collagen 1A1, possibly via upregulated TRPA1. TRPA1 KO in mice was associated with signs of degeneration in the nucleus pulposus and the vertebral growth plate, whereas TRPV1 KO did not show profound changes. Cytokine treatment also affected the gene expression of TRPV2 (increase), TRPV4 (increase), and TRPC6 (decrease). TRPA1 might be expressed in developing IVD, downregulated during its maturation, and upregulated again in degenerative disc disease, participating in matrix homeostasis. However, follow-up studies with larger sample sizes are needed to fully elucidate the role of TRPA1 and other TRP channels in degenerative disc disease.
Collapse
Affiliation(s)
- Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Department of Orthopaedic Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | - Joel Zvick
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Miriam Vuk
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Aleksandra Sadowska
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Wai Kit Tam
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624 Pécs, Szigeti út 12., Hungary.
- János Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Lee Ann Applegate
- Department of Musculoskeletal Medicine, Unit of Regenerative Therapy (UTR), University Hospital Lausanne, EPCR/02 Chemin des Croisettes 22, 1066 Epalinges, Switzerland.
| | - Oliver N Hausmann
- Neuro- and Spine Center, St. Anna Hospital, Sankt-Anna-Strasse 32, 6006 Luzern, Switzerland.
| | - Juergen Klasen
- Clinic Prodorso, Walchestrasse 15, 8006 Zurich, Switzerland.
| | - Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
| | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Hoenggerbergring 64, 8093 Zurich, Switzerland.
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (AU), Harlachinger Str. 51, 81547 Munich, Germany.
- Department of Health Sciences, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
| |
Collapse
|
32
|
Sheehan K, Lee J, Chong J, Zavala K, Sharma M, Philipsen S, Maruyama T, Xu Z, Guan Z, Eilers H, Kawamata T, Schumacher M. Transcription factor Sp4 is required for hyperalgesic state persistence. PLoS One 2019; 14:e0211349. [PMID: 30811405 PMCID: PMC6392229 DOI: 10.1371/journal.pone.0211349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Understanding how painful hypersensitive states develop and persist beyond the initial hours to days is critically important in the effort to devise strategies to prevent and/or reverse chronic painful states. Changes in nociceptor transcription can alter the abundance of nociceptive signaling elements, resulting in longer-term change in nociceptor phenotype. As a result, sensitized nociceptive signaling can be further amplified and nocifensive behaviors sustained for weeks to months. Building on our previous finding that transcription factor Sp4 positively regulates the expression of the pain transducing channel TRPV1 in Dorsal Root Ganglion (DRG) neurons, we sought to determine if Sp4 serves a broader role in the development and persistence of hypersensitive states in mice. We observed that more than 90% of Sp4 staining DRG neurons were small to medium sized, primarily unmyelinated (NF200 neg) and the majority co-expressed nociceptor markers TRPV1 and/or isolectin B4 (IB4). Genetically modified mice (Sp4+/-) with a 50% reduction of Sp4 showed a reduction in DRG TRPV1 mRNA and neuronal responses to the TRPV1 agonist-capsaicin. Importantly, Sp4+/- mice failed to develop persistent inflammatory thermal hyperalgesia, showing a reversal to control values after 6 hours. Despite a reversal of inflammatory thermal hyperalgesia, there was no difference in CFA-induced hindpaw swelling between CFA Sp4+/- and CFA wild type mice. Similarly, Sp4+/- mice failed to develop persistent mechanical hypersensitivity to hind-paw injection of NGF. Although Sp4+/- mice developed hypersensitivity to traumatic nerve injury, Sp4+/- mice failed to develop persistent cold or mechanical hypersensitivity to the platinum-based chemotherapeutic agent oxaliplatin, a non-traumatic model of neuropathic pain. Overall, Sp4+/- mice displayed a remarkable ability to reverse the development of multiple models of persistent inflammatory and neuropathic hypersensitivity. This suggests that Sp4 functions as a critical control point for a network of genes that conspire in the persistence of painful hypersensitive states.
