1
|
Faiz M, Kalev‐Zylinska ML, Dunstan‐Harrison C, Singleton DC, Hay MP, Ledgerwood EC. Megakaryocyte maturation involves activation of the adaptive unfolded protein response. Genes Cells 2024; 29:889-901. [PMID: 39138929 PMCID: PMC11555628 DOI: 10.1111/gtc.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.
Collapse
Affiliation(s)
- Mifra Faiz
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & PathologyFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | | | - Dean C. Singleton
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Elizabeth C. Ledgerwood
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| |
Collapse
|
2
|
Sandrini L, Amadio P, Ieraci A, Malara A, Werba JP, Soprano PM, Balduini A, Zarà M, Bonomi A, Veglia F, Colombo GI, Popoli M, Lee FS, Tremoli E, Barbieri SS. The α 2-adrenergic receptor pathway modulating depression influences the risk of arterial thrombosis associated with BDNFVal66Met polymorphism. Biomed Pharmacother 2021; 146:112557. [PMID: 34965503 DOI: 10.1016/j.biopha.2021.112557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Depression is associated with thrombotic risk and arterial events, its proper management is strongly recommended in coronary artery disease (CAD) patients. We have previously shown that the Brain-Derived Neurotrophic Factor (BDNF)Val66Met polymorphism, related to depression, is associated with arterial thrombosis in mice, and with an increased risk of acute myocardial infarction in humans. Herein, expanding the previous findings on BDNFVal66Met polymorphism, we show that desipramine, a norepinephrine reuptake-inhibitor, rescues behavioral impairments, reduces the arterial thrombosis risk, abolishes pathological coagulation and platelet hyper-reactivity, normalizes leukocyte, platelet, and bone marrow megakaryocyte number and restores physiological norepinephrine levels in homozygous knock-in BDNF Val66Met (BDNFMet/Met) mice. The in vitro data confirm the enhanced procoagulant activity and the alpha2A-adrenergic receptor (α2A-ADR) overexpression found in BDNFMet/Met mice and we provide evidence that, in presence of Met variant, norepinephrine is crucial to up-regulate procoagulant activity and to enhance platelet generation. The α2-ADR antagonist rauwolscine rescues the prothrombotic phenotype in BDNFMet/Met mice and reduces procoagulant activity and platelet generation in cells transfected with BDNFMet plasmid or exposed to pro-BDNFMet peptide. Finally, we show that homozygous BDNFMet/Met CAD patients have hyper-reactive platelets overexpressing abundant α2A-ADR. The great proplatelet release from their megakaryocytes well reflects their higher circulating platelet number compared to BDNFVal/Val patients. These data reveal an unprecedented described role of Met allele in the dysregulation of norepinephrine/α2A-ADR pathway that may explain the predisposition to arterial thrombosis. Overall, the development of α2A-ADR inhibitors might represent a pharmacological treatment for depression-associated thrombotic conditions in this specific subgroup of CAD patients.
Collapse
Affiliation(s)
| | | | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - José P Werba
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; IRCCS San Matteo Foundation, Pavia, Italy
| | - Marta Zarà
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Alice Bonomi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, USA
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Maria Cecilia Hospital, Cotignola, Italy
| | | |
Collapse
|
3
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
4
|
Dunstan-Harrison C, Morison IM, Ledgerwood EC. A novel frameshift GP1BB mutation causes autosomal dominant macrothrombocytopenia with decreased vWF receptor expression but normal platelet aggregation. Platelets 2021; 33:324-327. [PMID: 33813986 DOI: 10.1080/09537104.2021.1909716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
GP1bβ is a component of the von Willebrand factor (vWF) receptor complex that is necessary for platelet formation and activation. A novel frameshift variant in GP1BB has been identified in a family with macrothrombocytopenia. The variant leads to a protein that is 101 amino acids longer than wild type with loss of the transmembrane domain. As there is no defect in platelet aggregation, the family are classified as heterozygous carriers of a Bernard-Soulier syndrome-related mutation. The levels of the vWF receptor on platelets are reduced to 50% of the controls, with the presence of large platelets but normal platelet aggregation demonstrating that decreased vWF receptor expression impacts proplatelet formation but not platelet function.
Collapse
Affiliation(s)
| | - Ian M Morison
- Departments of Pathology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
5
|
Barozzi S, Di Buduo CA, Marconi C, Bozzi V, Seri M, Romano F, Balduini A, Pecci A. Pathogenetic and clinical study of a patient with thrombocytopenia due to the p.E527K gain-of-function variant of SRC. Haematologica 2021; 106:918-922. [PMID: 33054137 PMCID: PMC7927995 DOI: 10.3324/haematol.2020.268516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Serena Barozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Caterina Marconi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna
| | - Valeria Bozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna
| | - Francesca Romano
- Postgraduate School of Pediatrics, University of Torino, Torino, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| |
Collapse
|
6
|
Almazni I, Stapley R, Morgan NV. Inherited Thrombocytopenia: Update on Genes and Genetic Variants Which may be Associated With Bleeding. Front Cardiovasc Med 2019; 6:80. [PMID: 31275945 PMCID: PMC6593073 DOI: 10.3389/fcvm.2019.00080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023] Open
Abstract
Inherited thrombocytopenia (IT) is comprised of a group of hereditary disorders characterized by a reduced platelet count as the main feature, and often with abnormal platelet function, which can subsequently lead to impaired haemostasis. Inherited thrombocytopenia results from genetic mutations in genes implicated in megakaryocyte differentiation and/or platelet formation and clearance. The identification of the underlying causative gene of IT is challenging given the high degree of heterogeneity, but important due to the presence of various clinical presentations and prognosis, where some defects can lead to hematological malignancies. Traditional platelet function tests, clinical manifestations, and hematological parameters allow for an initial diagnosis. However, employing Next-Generation Sequencing (NGS), such as Whole Genome and Whole Exome Sequencing (WES) can be an efficient method for discovering causal genetic variants in both known and novel genes not previously implicated in IT. To date, 40 genes and their mutations have been implicated to cause many different forms of inherited thrombocytopenia. Nevertheless, despite this advancement in the diagnosis of IT, the molecular mechanism underlying IT in some patients remains unexplained. In this review, we will discuss the genetics of thrombocytopenia summarizing the recent advancement in investigation and diagnosis of IT using phenotypic approaches, high-throughput sequencing, targeted gene panels, and bioinformatics tools.
Collapse
Affiliation(s)
- Ibrahim Almazni
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rachel Stapley
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Bury L, Malara A, Momi S, Petito E, Balduini A, Gresele P. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 2019; 104:1473-1481. [PMID: 30655369 PMCID: PMC6601082 DOI: 10.3324/haematol.2018.200378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/11/2019] [Indexed: 11/09/2022] Open
Abstract
Platelet-type von Willebrand disease is an inherited platelet disorder characterized by thrombocytopenia with large platelets caused by gain-of-function variants in GP1BA leading to enhanced GPIbα-von Willebrand factor (vWF) interaction. GPIbα and vWF play a role in megakaryocytopoiesis, thus we aimed to investigate megakaryocyte differentiation and proplatelet-formation in platelet-type von Willebrand disease using megakaryocytes from a patient carrying the Met239Val variant and from mice carrying the Gly233Val variant. Platelet-type von Willebrand disease megakaryocytes bound vWF at an early differentiation stage and generated proplatelets with a decreased number of enlarged tips compared to control megakaryocytes. Moreover, they formed proplatelets upon contact with collagen, differently from normal megakaryocytes. Similarly, collagen triggered megakaryocytes showed defective activation of the RhoA-MLC2 axis, which prevents proplatelet formation, and increased phosphorylation of Lyn, which acts as a negative regulator of GPVI signaling, thus preventing ectopic proplatelet-formation on collagen. Consistently, human and murine bone marrow contained an increased number of extravascular platelets compared to controls. In addition, platelet survival of mutant mice was shortened compared to control mice, and the administration of desmopressin, raising circulating vWF, caused a marked drop in platelet count. Taken together, these results show for the first time that thrombocytopenia in platelet-type von Willebrand disease is due to the combination of different pathogenic mechanisms, i.e. the formation of a reduced number of platelets by megakaryocytes, the ectopic release of platelets in the bone marrow, and the increased clearance of platelet/vWF complexes.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Eleonora Petito
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| |
Collapse
|
8
|
Disrupted filamin A/α IIbβ 3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood 2019; 133:1778-1788. [PMID: 30602618 DOI: 10.1182/blood-2018-07-861427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbβ3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbβ3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbβ3 interaction.
