1
|
Montecino-Garrido H, Trostchansky A, Espinosa-Parrilla Y, Palomo I, Fuentes E. How Protein Depletion Balances Thrombosis and Bleeding Risk in the Context of Platelet's Activatory and Negative Signaling. Int J Mol Sci 2024; 25:10000. [PMID: 39337488 PMCID: PMC11432290 DOI: 10.3390/ijms251810000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Platelets are small cell fragments that play a crucial role in hemostasis, requiring fast response times and fine signaling pathway regulation. For this regulation, platelets require a balance between two pathway types: the activatory and negative signaling pathways. Activatory signaling mediators are positive responses that enhance stimuli initiated by a receptor in the platelet membrane. Negative signaling regulates and controls the responses downstream of the same receptors to roll back or even avoid spontaneous thrombotic events. Several blood-related pathologies can be observed when these processes are unregulated, such as massive bleeding in activatory signaling inhibition or thrombotic events for negative signaling inhibition. The study of each protein and metabolite in isolation does not help to understand the role of the protein or how it can be contrasted; however, understanding the balance between active and negative signaling could help develop effective therapies to prevent thrombotic events and bleeding disorders.
Collapse
Affiliation(s)
- Hector Montecino-Garrido
- Centro de Estudios en Alimentos Procesados (CEAP), ANID-Regional, Gore Maule R0912001, Talca 3480094, Chile
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Yolanda Espinosa-Parrilla
- Interuniversity Center for Healthy Aging (CIES), Centro Asistencial, Docente e Investigación-CADI-UMAG, Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Interuniversity Center for Healthy Aging (CIES), Interuniversity Network of Healthy Aging in Latin America and Caribbean (RIES-LAC), Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
2
|
Reversible Platelet Integrin αIIbβ3 Activation and Thrombus Instability. Int J Mol Sci 2022; 23:ijms232012512. [PMID: 36293367 PMCID: PMC9604507 DOI: 10.3390/ijms232012512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Integrin αIIbβ3 activation is essential for platelet aggregation and, accordingly, for hemostasis and arterial thrombosis. The αIIbβ3 integrin is highly expressed on platelets and requires an activation step for binding to fibrinogen, fibrin or von Willebrand factor (VWF). A current model assumes that the process of integrin activation relies on actomyosin force-dependent molecular changes from a bent-closed and extended-closed to an extended-open conformation. In this paper we review the pathways that point to a functional reversibility of platelet αIIbβ3 activation and transient aggregation. Furthermore, we refer to mouse models indicating that genetic defects that lead to reversible platelet aggregation can also cause instable thrombus formation. We discuss the platelet agonists and signaling pathways that lead to a transient binding of ligands to integrin αIIbβ3. Our analysis points to the (autocrine) ADP P2Y1 and P2Y12 receptor signaling via phosphoinositide 3-kinases and Akt as principal pathways linked to reversible integrin activation. Downstream signaling events by protein kinase C, CalDAG-GEFI and Rap1b have not been linked to transient integrin activation. Insight into the functional reversibility of integrin activation pathways will help to better understand the effects of antiplatelet agents.