Collapse
Affiliation(s)
- Kayla Sheehan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jessica Lee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Jillian Chong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Kathryn Zavala
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tomoyuki Maruyama
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Zheyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
| | - Tomoyuki Kawamata
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Mechanism for Regulation of Melanoma Cell Death via Activation of Thermo-TRPV4 and TRPV2. JOURNAL OF ONCOLOGY 2019; 2019:7362875. [PMID: 30881453 PMCID: PMC6383420 DOI: 10.1155/2019/7362875] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/30/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
Abstract
Background Thermo-TRPs (temperature-sensitive transient receptor potential channels) belong to the TRP (transient receptor potential) channel superfamily. Emerging evidence implied that thermo-TRPs have been involved in regulation of cell fate in certain tumors. However, their distribution profiles and roles in melanoma remain incompletely understood. Methods Western blot and digital PCR approaches were performed to identify the distribution profiles of six thermo-TRPs. MTT assessment was employed to detect cell viability. Flow cytometry was applied to test cell cycle and apoptosis. Calcium imaging was used to determine the function of channels. Five cell lines, including one normal human primary epidermal melanocytes and two human malignant melanoma (A375, G361) and two human metastatic melanoma (A2058, SK-MEL-3) cell lines, were chosen for this research. Results In the present study, six thermo-TRPs including TRPV1/2/3/4, TRPA1, and TRPM8 were examined in human primary melanocytes and melanoma cells. We found that TRPV2/4, TRPA1, and TRPM8 exhibited ectopic distribution both in melanocytes and melanoma cells. Moreover, activation of TRPV2 and TRPV4 could lead to the decline of cell viability for melanoma A2058 and A375 cells. Subsequently, activation of TRPV2 by 2-APB (IC50 = 150 μM) induced cell necrosis in A2058 cells, while activation of TRPV4 by GSK1016790A (IC50 = 10 nM) enhanced apoptosis of A375 cells. Furthermore, TRPV4 mediated cell apoptosis of melanoma via phosphorylation of AKT and was involved in calcium regulation. Conclusion Overall, our studies revealed that TRPV4 and TRPV2 mediated melanoma cell death via channel activation and characterized the mechanism of functional TRPV4 ion channel in regulating AKT pathway driven antitumor process. Thus, they may serve as potential biomarkers for the prognosis and are targeted for the therapeutic use in human melanoma.
Collapse
|
34
|
Adamante G, de Almeida AS, Rigo FK, da Silva Silveira E, Coelho YO, De Prá SDT, Milioli AM, Camponogara C, Casoti R, Bellinaso F, Desideri AV, Santos MFC, Ferreira J, Oliveira SM, Trevisan G. Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice. Life Sci 2018; 216:215-226. [PMID: 30447303 DOI: 10.1016/j.lfs.2018.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/31/2023]
Abstract
Diosmetin is an O‑methylated flavone found naturally in citrus fruit, and it was identified in Amphilophium crucigerum (L.), a plant popularly used as an analgesic. This compound had different pharmacological effects and presented a chemical structure like the flavonoid eriodyctiol that exhibited antinociceptive effects by TRPV1 antagonism. However, the possible antinociceptive effect of this compound was not well documented. Thus, the goal of the present study was to evaluate the antinociceptive effect of diosmetin and its mechanism of action. The diosmetin effect on different pain models and its possible adverse effects were assessed on adult Swiss male mice (25-30 g). Mice spinal cord samples were used on calcium influx and binding assays using TRPV1 agonists. First, it was observed that the diosmetin reduced calcium influx mediated by capsaicin in synaptosomes and displace the specific binding to [3H]-resiniferatoxin in membrane fractions from the spinal cord of mice. Diosmetin (0.15 to 1.5 mg/kg, intragastric, i.g.) presented antinociceptive and antiedematogenic effect in the capsaicin intraplantar test and induced antinociception in a noxious heat test (48 °C). Also, treatment with diosmetin reduced mechanical and heat hypersensitivity observed in a model of inflammatory or neuropathic pain. Acute diosmetin administration in mice did not induce locomotor or body temperature changes, or cause liver enzyme abnormalities or alter renal function. Moreover, there were no observed changes in gastrointestinal transit or induction of ulcerogenic activity after diosmetin administration. In conclusion, our results support the antinociceptive properties of diosmetin which seems to occur via TRPV1 antagonist in mice.
