1
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
2
|
Scientific Opinion on a request for a review of a scientific publication concerning the zoonotic potential of ovine scrapie prions. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
3
|
McCutcheon S, Langeveld JPM, Tan BC, Gill AC, de Wolf C, Martin S, Gonzalez L, Alibhai J, Blanco ARA, Campbell L, Hunter N, Houston EF. Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity. PLoS One 2014; 9:e91143. [PMID: 24608105 PMCID: PMC3946747 DOI: 10.1371/journal.pone.0091143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/07/2014] [Indexed: 01/09/2023] Open
Abstract
This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94-233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays.
Collapse
Affiliation(s)
- Sandra McCutcheon
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | | | - Boon Chin Tan
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Andrew C. Gill
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Christopher de Wolf
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Stuart Martin
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Edinburgh, Scotland, United Kingdom
| | - Lorenzo Gonzalez
- Animal Health and Veterinary Laboratories Agency, Lasswade Laboratory, Edinburgh, Scotland, United Kingdom
| | - James Alibhai
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - A. Richard Alejo Blanco
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Lauren Campbell
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - Nora Hunter
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| | - E. Fiona Houston
- Neurobiology Division, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, Easter Bush, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
4
|
Holznagel E, Yutzy B, Schulz-Schaeffer W, Kruip C, Hahmann U, Bierke P, Torres JM, Kim YS, Thomzig A, Beekes M, Hunsmann G, Loewer J. Foodborne transmission of bovine spongiform encephalopathy to nonhuman primates. Emerg Infect Dis 2013; 19:712-20. [PMID: 23647575 PMCID: PMC3647490 DOI: 10.3201/eid1905.120274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Risk for human exposure to bovine spongiform encephalopathy (BSE)–inducing agent was estimated in a nonhuman primate model. To determine attack rates, incubation times, and molecular signatures, we orally exposed 18 macaques to 1 high dose of brain material from cattle with BSE. Several macaques were euthanized at regular intervals starting at 1 year postinoculation, and others were observed until clinical signs developed. Among those who received ≥5 g BSE-inducing agent, attack rates were 100% and prions could be detected in peripheral tissues from 1 year postinoculation onward. The overall median incubation time was 4.6 years (3.7–5.3). However, for 3 macaques orally exposed on multiple occasions, incubation periods were at least 7–10 years. Before clinical signs were noted, we detected a non-type 2B signature, indicating the existence of atypical prion protein during the incubation period. This finding could affect diagnosis of variant Creutzfeldt-Jakob disease in humans and might be relevant for retrospective studies of positive tonsillectomy or appendectomy specimens because time of infection is unknown.
Collapse
|
5
|
Cooper JK, Andrews N, Ladhani K, Bujaki E, Minor PD. Evaluation of a test for its suitability in the diagnosis of variant Creutzfeldt-Jakob disease. Vox Sang 2013; 105:196-204. [DOI: 10.1111/vox.12037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
Affiliation(s)
- J. K. Cooper
- CJD Resource Centre; National Institute for Biological Standards and Control; Hertfordshire; UK
| | - N. Andrews
- Health Protection Services; Health Protection Agency; Colindale, London; UK
| | - K. Ladhani
- CJD Resource Centre; National Institute for Biological Standards and Control; Hertfordshire; UK
| | - E. Bujaki
- CJD Resource Centre; National Institute for Biological Standards and Control; Hertfordshire; UK
| | - P. D. Minor
- CJD Resource Centre; National Institute for Biological Standards and Control; Hertfordshire; UK
| |
Collapse
|
6
|
Glier H, Holada K. Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism. J Immunol Methods 2012; 380:65-72. [DOI: 10.1016/j.jim.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
|
8
|
Holznagel E, Yutzy B, Löwer J, Schulz-Schaeffer W, Hunsmann G. Three different PrP fractions detectable on simian white blood cells. Transfusion 2010. [DOI: 10.1111/j.1537-2995.2010.02719.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|