Collapse
|
3
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
4
|
Wang Y, Gao N, Feng Y, Cai M, Li Y, Xu X, Zhang H, Yao D. Protein kinase C theta (Prkcq) affects nerve degeneration and regeneration through the c-fos and c-jun pathways in injured rat sciatic nerves. Exp Neurol 2021; 346:113843. [PMID: 34418453 DOI: 10.1016/j.expneurol.2021.113843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous finding using DNA microarray and bioinformatics analysis, we have reported some key factors which regulated gene expression and signaling pathways in injured sciatic nerve during Wallerian Degeneration (WD). This research is focused on protein kinase C theta (Prkcq) participates in the regulation of the WD process. METHODS In this study, we explored the molecular mechanism by which Prkcq in Schwann cells (SCs) affects nerve degeneration and regeneration in vivo and in vitro after rat sciatic nerve injury. RESULTS Study of the cross-sectional model showed that Prkcq expression decreased significantly during sciatic nerve repair. Functional analysis showed that upregulation and downregulation of Prkcq could affect the proliferation, migration and apoptosis of Schwann cells and lead to the expression of related factors through the activation of the β-catenin, c-fos, and p-c-jun/c-jun pathways. CONCLUSION The study provides insights into the role of Prkcq in early WD during peripheral nerve degeneration and/or regeneration.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Xi Xu
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
5
|
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, Huang F, Chen Z, Xu W, Xia D, Gao C. mTOR regulates GPVI-mediated platelet activation. J Transl Med 2021; 19:201. [PMID: 33971888 PMCID: PMC8111939 DOI: 10.1186/s12967-021-02756-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to mTOR (mammalian/mechanistic target of rapamycin) gene-loss mice die during embryonic development, the role of mTOR in platelets has not been evaluated using gene knockout technology. Methods A mouse model with megakaryocyte/platelet-specific deletion of mTOR was established, and be used to evaluate the role of mTOR in platelet activation and thrombus formation. Results mTOR−/− platelets were deficient in thrombus formation when grown on low-concentration collagen-coated surfaces; however, no deficiency in thrombus formation was observed when mTOR−/− platelets were perfused on higher concentration collagen-coated surfaces. In FeCl3-induced mouse mesenteric arteriole thrombosis models, wild-type (WT) and mTOR−/− mice displayed significantly different responses to low-extent injury with respect to the ratio of occluded mice, especially within the first 40 min. Additionally, mTOR−/− platelets displayed reduced aggregation and dense granule secretion (ATP release) in response to low doses of the glycoprotein VI (GPVI) agonist collagen related peptide (CRP) and the protease-activated receptor-4 (PAR4) agonist GYPGKF-NH2; these deficiencies were overcame by stimulation with higher concentration agonists, suggesting dose dependence of the response. At low doses of GPVI or PAR agonist, the activation of αIIbβ3 in mTOR−/− platelets was reduced. Moreover, stimulation of mTOR−/− platelets with low-dose CRP attenuated the phosphorylation of S6K1, S6 and Akt Ser473, and increased the phosphorylation of PKCδ Thr505 and PKCε Ser729. Using isoform-specific inhibitors of PKCs (δ, ɛ, and α/β), we established that PKCδ/ɛ, and especially PKCδ but not PKCα/β or PKCθ, may be involved in low-dose GPVI-mediated/mTOR-dependent signaling. Conclusion These observations indicate that mTOR plays an important role in GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Longsheng Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Gang Liu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.,Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Nannan Wu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Baiyun Dai
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuang Han
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zhihua Chen
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Weihong Xu
- Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China. .,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
8
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
9
|
JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 2013; 122:3787-97. [PMID: 24085768 DOI: 10.1182/blood-2013-06-501452] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The principal morbidity and mortality in patients with essential thrombocythemia (ET) and polycythemia rubra vera (PV) stems from thrombotic events. Most patients with ET/PV harbor a JAK2V617F mutation, but its role in the thrombotic diathesis remains obscure. Platelet function studies in patients are difficult to interpret because of interindividual heterogeneity, reflecting variations in the proportion of platelets derived from the malignant clone, differences in the presence of additional mutations, and the effects of medical treatments. To circumvent these issues, we have studied a JAK2V617F knock-in mouse model of ET in which all megakaryocytes and platelets express JAK2V617F at a physiological level, equivalent to that present in human ET patients. We show that, in addition to increased differentiation, JAK2V617F-positive megakaryocytes display greater migratory ability and proplatelet formation. We demonstrate in a range of assays that platelet reactivity to agonists is enhanced, with a concomitant increase in platelet aggregation in vitro and a reduced duration of bleeding in vivo. These data suggest that JAK2V617F leads to intrinsic changes in both megakaryocyte and platelet biology beyond an increase in cell number. In support of this hypothesis, we identify multiple differentially expressed genes in JAK2V617F megakaryocytes that may underlie the observed biological differences.
Collapse
|