Collapse
Affiliation(s)
- Gabriela Adamante
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Amanda Spring de Almeida
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Flávia Karine Rigo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Edinara da Silva Silveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Yanka Oliveira Coelho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Samira Dal-Toé De Prá
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Alessandra Marcone Milioli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Camila Camponogara
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Rosana Casoti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (FCFRP-USP), 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernando Bellinaso
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Alexandre Vinhal Desideri
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil
| | - Mario Ferreira Conceição Santos
- Programa de Pós-Graduação em Química, Instituto de Química de São Carlos - Universidade de São Paulo (IQSC-USP), 13560-970 São Carlos, SP, Brazil
| | - Juliano Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina (UFSC), 88049-900 Florianópolis, SC, Brazil
| | - Sara Marchesan Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Criciúma, SC, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Biochemical and Pharmacological Characterization of a Mice Model of Complex Regional Pain Syndrome. Reg Anesth Pain Med 2018; 42:507-516. [PMID: 28609318 DOI: 10.1097/aap.0000000000000622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Complex regional pain syndrome is a challenging disease to treat. Recently, a mouse fracture model of complex regional pain syndrome has been developed that has many signs of the clinical syndrome. However, many aspects of the sensory neuron biochemistry and behavioral and pharmacological characterization of this model remain to be clarified. METHODS Mice were randomly assigned to fracture/cast or control (naive) groups. Fracture/cast mice underwent a closed distal tibia facture, with hindlimb wrapped in casting tape for 3 weeks. After cast removal, mice were tested for mechanical allodynia, burrowing behavior, and motor ability over a 12-week period. Protein immunohistochemistry was performed for substance P, calcitonin gene-related peptide, tropomyosin receptor kinase A, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1, colocalized in neurons, in the ipsilateral lumbar dorsal root ganglia (DRGs). Analgesic drugs were tested for pain-relieving efficacy. RESULTS Mechanical allodynia was greater in the ipsilateral hindpaw (P = 0.0002) in the fracture/cast group versus the control group, over the 3- to 12-week period. The amount of burrowing material removed was decreased (P = 0.0026), and there were deficits in spontaneous motor-rearing behavior (P = 0.018). Immunostaining of substance P, calcitonin gene-related peptide, Trk A receptor, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1 all demonstrated up-regulation in the DRGs of fracture mice versus controls (all P < 0.05). Morphine, pregabalin, ketamine, acetaminophen, and dexamethasone transiently increased force withdrawal thresholds on the ipsilateral (fracture) side and improved burrowing activity after injection (all P < 0.05). Ketorolac improved only burrowing. CONCLUSIONS Persistent pain-related behavior was demonstrated in this mouse fracture/cast model with wide-scale DRG up-regulation of pain mediators. Antihyperalgesic drugs reduced mechanical allodynia and improved burrowing.