Collapse
|
9
|
Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia. Blood 2018; 133:1346-1357. [PMID: 30591527 DOI: 10.1182/blood-2018-07-859496] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.
Collapse
|
10
|
Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun 2018; 9:4250. [PMID: 30315159 PMCID: PMC6185941 DOI: 10.1038/s41467-018-06713-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Germline mutations in the ubiquitously expressed ACTB, which encodes β-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3′-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to β-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these β-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort. Genetic variants in ACTB and ACTG1 have been associated with Baraitser-Winter Cerebrofrontofacial syndrome. Here, the authors report of a syndromic thrombocytopenia caused by variants in ACTB exons 5 or 6 that compromise the organization and coupling of the cytoskeleton, leading to impaired platelet maturation.
Collapse
|
11
|
Ghalloussi D, Saut N, Bernot D, Pillois X, Rameau P, Sébahoun G, Alessi MC, Raslova H, Baccini V. A new heterozygous mutation in GP1BA
gene responsible for macrothrombocytopenia. Br J Haematol 2017; 183:503-506. [DOI: 10.1111/bjh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dorsaf Ghalloussi
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
| | - Noémie Saut
- Haematology laboratory; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Denis Bernot
- Haematology laboratory; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Xavier Pillois
- INSERM 1034; Haematology Laboratory; Centre Hospitalo-Universitaire; Bordeaux France
| | - Philippe Rameau
- PFIC, UMS AMMICA (UMS 3655 CNRS/US 23 INSERM); Gustave Roussy Cancer Campus; Villejuif France
| | - Gérard Sébahoun
- Haematology Laboratory; Hôpital Nord; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Marie-Christine Alessi
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
- Centre de Référence des Pathologies Plaquettaires; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| | - Hana Raslova
- INSERM 1170; Gustave Roussy Cancer Campus; Villejuif France
| | - Véronique Baccini
- UMR1062 INSERM; Medicine Faculty; Aix Marseille University; Marseille France
- Haematology Laboratory; Hôpital Nord; Assistance Publique-Hôpitaux de Marseille; Marseille France
- Centre de Référence des Pathologies Plaquettaires; Hôpital La Timone; Assistance Publique-Hôpitaux de Marseille; Marseille France
| |
Collapse
|
12
|
Ferreira FLB, Colella MP, Medina SS, Costa-Lima C, Fiusa MML, Costa LNG, Orsi FA, Annichino-Bizzacchi JM, Fertrin KY, Gilberti MFP, Ozelo MC, De Paula EV. Evaluation of the immature platelet fraction contribute to the differential diagnosis of hereditary, immune and other acquired thrombocytopenias. Sci Rep 2017; 7:3355. [PMID: 28611471 PMCID: PMC5469896 DOI: 10.1038/s41598-017-03668-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
The differential diagnosis of immune (ITP) and hereditary macrothrombocytopenia (HM) is key to patient management. The immature platelet fraction (IPF) represents the subset of circulating platelets with higher RNA content, and has been shown to distinguish hypo- from hyperproliferative thrombocytopenias. Here we evaluated the diagnostic accuracy of IPF in the differential diagnosis between HM and other thrombocytopenias in a population of patients with post-chemotherapy thrombocytopenia (n = 56), bone marrow failure (n = 22), ITP (n = 105) and HM (n = 27). TPO levels were also measured in HM and ITP matched for platelet counts. Platelet counts were similar in all patient groups. Higher IPF values were observed in both ITP (12.3%; 2.4–65.6%) and HM (29.8%; 4.6–65.9%) compared to hypoproliferative thrombocytopenias. IPF values were also higher in HM compared to ITP, yielding a diagnostic accuracy of 0.80 (95%CI 0.70–0.90; P < 0.0001) to distinguish these two conditions. Intra- and inter-assays reproducibility of IPF in HM patients revealed that this is a stable parameter. In conclusion, IPF is increased in HM compared to both ITP and other thrombocytopenias and contributes to the differentiation between ITP and HM. Further studies are warranted to understand the biological rationale of these findings and to its incorporation in diagnostic algorithms of HM.
Collapse
Affiliation(s)
- F L B Ferreira
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - M P Colella
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - S S Medina
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - C Costa-Lima
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - M M L Fiusa
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - L N G Costa
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - F A Orsi
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - J M Annichino-Bizzacchi
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | | | - M F P Gilberti
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - M C Ozelo
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - E V De Paula
- Faculty of Medical Sciences/Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
13
|
Ong L, Morison IM, Ledgerwood EC. Megakaryocytes fromCYCSmutation-associated thrombocytopenia release platelets by both proplatelet-dependent and -independent processes. Br J Haematol 2016; 176:268-279. [DOI: 10.1111/bjh.14421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Lily Ong
- Department of Biochemistry; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - Ian M. Morison
- Department of Pathology; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Elizabeth C. Ledgerwood
- Department of Biochemistry; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
14
|
Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation. Blood 2016; 128:2022-2032. [PMID: 27503502 DOI: 10.1182/blood-2016-02-699959] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022] Open
Abstract
Megakaryocyte (MK) differentiation occurs within the bone marrow (BM), a complex 3-dimensional (3D) environment of low stiffness exerting local external constraints. To evaluate the influence of the 3D mechanical constraints that MKs may encounter in vivo, we differentiated mouse BM progenitors in methylcellulose (MC) hydrogels tuned to mimic BM stiffness. We found that MKs grown in a medium of 30- to 60-Pa stiffness more closely resembled those in the BM in terms of demarcation membrane system (DMS) morphological aspect and exhibited higher ploidy levels, as compared with MKs in liquid culture. Following resuspension in a liquid medium, MC-grown MKs displayed twice as much proplatelet formation as cells grown in liquid culture. Thus, the MC gel, by mimicking external constraints, appeared to positively influence MK differentiation. To determine whether MKs adapt to extracellular stiffness through mechanotransduction involving actomyosin-based modulation of the intracellular tension, myosin-deficient (Myh9-/-) progenitors were grown in MC gels. Absence of myosin resulted in abnormal cell deformation and strongly decreased proplatelet formation, similarly to features observed for Myh9-/- MKs differentiated in situ but not in vitro. Moreover, megakaryoblastic leukemia 1 (MKL1), a well-known actor in mechanotransduction, was found to be preferentially relocated within the nucleus of MC-differentiated MKs, whereas its inhibition prevented MC-mediated increased proplatelet formation. Altogether, these data show that a 3D medium mimicking BM stiffness contributes, through the myosin IIA and MKL1 pathways, to a more favorable in vitro environment for MK differentiation, which ultimately translates into increased proplatelet production.