Collapse
|
36
|
Bais S, Berry CT, Liu X, Ruthel G, Freedman BD, Greenberg RM. Atypical pharmacology of schistosome TRPA1-like ion channels. PLoS Negl Trop Dis 2018; 12:e0006495. [PMID: 29746471 PMCID: PMC5963811 DOI: 10.1371/journal.pntd.0006495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease estimated to affect over 200 million people worldwide. Praziquantel is the only antischistosomal currently available for treatment, and there is an urgent need for new therapeutics. Ion channels play key roles in physiology and are targets for many anthelmintics, yet only a few representatives have been characterized in any detail in schistosomes and other parasitic helminths. The transient receptor potential (TRP) channel superfamily comprises a diverse family of non-selective cation channels that play key roles in sensory transduction and a wide range of other functions. TRP channels fall into several subfamilies. Members of both the TRPA and TRPV subfamilies transduce nociceptive and inflammatory signals in mammals, and often also respond to chemical and thermal signals. We previously showed that although schistosomes contain no genes predicted to encode TRPV channels, TRPV1-selective activators such as capsaicin and resiniferatoxin elicit dramatic hyperactivity in adult worms and schistosomula. Surprisingly, this response requires expression of a S. mansoni TRPA1-like orthologue (SmTRPA). Here, we show that capsaicin induces a rise in intracellular Ca2+ in mammalian cells expressing either SmTRPA or a S. haematobium TRPA1 orthologue (ShTRPA). We also test SmTRPA and ShTRPA responses to various TRPV1 and TRPA1 modulators. Interestingly, in contrast to SmTRPA, ShTRPA is not activated by the TRPA1 activator AITC (allyl isothiocyanate), nor do S. haematobium adult worms respond to this compound, a potentially intriguing species difference. Notably, 4-hydroxynonenal (4-HNE), a host-derived, inflammatory product that directly activates mammalian TRPA1, also activates both SmTRPA and ShTRPA. Our results point to parasite TRPA1-like channels which exhibit atypical, mixed TRPA1/TRPV1-like pharmacology, and which may also function to transduce endogenous host signals. Schistosomes are parasitic flatworms that infect hundreds of millions of people worldwide. They cause schistosomiasis, a disease with major consequences for human health and economic development. There is only a single drug available for treatment and control of this highly prevalent disease, and there is an urgent need for development of new treatments. TRP ion channels play key roles in sensory (and other) functions. One type of TRP channel, TRPV1, is activated by capsaicin, the active ingredient in hot peppers. However, schistosomes do not have any TRPV-like channels. Nonetheless, we previously showed that capsaicin and similar compounds induce dramatic hyperactivity in schistosomes, and that this response is abolished by suppressing expression of SmTRPA, a schistosome TRPA1-like channel. Mammalian TRPA1 channels are not sensitive to capsaicin. Here, we show that the SmTRPA channel itself responds to capsaicin, resulting in an influx of Ca2+ into cells. ShTRPA, a TRPA1-like channel from another schistosome, S. haematobium, is also sensitive to capsaicin. Thus, the pharmacology of schistosome TRPA1 channels apparently differs from that of host mammalian channels, a characteristic that could indicate mixed TRPA/TRPV functionality and might be exploitable for development of new antischistosomal drugs. Furthermore, we show that schistosome TRPA1-like channels are activated by host-derived compounds, perhaps indicating a mechanism by which the parasite can respond to host signals.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Corbett T. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bruce D. Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Rossato MF, Rigo FK, Oliveira SM, Guerra GP, Silva CR, Cunha TM, Gomez MV, Ferreira J, Trevisan G. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. Eur J Pharmacol 2018; 828:42-51. [PMID: 29577893 DOI: 10.1016/j.ejphar.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
The clinical use of paclitaxel as a chemotherapeutic agent is limited by the severe acute and chronic hypersensitivity caused when it is administered via intraperitoneal or intravenous routes. Thus far, evidence has suggested that transient receptor potential vanilloid-1 (TRPV1) has a key role in the chronic neuropathy induced by paclitaxel. Despite this, the role of TRPV1 in paclitaxel -related acute nociception, especially the development of visceral nociception, has not been evaluated. Thus, the goal of this study was to evaluate the participation of TRPV1 in a model of acute nociception induced by paclitaxel in rats and mice. A single intraperitoneal (i.p.) paclitaxel administration (1 mg/kg, i.p.) produced an immediate visceral nociception response 1 h after administration, caused mechanical and heat hypersensitivity, and diminished burrowing behaviour 24 h after administration. These nociceptive responses were reduced by SB-366791 treatment (0.5 mg/kg, i.p., a TRPV1 antagonist). In addition, TRPV1-positive sensory fibre ablation (using resiniferatoxin, 200 µg/kg, s.c.) reduced visceral nociception and mechanical or heat hypersensitivity caused by paclitaxel injection. Similarly, TRPV1 deficient mice showed a pronounced reduction in mechanical allodynia to paclitaxel acute injection and did not develop heat hypersensitivity. Moreover, 24 h after its injection, paclitaxel induced chemical hypersensitivity to capsaicin (a TRPV1 agonist, 0.01 nmol/site) and increased TRPV1 immunoreactivity in the dorsal root ganglion and sciatic nerve. In conclusion, TRPV1 is involved in mechanical and heat hypersensitivity and spontaneous-pain behaviour induced 24 h after a single paclitaxel injection. This receptor is also involved in visceral nociception induced immediately after paclitaxel administration.
Collapse
Affiliation(s)
- Mateus Fortes Rossato
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Flavia Karine Rigo
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (Unesc), 88806-000 Criciúma, SC, Brazil; Teaching and Research Institute, Santa Casa de Misericórdia de Belo Horizonte, 30150-221 Belo Horizonte, MG, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Gustavo Petri Guerra
- Federal University of Technology of Paraná (UTFPR), 85884-000 Medianeira, PR, Brazil
| | - Cássia Regina Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Marcus Vinícius Gomez
- Teaching and Research Institute, Santa Casa de Misericórdia de Belo Horizonte, 30150-221 Belo Horizonte, MG, Brazil
| | - Juliano Ferreira
- Graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), 88049-900 Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Graduate Program in Health Science, University of the Extreme South of Santa Catarina (Unesc), 88806-000 Criciúma, SC, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
38
|
Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 27:564-577. [DOI: 10.1007/s00586-017-5360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
|
39
|
Lawton SK, Xu F, Tran A, Wong E, Prakash A, Schumacher M, Hellman J, Wilhelmsen K. N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1. THE JOURNAL OF IMMUNOLOGY 2017; 199:1465-1475. [PMID: 28701511 DOI: 10.4049/jimmunol.1602151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Abstract
N-Arachidonoyl dopamine (NADA) is an endogenous lipid that potently activates the transient receptor potential vanilloid 1 (TRPV1), which mediates pain and thermosensation. NADA is also an agonist of cannabinoid receptors 1 and 2. We have reported that NADA reduces the activation of cultured human endothelial cells by LPS and TNF-α. Thus far, in vivo studies using NADA have focused on its neurologic and behavioral roles. In this article, we show that NADA potently decreases in vivo systemic inflammatory responses and levels of the coagulation intermediary plasminogen activator inhibitor 1 in three mouse models of inflammation: LPS, bacterial lipopeptide, and polymicrobial intra-abdominal sepsis. We also found that the administration of NADA increases survival in endotoxemic mice. Additionally, NADA reduces blood levels of the neuropeptide calcitonin gene-related peptide but increases the neuropeptide substance P in LPS-treated mice. We demonstrate that the anti-inflammatory effects of NADA are mediated by TRPV1 expressed by nonhematopoietic cells and provide data suggesting that neuronal TRPV1 may mediate NADA's anti-inflammatory effects. These results indicate that NADA has novel TRPV1-dependent anti-inflammatory properties and suggest that the endovanilloid system might be targeted therapeutically in acute inflammation.
Collapse
Affiliation(s)
- Samira K Lawton
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Erika Wong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and .,Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| |
Collapse
|
40
|
Balemans D, Boeckxstaens GE, Talavera K, Wouters MM. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2017; 312:G635-G648. [PMID: 28385695 DOI: 10.1152/ajpgi.00401.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders including functional dyspepsia, irritable bowel syndrome, and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5, and TRPM8), and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal, and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G protein-coupled receptor superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the present knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.