Collapse
|
15
|
Strassel C, Bull A, Moog S, Receveur N, Mallo L, Mangin P, Eckly A, Freund M, Dubart-Kupperschmitt A, Gachet C, Lanza F. Lentiviral gene rescue of a Bernard-Soulier mouse model to study platelet glycoprotein Ibβ function. J Thromb Haemost 2016; 14:1470-9. [PMID: 27148783 DOI: 10.1111/jth.13355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/29/2016] [Indexed: 12/01/2022]
Abstract
UNLABELLED Essentials A signaling role of glycoprotein (GP)Ibβ is postulated but not formally demonstrated in platelets. Lentiviral-mediated rescue in knock-out mice can be used to evaluate GPIbβ function in vivo. Transduction of the native subunit corrected the main defects associated with GPIb-IX deficiency Deletion of intracellular 159-170 segment increased thrombosis, 150-160 removal increased bleeding. SUMMARY Background The platelet glycoprotein (GP)Ib-V-IX complex is required for normal hemostasis and megakaryopoiesis. A role in GPIb-dependent responses has been ascribed to the less well characterized GPIbβ subunit using a specific antibody and GPIb-IX transfected cells. Objectives Our aim was to evaluate, in vivo, the role of the GPIbβ in hemostasis and thrombosis. Methods GPIbβ(null) Sca-1(+) progenitors transduced with viral particles harboring hGPIbβ were transplanted into lethally irradiated GPIbβ(-/-) recipient mice. Results hGPIbβ transplanted into the bone marrow of GPIbβ(null) mice rescued GPIb-IX expression in 97% of circulating platelets. These platelets efficiently bound von Willebrand factor (VWF) and extended filopodia on a VWF matrix, demonstrating the restoration of GPIb-dependent adhesive and signaling properties. These mice exhibited less severe macrothrombocytopenia and had normal tail bleeding times as compared with GPIbβ(null) mice. This strategy was employed to manipulate and evaluate the role of the GPIbβ intracellular domain. Removal of the membrane proximal segment (Δ(150-160) ) decreased GPIb-IX expression by 43%, confirming its involvement in receptor assembly and biosynthesis, and resulted in increased bleeding times and decreased thrombosis in a mechanical injury model in the aorta. On the other hand, deletion of the C-flanking 159-170 segment allowed normal GPIb-IX expression, VWF-dependent responses and bleeding times, but resulted in enhanced arterial thrombosis. Conclusion This pointed to a repressor role of GPIbβ in thrombus formation in vivo that was not predicted in studies of heterologous cells. These results highlight the utility of this lentiviral strategy for the structure-function evaluation of GPIb-IX in platelets.
Collapse
Affiliation(s)
- C Strassel
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - A Bull
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - S Moog
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - N Receveur
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - L Mallo
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - P Mangin
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - A Eckly
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - M Freund
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - A Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul Brousse, Villejuif, France
- UMR_S1193, Université Paris-Sud, Hôpital Paul Brousse, Villejuif, France
- Département hospitalo-universitaire Hepatinov, Hôpital Paul Brousse, Villejuif, France
| | - C Gachet
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - F Lanza
- UMR_S949 INSERM, Strasbourg, France
- Etablissement Français du Sang (EFS)-Alsace, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Balduini CL, Melazzini F, Pecci A. Inherited thrombocytopenias-recent advances in clinical and molecular aspects. Platelets 2016; 28:3-13. [PMID: 27161842 DOI: 10.3109/09537104.2016.1171835] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the beginning of the century, our knowledge of inherited thrombocytopenias greatly advanced, and we presently know 30 forms with well-defined genetic defects. This great advancement changed our view of these disorders, as we realized that most patients have only mild thrombocytopenia with inconspicuous bleeding or no bleeding tendency at all. However, better knowledge of inherited thrombocytopenias also revealed that some of the most prevalent forms expose to the risk of acquiring during infancy or adulthood additional disorders that endanger the life of patients much more than hemorrhages. Thus, inherited thrombocytopenias are complex disorders with quite different clinical features and prognosis. Identification of novel genes whose mutations result in low platelet count greatly advanced also our knowledge of the megakaryocyte biology and proved beyond any doubt that the defective proteins play an essential role in platelet biogenesis or survival in humans. Based on the study of inherited thrombocytopenias, we better understood the sequence of molecular events regulating megakaryocyte differentiation, maturation, and platelet release. Since nearly 50% of patients have as yet unidentified genetic or molecular mechanisms underlying their inherited thrombocytopenia, further studies are expected to reveal new clinical entities and new molecular mechanisms of platelet production.
Collapse
Affiliation(s)
- Carlo L Balduini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Federica Melazzini
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| | - Alessandro Pecci
- a Department of Medicine , IRCCS Policlinico San Matteo Foundation - University of Pavia , Pavia , Italy
| |
Collapse
|
17
|
Johnson B, Fletcher SJ, Morgan NV. Inherited thrombocytopenia: novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan. Platelets 2016; 27:519-25. [PMID: 27025194 PMCID: PMC5000870 DOI: 10.3109/09537104.2016.1148806] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The study of patients with inherited bleeding problems is a powerful approach in determining the function and regulation of important proteins in human platelets and their precursor, the megakaryocyte. The normal range of platelet counts in the bloodstream ranges from 150 000 to 400 000 platelets per microliter and is normally maintained within a narrow range for each individual. This requires a constant balance between thrombopoiesis, which is primarily controlled by the cytokine thrombopoietin (TPO), and platelet senescence and consumption. Thrombocytopenia can be defined as a platelet count of less than 150 000 per microliter and can be acquired or inherited. Heritable forms of thrombocytopenia are caused by mutations in genes involved in megakaryocyte differentiation, platelet production and platelet removal. In this review, we will discuss the main causative genes known for inherited thrombocytopenia and highlight their diverse functions and whether these give clues on the processes of platelet production, platelet function and platelet lifespan. Additionally, we will highlight the recent advances in novel genes identified for inherited thrombocytopenia and their suggested function.
Collapse
Affiliation(s)
- Ben Johnson
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| | - Sarah J Fletcher
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| | - Neil V Morgan
- a Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , UK
| |
Collapse
|
18
|
Di Buduo CA, Alberelli MA, Glembostky AC, Podda G, Lev PR, Cattaneo M, Landolfi R, Heller PG, Balduini A, De Candia E. Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients. Sci Rep 2016; 6:23213. [PMID: 26987485 PMCID: PMC4796794 DOI: 10.1038/srep23213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Adele Alberelli
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Ana C Glembostky
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gianmarco Podda
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paola R Lev
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Marco Cattaneo
- Medicina III, Azienda Ospedaliera San Paolo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Raffaele Landolfi
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| | - Paula G Heller
- Hematology Research, Instituto de Investigaciones Médicas Alfredo Lanari, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Erica De Candia
- Department of Internal Medicine, Policlinico Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
19
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
20
|
Genomic landscape of megakaryopoiesis and platelet function defects. Blood 2016; 127:1249-59. [PMID: 26787733 DOI: 10.1182/blood-2015-07-607952] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
Megakaryopoiesis is a complex, stepwise process that takes place largely in the bone marrow. At the apex of the hierarchy, hematopoietic stem cells undergo a number of lineage commitment decisions that ultimately lead to the production of polyploid megakaryocytes. On average, megakaryocytes release 10(11) platelets per day into the blood that repair vascular injuries and prevent excessive bleeding. This differentiation process is tightly controlled by exogenous and endogenous factors, which have been the topics of intense research in the hematopoietic field. Indeed, a skewing of megakaryocyte commitment and differentiation may entail the onset of myeloproliferative neoplasms and other preleukemic disorders together with acute megakaryoblastic leukemia, whereas quantitative or qualitative defects in platelet production can lead to inherited platelet disorders. The recent advent of next-generation sequencing has prompted mapping of the genomic landscape of these conditions to provide an accurate view of the underlying lesions. The aims of this review are to introduce the physiological pathways of megakaryopoiesis and to present landmark studies on acquired and inherited disorders that target them. These studies have not only introduced a new era in the fields of molecular medicine and targeted therapies but may also provide us with a better understanding of the mechanisms underlying normal megakaryopoiesis and thrombopoiesis that can inform efforts to create alternative sources of megakaryocytes and platelets.
Collapse
|
21
|
Marconi C, Di Buduo CA, Barozzi S, Palombo F, Pardini S, Zaninetti C, Pippucci T, Noris P, Balduini A, Seri M, Pecci A. SLFN14-related thrombocytopenia: identification within a large series of patients with inherited thrombocytopenia. Thromb Haemost 2016; 115:1076-9. [PMID: 26769223 DOI: 10.1160/th15-11-0884] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023]
Abstract
Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Alessandro Pecci
- Alessandro Pecci, Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Piazzale Golgi, 27100 Pavia, Italy, Tel.: +39 0382 501358, Fax: +39 0382 526223, E-mail:
| |
Collapse
|
22
|
Ivetic N, Nazi I, Karim N, Clare R, Smith JW, Moore JC, Hope KJ, Kelton JG, Arnold DM. Producing megakaryocytes from a human peripheral blood source. Transfusion 2016; 56:1066-74. [PMID: 26756864 DOI: 10.1111/trf.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cultured megakaryocytes could prove useful in the study of human diseases, but it is difficult to produce sufficient numbers for study. We describe and evaluate the use of an expansion process to develop mature megakaryocytes from peripheral blood-derived human hematopoietic stem and progenitor cells (HSPCs). STUDY DESIGN AND METHODS HSPCs (CD34+) were isolated from peripheral blood by positive selection and expanded using an optimal CD34+ expansion supplement. We evaluated megakaryocyte growth, maturation, and morphology in response to thrombopoietin (TPO) stimulation using flow cytometry and electron microscopy. TPO demonstrated a dose-dependent stimulatory effect on both megakaryocyte number and maturation. RESULTS From 90 to 120 mL of unmanipulated peripheral blood, we isolated a mean of 1.5 × 10(5) HSPCs (1.5 × 10(3) cells/mL of whole blood). HSPCs expanded nine-fold after a 4-day culture using an expansion supplement. Expanded cells were cultured for an additional 8 days with TPO (20 ng/mL), which resulted in a 2.9-fold increase in megakaryocytic cells where 83% of live cells expressed CD41a+, a marker of megakaryocyte commitment, and 50% expressed CD42b+, a marker for megakaryocyte maturation. The expanded HSPCs responded to TPO stimulation to yield more than 1.0 × 10(6) megakaryocytes. This cell number was sufficient for morphologic studies that demonstrated these expanded HSPCs produced mature polyploid megakaryocytes capable of forming proplatelet extensions. CONCLUSIONS Peripheral blood HSPCs can be expanded and differentiated into functional, mature megakaryocytes, a finding that supports the use of this process to study inherent platelet (PLT) production disorders as well as study factors that impair normal PLT production.
Collapse
Affiliation(s)
- Nikola Ivetic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario
| | - Ishac Nazi
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario
| | - Nadia Karim
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario
| | - James W Smith
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario
| | - Jane C Moore
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario.,Department of Pathology and Molecular Medicine, McMaster University
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario
| | - John G Kelton
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario.,Canadian Blood Services, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Baccini V, Alessi MC. [Diagnosis of inherited thrombocytopenia]. Rev Med Interne 2015; 37:117-26. [PMID: 26617290 DOI: 10.1016/j.revmed.2015.10.346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Inherited thrombocytopenias are rare, heterogenous and probably under-diagnosed because often classified as autoimmune thrombocytopenia. About 20 genes were described responsible for these thrombocytopenias. Precise diagnosis is necessary because the prognosis is different and some of them can evolve into hemopathies. First of all, it is important to gather a body of evidence to orientate towards an inherited cause: presence of the thrombocytopenia since childhood and of other family cases is a strong argument. Secondly, it is difficult to target the genetic investigations that settle the precise diagnosis. Genetic variants responsible for inherited thrombocytopenias affect different stage during megakaryocytopoiesis and cause thrombocytopenias with distinct characteristics. Presence of extra-hematological features, platelets' size measurement and evaluation of bone marrow megakaryocyte morphology when it is possible allow a primary orientation. We propose a diagnostic approach considering extra-hematological features, mode of inheritance, morphology, molecular and functional platelets' studies and bone marrow megakaryocyte morphology in order to better target genetic study. Nevertheless, despite this approach, some inherited thrombocytopenias remain still unexplained and could benefit from new methods of new generation sequencing in the future.
Collapse
Affiliation(s)
- V Baccini
- Laboratoire d'hématologie, hôpital Nord, CHU de Marseille, chemin des Bourrelly, 13015 Marseille, France; Centre de référence des pathologies plaquettaires (CRPP), CHU Timone, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France.
| | - M C Alessi
- Laboratoire d'hématologie, hôpital Nord, CHU de Marseille, chemin des Bourrelly, 13015 Marseille, France; Centre de référence des pathologies plaquettaires (CRPP), CHU Timone, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France
| |
Collapse
|
24
|
Pietra D, Rumi E, Ferretti VV, Di Buduo CA, Milanesi C, Cavalloni C, Sant'Antonio E, Abbonante V, Moccia F, Casetti IC, Bellini M, Renna MC, Roncoroni E, Fugazza E, Astori C, Boveri E, Rosti V, Barosi G, Balduini A, Cazzola M. Differential clinical effects of different mutation subtypes in CALR-mutant myeloproliferative neoplasms. Leukemia 2015; 30:431-8. [PMID: 26449662 PMCID: PMC4740452 DOI: 10.1038/leu.2015.277] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
A quarter of patients with essential thrombocythemia or primary myelofibrosis carry a driver mutation of CALR, the calreticulin gene. A 52-bp deletion (type 1) and a 5-bp insertion (type 2 mutation) are the most frequent variants. These indels might differentially impair the calcium binding activity of mutant calreticulin. We studied the relationship between mutation subtype and biological/clinical features of the disease. Thirty-two different types of CALR variants were identified in 311 patients. Based on their predicted effect on calreticulin C-terminal, mutations were classified as: (i) type 1-like (65%); (ii) type 2-like (32%); and (iii) other types (3%). Corresponding CALR mutants had significantly different estimated isoelectric points. Patients with type 1 mutation, but not those with type 2, showed abnormal cytosolic calcium signals in cultured megakaryocytes. Type 1-like mutations were mainly associated with a myelofibrosis phenotype and a significantly higher risk of myelofibrotic transformation in essential thrombocythemia. Type 2-like CALR mutations were preferentially associated with an essential thrombocythemia phenotype, low risk of thrombosis despite very-high platelet counts and indolent clinical course. Thus, mutation subtype contributes to determining clinical phenotype and outcomes in CALR-mutant myeloproliferative neoplasms. CALR variants that markedly impair the calcium binding activity of mutant calreticulin are mainly associated with a myelofibrosis phenotype.