Collapse
Affiliation(s)
- Dafne Balemans
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven Belgium
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium; and
| |
Collapse
|
41
|
Methylene Blue Effectiveness as Local Analgesic after Anorectal Surgery: A Literature Review. Adv Med 2017; 2017:3968278. [PMID: 28894786 PMCID: PMC5574222 DOI: 10.1155/2017/3968278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Methylene blue (MB) has been found to have unique analgesic property through temporary disruption of sensory nerve conduction. In anorectal surgery, MB is widely used as a biologic stain but the analgesic effect has never been studied. Thus, a literature review completed with critical appraisal is required to find out its efficacy. METHODS A review has been run to find out its efficacy. Literature search proceeded in database sites, namely, PubMed, EBSCO, Cochrane, Wiley, and ProQuest using the following keywords: "anorectal" OR "hemorrhoid" OR "anal fistula" OR "anal fissure" OR "anal abscess" OR "anal pruritus" AND "methylene blue" AND "analgesic"; then the critical appraisal and its implication were discussed. RESULT There were 491 articles in full text found, and four studies met the inclusion criteria. Two studies were focused on the evaluation of VAS in hemorrhoid surgery whereas the rest were focused on the evaluation of symptom score in anal pruritus. CONCLUSIONS A study with level of evidence 2 on VAS showed the efficacy. The rest showed insufficient evidence due to variations of anorectal surgery and the methods and techniques of MB application. A further prospective clinical study is required.
Collapse
|
42
|
Feasibility of Topical Applications of Natural High-Concentration Capsaicinoid Solutions in Patients with Peripheral Neuropathic Pain: A Retrospective Analysis. Pain Res Manag 2016; 2016:9703036. [PMID: 28115879 PMCID: PMC5223041 DOI: 10.1155/2016/9703036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 11/17/2022]
Abstract
Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1%) induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP). While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands) has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25–75: 44.7–67.1], male/female: 30/54) with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137). Indications were postsurgical PNP (85.7%) and nonsurgical PNP (14.3%) (posttraumatic, HIV-related, postherpetic, and radicular PNP). Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm2 [IQR25–75: 144–531]. The median amount of capsaicinoids was 55.1 mg [IQR25–75: 28.7–76.5] per plaster and the median concentration was 172.3 μg/cm2 [IQR25–75: 127.6–255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6–19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate PNP in clinical practice.
Collapse
|
43
|
Monastyrnaya M, Peigneur S, Zelepuga E, Sintsova O, Gladkikh I, Leychenko E, Isaeva M, Tytgat J, Kozlovskaya E. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor. Mar Drugs 2016; 14:E229. [PMID: 27983679 PMCID: PMC5192466 DOI: 10.3390/md14120229] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1-APHC3 from H. crispa, and clusters with the peptides from so named "analgesic cluster" of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10-7 and 7.0 × 10-7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21-TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides.
Collapse
Affiliation(s)
- Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
44
|
Guan Z, Hellman J, Schumacher M. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways. F1000Res 2016; 5. [PMID: 27781082 PMCID: PMC5054801 DOI: 10.12688/f1000research.8710.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Tissue injury, whether by trauma, surgical intervention, metabolic dysfunction, ischemia, or infection, evokes a complex cellular response (inflammation) that is associated with painful hyperalgesic states. Although in the acute stages it is necessary for protective reflexes and wound healing, inflammation may persist well beyond the need for tissue repair or survival. Prolonged inflammation may well represent the greatest challenge mammalian organisms face, as it can lead to chronic painful conditions, organ dysfunction, morbidity, and death. The complexity of the inflammatory response reflects not only the inciting event (infection, trauma, surgery, cancer, or autoimmune) but also the involvement of heterogeneous cell types including neuronal (primary afferents, sensory ganglion, and spinal cord), non-neuronal (endothelial, keratinocytes, epithelial, and fibroblasts), and immune cells. In this commentary, we will examine 1.) the expression and regulation of two members of the transient receptor potential family in primary afferent nociceptors and their activation/regulation by products of inflammation, 2.) the role of innate immune pathways that drive inflammation, and 3.) the central nervous system’s response to injury with a focus on the activation of spinal microglia driving painful hyperalgesic states.