Collapse
Affiliation(s)
- D Pietra
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - E Rumi
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - V V Ferretti
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - C A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - C Milanesi
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - C Cavalloni
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - E Sant'Antonio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - V Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - F Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - I C Casetti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - M Bellini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - M C Renna
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - E Roncoroni
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - E Fugazza
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - C Astori
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - E Boveri
- Anatomic Pathology Section, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - V Rosti
- Biotechnology Research Laboratories, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy.,Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Barosi
- Biotechnology Research Laboratories, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy.,Center for the Study of Myelofibrosis, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Biotechnology Research Laboratories, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - M Cazzola
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Savoia A. Molecular basis of inherited thrombocytopenias. Clin Genet 2015; 89:154-62. [DOI: 10.1111/cge.12607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 02/01/2023]
Affiliation(s)
- A. Savoia
- Department of Medical SciencesUniversity of Trieste Trieste Italy
- Institute for Maternal and Child HealthIRCCS Burlo Garofolo Trieste Italy
| |
Collapse
|
26
|
Favier R, Raslova H. Progress in understanding the diagnosis and molecular genetics of macrothrombocytopenias. Br J Haematol 2015; 170:626-39. [DOI: 10.1111/bjh.13478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Remi Favier
- Institut National de la Santé et de la Recherche Médicale; U1170; Equipe Labellisée Ligue Contre le Cancer; Villejuif France
- Assistance Publique-Hôpitaux de Paris; Armand Trousseau Children Hospital; French Reference Center for Platelet Disorders; Haematological Laboratory; Paris France
| | - Hana Raslova
- Institut National de la Santé et de la Recherche Médicale; U1170; Equipe Labellisée Ligue Contre le Cancer; Villejuif France
- Faculté de Médecine; University Paris Saclay and University Paris-Sud 11; Le Kremlin-Bicêtre France
- Gustave Roussy; Villejuif France
| |
Collapse
|
27
|
Abnormal cytoplasmic extensions associated with active αIIbβ3 are probably the cause for macrothrombocytopenia in Glanzmann thrombasthenia-like syndrome. Blood Coagul Fibrinolysis 2015; 26:302-8. [DOI: 10.1097/mbc.0000000000000241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
29
|
Basciano PA, Matakas J, Pecci A, Civaschi E, Cagioni C, Bompiani N, Burger P, Christos P, Snyder JP, Bussel J, Balduini CL, Giannakakou P, Noris P. β-1 tubulin R307H SNP alters microtubule dynamics and affects severity of a hereditary thrombocytopenia. J Thromb Haemost 2015; 13:651-9. [PMID: 25529050 DOI: 10.1111/jth.12824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in platelet-associated genes partly explain inherent variability in platelet counts. Patients with monoallelic Bernard Soulier syndrome due to the Bolzano mutation (GPIBA A156V) have variable platelet counts despite a common mutation for unknown reasons. OBJECTIVES We investigated the effect of the most common SNP (R307H) in the hematopoietic-specific tubulin isotype β-1 in these Bernard Soulier patients and potential microtubule-based mechanisms of worsened thrombocytopenia. PATIENTS/METHODS Ninety-four monoallelic Bolzano mutation patients were evaluated for the R307H β-1 SNP and had platelet counts measured by three methods; the Q43P SNP was also evaluated. To investigate possible mechanisms underlying this association, we used molecular modeling of β-1 tubulin with and without the R307H SNP. We transfected SNP or non-SNP β-1 tubulin into MCF-7 and CMK cell lines and measured microtubule regrowth after nocodazole-induced depolymerization. RESULTS We found that patients with at least one R307H SNP allele had significantly worse thrombocytopenia; manual platelet counting revealed a median platelet count of 124 in non-SNP patients and 76 in SNP patients (both ×10(9) L(-1) ; P < 0.01). The Q43P SNP had no significant association with platelet count. Molecular modeling suggested a structural relationship between the R307H SNP and microtubule stability via alterations in the M-loop of β tubulin; in vitro microtubule recovery assays revealed that cells transfected with R307H SNP β-1 had significantly impaired microtubule recovery. CONCLUSIONS Our data show that the R307H SNP is significantly associated with the degree of thrombocytopenia in congenital and acquired platelet disorders, and may affect platelets by altering microtubule behavior.
Collapse
Affiliation(s)
- P A Basciano
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Savoia A, Kunishima S, De Rocco D, Zieger B, Rand ML, Pujol-Moix N, Caliskan U, Tokgoz H, Pecci A, Noris P, Srivastava A, Ward C, Morel-Kopp MC, Alessi MC, Bellucci S, Beurrier P, de Maistre E, Favier R, Hézard N, Hurtaud-Roux MF, Latger-Cannard V, Lavenu-Bombled C, Proulle V, Meunier S, Négrier C, Nurden A, Randrianaivo H, Fabris F, Platokouki H, Rosenberg N, HadjKacem B, Heller PG, Karimi M, Balduini CL, Pastore A, Lanza F. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014; 35:1033-45. [PMID: 24934643 DOI: 10.1002/humu.22607] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/06/2014] [Indexed: 01/05/2023]
Abstract
Bernard-Soulier syndrome (BSS) is a rare autosomal recessive bleeding disorder characterized by defects of the GPIb-IX-V complex, a platelet receptor for von Willebrand factor (VWF). Most of the mutations identified in the genes encoding for the GP1BA (GPIbα), GP1BB (GPIbβ), and GP9 (GPIX) subunits prevent expression of the complex at the platelet membrane or more rarely its interaction with VWF. As a consequence, platelets are unable to adhere to the vascular subendothelium and agglutinate in response to ristocetin. In order to collect information on BSS patients, we established an International Consortium for the study of BSS, allowing us to enrol and genotype 132 families (56 previously unreported). With 79 additional families for which molecular data were gleaned from the literature, the 211 families characterized so far have mutations in the GP1BA (28%), GP1BB (28%), or GP9 (44%) genes. There is a wide spectrum of mutations with 112 different variants, including 22 novel alterations. Consistent with the rarity of the disease, 85% of the probands carry homozygous mutations with evidence of founder effects in some geographical areas. This overview provides the first global picture of the molecular basis of BSS and will lead to improve patient diagnosis and management.
Collapse
Affiliation(s)
- Anna Savoia
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical Sciences, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lev PR, Grodzielski M, Goette NP, Glembotsky AC, Espasandin YR, Pierdominici MS, Contrufo G, Montero VS, Ferrari L, Molinas FC, Heller PG, Marta RF. Impaired proplatelet formation in immune thrombocytopenia: a novel mechanism contributing to decreased platelet count. Br J Haematol 2014; 165:854-64. [DOI: 10.1111/bjh.12832] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Paola R. Lev
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Matías Grodzielski
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Nora P. Goette
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Ana C. Glembotsky
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Yesica R. Espasandin
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | | | - Geraldine Contrufo
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Verónica S. Montero
- Departamento de Análisis Clínicos; Centro de Educación Médica e Investigación Clínica “Norberto Quirno” (CEMIC); Buenos Aires Argentina
| | - Luciana Ferrari
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Felisa C. Molinas
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Paula G. Heller
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Rosana F. Marta
- Departamento de Hematología Investigación; Instituto de Investigaciones Médicas Alfredo Lanari; Universidad de Buenos Aires; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
32
|
Pecci A, Balduini CL. Lessons in platelet production from inherited thrombocytopenias. Br J Haematol 2014; 165:179-92. [PMID: 24480030 DOI: 10.1111/bjh.12752] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our knowledge of the cellular and molecular mechanisms of platelet production has greatly expanded in recent years due to the opportunity to culture in vitro megakaryocytes and to create transgenic animals with specific genetic defects that interfere with platelet biogenesis. However, in vitro models do not reproduce the complexity of the bone marrow microenvironment where megakaryopoiesis takes place, and experience shows that what is seen in animals does not always happen in humans. So, these experimental models tell us what might happen in humans, but does not assure us that these events really occur. In contrast, inherited thrombocytopenias offer the unique opportunity to verify in humans the actual effects of abnormalities in specific molecules on platelet production. There are currently 20 genes whose defects are known to result in thrombocytopenia and, on this basis, this review tries to outline a model of megakaryopoiesis based on firm evidence. Inherited thrombocytopenias have not yet yielded all the information they can provide, because nearly half of patients have forms that do not fit with any known disorder. So, further investigation of inherited thrombocytopenias will advance not only the knowledge of human illnesses, but also our understanding of human platelet production.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation - University of Pavia, Pavia, Italy
| | | |
Collapse
|
33
|
Bluteau D, Balduini A, Balayn N, Currao M, Nurden P, Deswarte C, Leverger G, Noris P, Perrotta S, Solary E, Vainchenker W, Debili N, Favier R, Raslova H. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest 2014; 124:580-91. [PMID: 24430186 DOI: 10.1172/jci71861] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/31/2013] [Indexed: 11/17/2022] Open
Abstract
Point mutations in the 5' UTR of ankyrin repeat domain 26 (ANKRD26) are associated with familial thrombocytopenia 2 (THC2) and a predisposition to leukemia. Here, we identified underlying mechanisms of ANKRD26-associated thrombocytopenia. Using megakaryocytes (MK) isolated from THC2 patients and healthy subjects, we demonstrated that THC2-associated mutations in the 5' UTR of ANKRD26 resulted in loss of runt-related transcription factor 1 (RUNX1) and friend leukemia integration 1 transcription factor (FLI1) binding. RUNX1 and FLI1 binding at the 5' UTR from healthy subjects led to ANKRD26 silencing during the late stages of megakaryopoiesis and blood platelet development. We showed that persistent ANKRD26 expression in isolated MKs increased signaling via the thrombopoietin/myeloproliferative leukemia virus oncogene (MPL) pathway and impaired proplatelet formation by MKs. Importantly, we demonstrated that ERK inhibition completely rescued the in vitro proplatelet formation defect. Our data identify a mechanism for development of the familial thrombocytopenia THC2 that is related to abnormal MAPK signaling.
Collapse
|
34
|
Kumar R, Kahr WHA. Congenital thrombocytopenia: clinical manifestations, laboratory abnormalities, and molecular defects of a heterogeneous group of conditions. Hematol Oncol Clin North Am 2013; 27:465-94. [PMID: 23714308 DOI: 10.1016/j.hoc.2013.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Once considered exceptionally rare, congenital thrombocytopenias are increasingly recognized as a heterogeneous group of disorders characterized by a reduction in platelet number and a bleeding tendency that may range from very mild to life threatening. Although some of these disorders affect only megakaryocytes and platelets, others involve different cell types and may result in characteristic phenotypic abnormalities. This review elaborates the clinical presentation and laboratory manifestations of common congenital thrombocytopenias in addition to exploring our understanding of the molecular basis of these disorders and therapeutic interventions available.
Collapse
Affiliation(s)
- Riten Kumar
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
Nurden AT, Nurden P. Congenital platelet disorders and understanding of platelet function. Br J Haematol 2013; 165:165-78. [DOI: 10.1111/bjh.12662] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alan T. Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| | - Paquita Nurden
- L'Institut de Rhythmologie et Modélisation Cardiaque (LIRYC); Plateforme Technologique et d'Innovation Biomédicale; Hôpital Xavier Arnozan; Pessac France
| |
Collapse
|
36
|
|
37
|
Abstract
The diagnosis of inherited thrombocytopenias is difficult, for many reasons. First, as they are all rare diseases, they are little known by clinicians, who therefore tend to suspect the most common forms. Second, making a definite diagnosis often requires complex laboratory techniques that are available in only a few centers. Finally, half of the patients have forms that have not yet been described. As a consequence, many patients with inherited thrombocytopenias are misdiagnosed with immune thrombocytopenia, and are at risk of receiving futile treatments. Misdiagnosis is particularly frequent in patients whose low platelet count is discovered in adult life, because, in these cases, even the inherited origin of thrombocytopenia may be missed. Making the correct diagnosis promptly is important, as we recently learned that some forms of inherited thrombocytopenia predispose to other illnesses, such as leukemia or kidney failure, and affected subjects therefore require close surveillance and, if necessary, prompt treatments. Moreover, medical treatment can increase platelet counts in specific disorders, and affected subjects can therefore receive drugs instead of platelet transfusions when selective surgery is required. In this review, we will discuss how to suspect, diagnose and manage inherited thrombocytopenias, with particular attention to the forms that frequently present in adults. Moreover, we describe four recently identified disorders that belong to this group of disorders that are often diagnosed in adults: MYH9-related disease, monoallelic Bernard-Soulier syndrome, ANKRD26-related thrombocytopenia, and familial platelet disorder with predisposition to acute leukemia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia-IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
38
|
Pecci A. Pathogenesis and management of inherited thrombocytopenias: rationale for the use of thrombopoietin-receptor agonists. Int J Hematol 2013; 98:34-47. [PMID: 23636669 DOI: 10.1007/s12185-013-1351-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022]
Abstract
Knowledge in the field of inherited thrombocytopenias (ITs) has considerably improved over the recent years. In the last 5 years, nine new genes whose mutations are responsible for thrombocytopenia have been identified, and this also led to the recognition of several novel nosographic entities, such as thrombocytopenias deriving from mutations in CYCS, TUBB1, FLNA, ITGA2B/ITGB3, ANKRD26 and ACTN1. The identification of novel molecular alterations causing thrombocytopenia together with improvement of methodologies to study megakaryopoiesis led to considerable advances in understanding pathophysiology of ITs, thus providing the background for proposing new treatments. Thrombopoietin-receptor agonists (TPO-RAs) represent an appealing therapeutic hypothesis for ITs and have been tested in a limited number of patients. In this review, we provide an updated description of pathogenetic mechanisms of thrombocytopenia in the different forms of ITs and recapitulate the current management of these disorders. Moreover, we report the available clinical and preclinical data about the role of TPO-RAs in ITs and discuss the rationale for the use of these molecules in view of pathogenesis of the different forms of thrombocytopenia of genetic origin.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| |
Collapse
|
39
|
Tijssen MR, Ghevaert C. Transcription factors in late megakaryopoiesis and related platelet disorders. J Thromb Haemost 2013; 11:593-604. [PMID: 23311859 PMCID: PMC3824237 DOI: 10.1111/jth.12131] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2013] [Indexed: 01/09/2023]
Abstract
Cell type-specific transcription factors regulate the repertoire of genes expressed in a cell and thereby determine its phenotype. The differentiation of megakaryocytes, the platelet progenitors, from hematopoietic stem cells is a well-known process that can be mimicked in culture. However, the efficient formation of platelets in culture remains a challenge. Platelet formation is a complicated process including megakaryocyte maturation, platelet assembly and platelet shedding. We hypothesize that a better understanding of the transcriptional regulation of this process will allow us to influence it such that sufficient numbers of platelets can be produced for clinical applications. After an introduction to gene regulation and platelet formation, this review summarizes the current knowledge of the regulation of platelet formation by the transcription factors EVI1, GATA1, FLI1, NFE2, RUNX1, SRF and its co-factor MKL1, and TAL1. Also covered is how some platelet disorders including myeloproliferative neoplasms, result from disturbances of the transcriptional regulation. These disorders give us invaluable insights into the crucial role these transcription factors play in platelet formation. Finally, there is discussion of how a better understanding of these processes will be needed to allow for efficient production of platelets in vitro.