Collapse
Affiliation(s)
- Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
45
|
Ma Z, Li Y, Zhang YP, Shields LBE, Xie Q, Yan G, Liu W, Chen G, Zhang Y, Brommer B, Xu XM, Lu Y, Chen X, Shields CB. Thermal nociception using a modified Hargreaves method in primates and humans. FUNCTIONAL NEUROLOGY 2016; 30:229-36. [PMID: 26727701 DOI: 10.11138/fneur/2015.30.4.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nociception is an important protective mechanism. The Hargreaves method, which involves measuring withdrawal latency following thermal stimulation to Thermal nociception using a modified Hargreaves method in primates and humans the paw, is commonly used to measure pain thresholds in rodents. We modified this technique to measure pain thresholds in monkeys and humans. The modified Hargreaves method was used to quantitate pain sensitivity in eight normal rhesus monkeys, 55 human volunteers, and 12 patients with spinal cord or cauda equina lesions. Thermal stimulation was delivered at 80% of maximum output, and the duration of the stimulation was set at a maximum of 10 seconds to avoid skin injury. The following withdrawal latencies were recorded: 2.7 ± 0.12 seconds in volunteers and 3.4 ± 0.35 seconds in neurologically intact monkeys (p>0.05). Patients with spinal cord or cauda equina lesions showed significantly increased latencies (p<0.001). The modified Hargreaves technique is a safe and reliable method that can provide a validated measure of physiological pain sensation.
Collapse
|
46
|
Li J, Jiang J. Role of transient receptor potential vanilloid subetype 1 in the increase of thermal pain threshold by moxibustion. J TRADIT CHIN MED 2015; 35:583-7. [PMID: 26591690 DOI: 10.1016/s0254-6272(15)30143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED OBTECTIVE: To explore the role of transient receptor potential vanilloid subetype 1 (TRPV1) in the increase of the thermal pain threshold by moxibustion. METHODS Forty Kunming mice (20 ± 2) g were randomized into control group, capsaicin group, capsazepine group, moxibustion group and moxibustion + capsazepine (MC) group with 8 mice in each, and 16 C57BL/6 wild-type mice (18 ± 2) g were randomized into wild-type (WT) control group and WT moxibustion group with 8 mice in each, and 14 TRPV1 knockout mice (18 ± 2) g were randomized into knockout (KO) control group and KO moxibustion-group with 7 in each. Each mouse in the capsaicin group was subcutaneously injected with the amount of 0.1 mL/10 g into L5 and L6 spinal cords; each mouse in the capsazepine group was intraperitoneally injected with the amount of 0.1 mL/10 g. Similarly, each mouse in the moxibustion group was given a suspended moxibustion with specially-made moxa-stick for 20 min on L5 and L6 spinal cords. Each mouse in MC group was intraperitoneally injected with the amount of 0.1 mL/1 0 g first, then after 15 min was given a suspended moxibustion for 20 min on L5 and L6 spinal cords. Each mouse in WT moxibustion group and KO moxibustion group was given a suspended moxibustion with specially-made moxa-stick for 20 min on L5 and L6 spinal cords. The control group, WT control group and KO control group were of no treatment in any way. After all treatments were completed, the digital-display measurement instrument for thermal pain was used to measure the threshold of thermal pain in each group respectively. RESULTS Compared with the control group, the thresholds of thermal pain in the moxibustion group and MC group were significantly increased (P <0.01); no significant changes in the thresholds in the capsaicin group and the capsazepine group (P > 0.05); compared with moxibustion group, he threshold of thermal in MC group was obviously decreased (P < 0.01). Compared with WT control group, the threshold of thermal pain in WT moxibustion group was significantly increased (P < 0.01); compared with KO control group, no changes in the threshold in KO moxibustion group (P > 0.05). CONCLUSION TRPV1 participated in the process of increasing the threshold of thermal pain by stimulating L5 and L6 of mice spinal cord with burning mosa-stick.