Collapse
Affiliation(s)
- M R Tijssen
- Department of Haematology, University of CambridgeUK
- Department of Haematology, University of Cambridge, and NHS Blood and TransplantCambridge, UK
| | - C Ghevaert
- Department of Haematology, University of Cambridge, and NHS Blood and TransplantCambridge, UK
| |
Collapse
|
40
|
Necchi V, Balduini A, Noris P, Barozzi S, Sommi P, di Buduo C, Balduini CL, Solcia E, Pecci A. Ubiquitin/proteasome-rich particulate cytoplasmic structures (PaCSs) in the platelets and megakaryocytes of ANKRD26-related thrombo-cytopenia. Thromb Haemost 2012; 109:263-71. [PMID: 23223974 DOI: 10.1160/th12-07-0497] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022]
Abstract
ANKRD26-related thrombocytopenia (ANKRD26-RT) is an autosomal-dominant thrombocytopenia caused by mutations in the 5'UTR of the ANKRD26 gene. ANKRD26-RT is characterised by dysmegakaryopoiesis and an increased risk of leukaemia. PaCSs are novel particulate cytoplasmic structures with selective immunoreactivity for polyubiquitinated proteins and proteasome that have been detected in a number of solid cancers, in the epithelia of Helicobacter pylori gastritis and related preneoplastic lesions, and in the neutrophils of Schwachman-Diamond syndrome, a genetic disease with neutropenia and increased leukaemia risk. We searched for PaCSs in blood cells from 14 consecutive patients with ANKRD26-RT. Electron microscopy combined with immunogold staining for polyubiquitinated proteins, 20S and 19S proteasome showed PaCSs in most ANKRD26-RT platelets, as in a restricted minority of platelets from healthy controls and from subjects with other inherited or immune thrombocytopenias. In ANKRD26-RT platelets, the PaCS amount exceeded that of control platelets by a factor of 5 (p<0.0001). Immunoblotting showed that the higher PaCS number was associated with increased amounts of polyubiquitinated proteins and proteasome in ANKRD26-RT platelets. PaCSs were also extensively represented in ANKRD26-RT megakaryocytes, but not in healthy control megakaryocytes, and were absent in other ANKRD26-RT and control blood cells. Therefore, large amounts of PaCSs are a characteristic feature of ANKRD26-RT platelets and megakaryocytes, although these novel cell components are also present in a small subpopulation of normal platelets. The widespread presence of PaCSs in inherited diseases with increased leukaemia risk, as well as in solid neoplasms and their preneoplastic lesions, suggests a link of these structures with oncogenesis.
Collapse
Affiliation(s)
- Vittorio Necchi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: the evolving spectrum. Hamostaseologie 2012; 32:259-70. [PMID: 22972471 DOI: 10.5482/ha12050001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
The chapter of inherited thrombocytopenias has expanded greatly over the last decade and many "new" forms deriving from mutations in "new" genes have been identified. Nevertheless, nearly half of patients remain without a definite diagnosis because their illnesses have not yet been described. The diagnostic approach to these diseases can still take advantage of the algorithm proposed by the Italian Platelet Study Group in 2003, although an update is required to include the recently described disorders. So far, transfusions of platelet concentrates have represented the main tool for preventing or treating bleedings, while haematopoietic stem cell transplantation has been reserved for patients with very severe forms. However, recent disclosure that an oral thrombopoietin mimetic is effective in increasing platelet count in patients with MYH9-related thrombocytopenia opened new therapeutic perspectives. This review summarizes the general aspects of inherited thrombocytopenias and describes in more detail MYH9-related diseases (encompassing four thrombocytopenias previously recognized as separate diseases) and the recently described ANKRD26-related thrombocytopenia, which are among the most frequent forms of inherited thrombocytopenia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia – IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
43
|
Genetics of familial forms of thrombocytopenia. Hum Genet 2012; 131:1821-32. [DOI: 10.1007/s00439-012-1215-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
|
44
|
Merico V, Zuccotti M, Carpi D, Baev D, Mulas F, Sacchi L, Bellazzi R, Pastorelli R, Redi CA, Moratti R, Garagna S, Balduini A. The genomic and proteomic blueprint of mouse megakaryocytes derived from embryonic stem cells. J Thromb Haemost 2012; 10:907-15. [PMID: 22372922 DOI: 10.1111/j.1538-7836.2012.04673.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Platelets are specialized cells, produced by megakaryocytes (MKs) in the bone marrow, which represent the first defense against hemorrhage. There are many diseases where platelet production or function is impaired, with severe consequences for patients. Therefore, new insights into the process of MK differentiation and platelet formation would have a major impact on both basic and clinical research. OBJECTIVES Embryonic stem (ES) cells represent a good in vitro model to study the differentiation of MKs, with the possibility of being genetically engineered and constituting an unlimited source of MKs. However, lack of knowledge about the molecular identity of ES-derived MKs (ES-MKs) may prevent any further development and application of this model. METHODS This paper presents the first comprehensive transcriptional and proteome profile analyses of mouse ES-MKs in comparison with MKs derived from mouse fetal liver progenitors (FL-MKs). RESULTS In ES-MKs we found a down-regulation of cytoskeleton proteins, specific transcription factors and membrane receptors at both transcriptional and protein levels. At the phenotypic level, this molecular blueprint was displayed by ES-MKs' lower polyploidy, lower nuclear/cytoplasm ratio and reduced capacity to form proplatelets and releasing platelets. CONCLUSIONS Overall our data demonstrate that ES-MKs represent a useful model to clarify many aspects of both MK physiology and pathological conditions where impaired MK functions are related to defective MK development, as in inherited thrombocytopenias and primary myelofibrosis.
Collapse
Affiliation(s)
- V Merico
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bury L, Malara A, Gresele P, Balduini A. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS One 2012; 7:e34449. [PMID: 22539947 PMCID: PMC3335122 DOI: 10.1371/journal.pone.0034449] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/02/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The interaction of megakaryocytes with matrix proteins of the osteoblastic and vascular niche is essential for megakaryocyte maturation and proplatelet formation. Fibrinogen is present in the vascular niche and the fibrinogen receptor α(IIb)β(3) is abundantly expressed on megakaryocytes, however the role of the interaction between fibrinogen and α(IIb)β(3) in proplatelet formation in humans is not yet fully understood. We have recently reported a novel congenital macrothrombocytopenia associated with a heterozygous mutation of the β(3) subunit of α(IIb)β(3). The origin of thrombocytopenia in this condition remains unclear and this may represent an interesting natural model to get further insight into the role of the megakaryocyte fibrinogen receptor in megakaryopoiesis. METHODOLOGY/PRINCIPAL FINDINGS Patients' peripheral blood CD45+ cells in culture were differentiated into primary megakaryocytes and their maturation, spreading on different extracellular matrix proteins, and proplatelet formation were analyzed. Megakaryocyte maturation was normal but proplatelet formation was severely impaired, with tips decreased in number and larger in size than those of controls. Moreover, megakaryocyte spreading on fibrinogen was abnormal, with 50% of spread cells showing disordered actin distribution and more evident focal adhesion points than stress fibres. Integrin α(IIb)β(3) expression was reduced but the receptor was constitutively activated and a sustained, and substrate-independent, activation of proteins of the outside-in signalling was observed. In addition, platelet maturation from preplatelets was impaired. CONCLUSIONS/SIGNIFICANCE Our data show that constitutive activation of α(IIb)β(3)-mediated outside-in signalling in human megakaryocytes negatively influences proplatelet formation, leading to macrothombocytopenia.