Collapse
|
47
|
Wang C, Sun D, Liu C, Zhu C, Jing X, Chen S, Liu C, Zhi K, Xu T, Wang H, Liu J, Xu Y, Liu Z, Lin N. Mother root of Aconitum carmichaelii Debeaux exerts antinociceptive effect in Complet Freund's Adjuvant-induced mice: roles of dynorpin/kappa-opioid system and transient receptor potential vanilloid type-1 ion channel. J Transl Med 2015; 13:284. [PMID: 26320055 PMCID: PMC4553211 DOI: 10.1186/s12967-015-0636-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Processed Chuanwu (PCW), the mother root of Aconitum carmichaelii Debeauxv, has been widely used as a classic Traditional Chinese Medicine for pain relieve for over two millennia clinically. However, its action on chronic inflammatory pain has not been clarified. Here, we investigated the antinociceptive effect of PCW in complete freund's adjuvant (CFA)-induced mice and its possible mechanisms associated with opioid system and TRPV1 ion channel. METHODS Male ICR mice were intraplantarly injected with CFA. PCW (0.34, 0.68 and 1.35 g/kg) was orally given to mice once a day for 7 days. Von frey hairs and planter test were assessed to evaluate the antinociceptive effect of PCW. To investigate the participation of dynorphin/opioid system in PCW antinociception, subtype-specific opioid receptor antagonists or anti-dynorphin A antiserum were used. To eliminate other central mechanisms that contribute to PCW antinociception, hot plate (50 °C) test were performed. Further, involvements of TRPV1 in PCW antinociception were evaluated in CFA-induced TRPV1(-/-) and TRPV1(+/+) C57BL/6 male mice, and in capsaicin-induced nociception ICR naive mice pretreated with nor-BNI. Meanwhile, calcium imaging was performed in HEK293T-TRPV1 cells. Finally, rotarod, open-field tests and body temperature measurement were carried out to assess side effects of PCW. RESULTS PCW dose-dependently attenuated mechanical and heat hypersensitivities with no tolerance, which could be partially attenuated by coadministration of k-opioid receptor antagonist nor-binaltorphimine (nor-BNI) or anti-dynorphin A (1-13) antiserum. And PCW antinociception was totally erased by pretreatment with nor-BNI in the hot plate test. In addition, PCW antinociception was decreased in TRPV1(-/-) mice compared to TRPV1(+/+) group. And PCW still manifested inhibitory effects in capsaicin-induced nociception with nor-BNI pretreatment. PCW significantly inhibited capsaicin-induced calcium influx in HEK293T-TRPV1 cells. Finally, no detectable side effects were found in naive mice treated with PCW. CONCLUSIONS This study shows PCW's potent antinociceptive effect in inflammatory conditions without obvious side effects. This effect may result from the activation of κ-opioid receptor via dynorpin release and the inhibition of TRPV1. These findings indicate that PCW might be a potential agent for the management of chronic inflammatory pain.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Danni Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Chunyan Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Xianghong Jing
- Institute Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shuping Chen
- Institute Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cuiling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Kai Zhi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Tengfei Xu
- National Center for Mass Spectrometry in Changchun and Jilin province Key Laboratory for Traditional Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Junling Liu
- Institute Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ying Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun and Jilin province Key Laboratory for Traditional Chinese Medicine Chemistry and Mass Spectrometry and Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
48
|
|
49
|
Wu-tou decoction inhibits chronic inflammatory pain in mice: participation of TRPV1 and TRPA1 ion channels. BIOMED RESEARCH INTERNATIONAL 2015; 2015:328707. [PMID: 25839032 PMCID: PMC4369886 DOI: 10.1155/2015/328707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 11/17/2022]
Abstract
Wu-tou decoction (WTD) is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP) ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.
Collapse
|
50
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|