Collapse
Affiliation(s)
- Loredana Bury
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Malara
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Division of Internal and Cardiovascular Medicine, Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Balduini
- Biotechnology Laboratories, Department of Biochemistry, University of Pavia, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
46
|
Blood platelet production and morphology. Thromb Res 2012; 129:241-4. [PMID: 22226434 DOI: 10.1016/j.thromres.2011.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/02/2023]
Abstract
Circulating platelets are highly specialized cells produced by megakaryocytes (Mks) that participate in hemostatic and inflammatory functions. Despite their critical role little is known about the molecular mechanisms involved in their production from megakaryocytes, or about the pathogenesis of platelet disorders. Megakaryopoiesis occurs in a complex microenvironment within the bone marrow. The underlying relationships between Mk maturation and bone marrow components are key factors in this process. Mk interactions with extracellular matrices (ECM) via specific surface receptors control many functions, with chemistry, physical parameters and membrane elasticity as fundamental elements of the processes involved. Alteration of Mk-ECM interactions in the bone marrow environment may lead to pathophysiologic situations, such as myelofibrosis and congenital thrombocytopenia. Searching the mechanisms related to Mks-bone marrow environment interactions, will provide novel insight into fundamental control of Mk function, leading to new concepts in the study of Mk-related disease states and future modes for therapeutic inquiry.
Collapse
|
47
|
Vettore S, Tezza F, Malara A, Vianello F, Pecci A, Scandellari R, Floris M, Balduini A, Fabris F. A A386G biallelic GPIbα gene mutation with anomalous behavior: a new mechanism suggested for Bernard-Soulier syndrome pathogenesis. Haematologica 2011; 96:1878-82. [PMID: 21993687 DOI: 10.3324/haematol.2010.039008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Platelet glycoprotein GPIbα mutations are the basic defect behind Bernard-Soulier syndrome, a rare inherited macrothrombocytopenia characterized by anomalies of the GPIbα, GPIbβ and GPIX subunits of von Willebrand factor receptor. A 32-year old man was investigated for suspected Bernard-Soulier syndrome. Ristocetin induced agglutination was absent. Flow cytometry and Western blot analysis showed a severe reduction in GPIbα, but sequencing revealed only a biallelic c.386A>G substitution, theoretically leading to a p.Asn110Glu variation. To further clarify the data, megakaryocyte cultures were set. Though the maturation of megakaryocytes was normal, proplatelet formation was defective and GPIbα mRNA was not detectable. GPIX protein was slightly reduced and GPIbβ polypeptide almost absent. Computational analysis showed that the c.386A>G mutation disrupted an exon splicing enhancer motif involved in the proper maturation of the GPIbα transcript. The c.386A>G mutation suggests a unique mutational mechanism causing the virtual absence of GPIbα without creating a stop codon.
Collapse
Affiliation(s)
- Silvia Vettore
- Department of Medical and Surgical Sciences, University of Padua Medical School, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 Suppl 1:76-91. [PMID: 21781244 DOI: 10.1111/j.1538-7836.2011.04274.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic defects of platelet function give rise to mucocutaneous bleeding of varying severity because platelets fail to fulfil their haemostatic role after vessel injury. Abnormalities of pathways involving glycoprotein (GP) mediators of adhesion (Bernard-Soulier syndrome, platelet-type von Willebrand disease) and aggregation (Glanzmann thrombasthenia) are the most studied and affect the GPIb-IX-V complex and integrin αIIbβ3, respectively. Leukocyte adhesion deficiency-III combines Glanzmann thrombasthenia with infections and defects of kindlin-3, a mediator of integrin activation. Agonist-specific deficiencies in platelet aggregation relate to mutations of primary receptors for ADP (P2Y(12)), thromboxane A(2) (TXA2R) and collagen (GPVI); however, selective abnormalities of intracellular signalling pathways remain better understood in mouse models. Defects of secretion from δ-granules are accompanied by pigment defects in the Hermansky-Pudlak and Chediak-Higashi syndromes; they concern multiple genes and protein complexes involved in secretory organelle biogenesis and function. Quebec syndrome is linked to a tandem duplication of the urokinase plasminogen activator (PLAU) gene while locus assignment to chromosome 3p has advanced the search for the gene(s) responsible for α-granule deficiency in the gray platelet syndrome. Defects of α-granule biosynthesis also involve germline VPS33B mutations in the ARC (arthrogryposis, renal dysfunction and cholestasis) syndrome. A mutation in transmembrane protein 16F (TMEM16F) has been linked to a defective procoagulant activity and phosphatidylserine expression in the Scott syndrome. Cytoskeletal dysfunction (with platelet anisotrophy) occurs not only in the Wiskott-Aldrich syndrome but also in filamin A deficiency or MYH9-related disease while GATA1 mutations or RUNX1 haploinsufficiency can affect expression of multiple platelet proteins.
Collapse
Affiliation(s)
- A Nurden
- Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | |
Collapse
|
50
|
Balduini A, Badalucco S, Pugliano MT, Baev D, De Silvestri A, Cattaneo M, Rosti V, Barosi G. In vitro megakaryocyte differentiation and proplatelet formation in Ph-negative classical myeloproliferative neoplasms: distinct patterns in the different clinical phenotypes. PLoS One 2011; 6:e21015. [PMID: 21698292 PMCID: PMC3115954 DOI: 10.1371/journal.pone.0021015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/16/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Ph-negative myeloproliferative neoplasms (MPNs) are clonal disorders that include primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET). Although the pathogenesis of MPNs is still incompletely understood, an involvement of the megakaryocyte lineage is a distinctive feature. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the in vitro megakaryocyte differentiation and proplatelet formation in 30 PMF, 8 ET, 8 PV patients, and 17 healthy controls (CTRL). Megakaryocytes were differentiated from peripheral blood CD34(+) or CD45(+) cells in the presence of thrombopoietin. Megakaryocyte output was higher in MPN patients than in CTRL with no correlation with the JAK2 V617F mutation. PMF-derived megakaryocytes displayed nuclei with a bulbous appearance, were smaller than ET- or PV-derived megakaryocytes and formed proplatelets that presented several structural alterations. In contrast, ET- and PV-derived megakaryocytes produced more proplatelets with a striking increase in bifurcations and tips compared to both control and PMF. Proplatelets formation was correlated with platelet counts in patient peripheral blood. Patients with pre-fibrotic PMF had a pattern of megakaryocyte proliferation and proplatelet formation that was similar to that of fibrotic PMF and different from that of ET. CONCLUSIONS/SIGNIFICANCE In conclusion, MPNs are associated with high megakaryocyte proliferative potential. Profound differences in megakaryocyte morphology and proplatelet formation distinguish PMF, both fibrotic and prefibrotic, from ET and PV.
Collapse
|