1
|
Guo C, Lan L, Yan Y, Kang M. Effects of acute exposure to hypoxia on sleep structure in healthy adults: A systematic review. Sleep Med Rev 2024; 75:101928. [PMID: 38614049 DOI: 10.1016/j.smrv.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
The sleep quality of lowlanders in hypoxic environments has become increasingly important with an increase in highland and alpine activities. This study aimed to identify the effects of acute exposure to hypoxia on the sleep structure of lowlanders and to analyze the changes in sleep indicators at varying levels of hypoxia. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twenty-three studies were screened and included in the quantitative analysis. The results showed that acute exposure to hypoxia reduced sleep quality in lowlanders. Post-sleep arousal events and the percentage of N1 were significantly increased, whereas total sleep time, sleep efficiency, and the percentage of N3 and rapid eye movement sleep were significantly decreased in hypoxic environments. Acute exposure to hypoxia had the greatest negative impact on wakefulness after sleep onset (WASO). In addition, a larger decrease in sleep efficiency and higher increase in the percentages of N1 and WASO were observed when lowlanders were exposed to higher levels of hypoxia. This study clarifies the quantitative effects of acute hypoxic exposure on sleep in lowlanders based on original studies and explains the sleep disorders faced by lowlanders in hypoxic environments.
Collapse
Affiliation(s)
- Chao Guo
- Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lan
- Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Yan
- Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyuan Kang
- Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Effects of Altitude on Chronic Obstructive Pulmonary Disease Patients: Risks and Care. Life (Basel) 2021; 11:life11080798. [PMID: 34440542 PMCID: PMC8401125 DOI: 10.3390/life11080798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 02/02/2023] Open
Abstract
Air travel and altitude stays have become increasingly frequent within the overall population but also in patients suffering from chronic obstructive pulmonary disease (COPD), which is the most common respiratory disease worldwide. While altitude is well tolerated by most individuals, COPD patients are exposed to some serious complications, that could be life-threatening. COPD patients present not only a respiratory illness but also frequent comorbidities. Beyond oxygen desaturation, it also affects respiratory mechanics, and those patients are at high risk to decompensate a cardiac condition, pulmonary hypertension, or a sleep disorder. Recently, there has been considerable progress in the management of this disease. Nocturnal oxygen therapy, inhaled medications, corticosteroids, inspiratory muscle training, and pulmonary rehabilitation are practical tools that must be developed in the comprehensive care of those patients so as to enable them to afford altitude stays.
Collapse
|
3
|
Mikołajczak K, Czerwińska K, Pilecki W, Poręba R, Gać P, Poręba M. The Impact of Temporary Stay at High Altitude on the Circulatory System. J Clin Med 2021; 10:1622. [PMID: 33921196 PMCID: PMC8068881 DOI: 10.3390/jcm10081622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022] Open
Abstract
In recent times many people stay temporarily at high altitudes. It is mainly associated with the growing popularity of regular air travel, as well as temporary trips to mountain regions. Variable environmental conditions, including pressure and temperature changes, have an impact on the human body. This paper analyses the physiological changes that may occur while staying at high altitude in healthy people and in people with cardiovascular diseases, such as arterial hypertension, pulmonary hypertension, heart failure, ischemic heart disease, or arrhythmias. Possible unfavourable changes were underlined. Currently recognized treatment recommendations or possible treatment modifications for patients planning to stay at high altitudes were also discussed.
Collapse
Affiliation(s)
- Karolina Mikołajczak
- Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, PL 50-368 Wroclaw, Poland; (K.M.); (W.P.); (M.P.)
| | - Karolina Czerwińska
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | - Witold Pilecki
- Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, PL 50-368 Wroclaw, Poland; (K.M.); (W.P.); (M.P.)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland;
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland;
| | - Małgorzata Poręba
- Department of Pathophysiology, Wroclaw Medical University, Marcinkowskiego 1, PL 50-368 Wroclaw, Poland; (K.M.); (W.P.); (M.P.)
| |
Collapse
|
4
|
Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, Festi L, Giardini G, Lironcurti A, Luks AM, Maggiorini M, Modesti PA, Swenson ER, Williams B, Bärtsch P, Torlasco C. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J 2019; 39:1546-1554. [PMID: 29340578 PMCID: PMC5930248 DOI: 10.1093/eurheartj/ehx720] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Adapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. ![]()
Collapse
Affiliation(s)
- Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Piergiuseppe Agostoni
- Department of Cardiology, Heart Failure Unit, Centro Cardiologico Monzino, via Parea 4, 20138 Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, via Festa del Perdono 7, 20122 Milan, Italy
| | - Buddha Basnyat
- Nuffield Department of Clinical Medicine, Oxford University Clinical Research Unit-Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK
| | - Grzegorz Bilo
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine at the EURAC Research, viale Druso 1, 39100 Bolzano, Italy.,Medical University, Christoph-Probst-Platz 1, Innrain 52 A - 6020 Innsbruck, Austria
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Luigi Festi
- Surgery Department, Ospedale di Circolo Fondazione Macchi, viale Luigi Borri, 57, 21100 Varese, Italy.,University of Insubria, via Ravasi 2, 21100 Varese, Italy
| | - Guido Giardini
- Department of Neurology, Neurophysiopathology Unit, Valle d'Aosta Regional Hospital, via Ginevra, 3, 11100 Aosta, Italy
| | - Alessandra Lironcurti
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA
| | - Marco Maggiorini
- Medical Intensive Care Unit, University Hospital, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Pietro A Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Florence, Italy
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA.,Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, 98108 WA, USA
| | - Bryan Williams
- University College London (UCL) and NIHR UCL Hospitals Biomedical Research Centre, NHS Foundation Trust, University College, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Peter Bärtsch
- Department of Internal Medicine, University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| |
Collapse
|
7
|
Schmid JP, Morger C, Noveanu M, Binder RK, Anderegg M, Saner H. Haemodynamic and arrhythmic effects of moderately cold (22 degrees C) water immersion and swimming in patients with stable coronary artery disease and heart failure. Eur J Heart Fail 2010; 11:903-9. [PMID: 19696059 DOI: 10.1093/eurjhf/hfp114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Data on moderately cold water immersion and occurrence of arrhythmias in chronic heart failure (CHF) patients are scarce. METHODS AND RESULTS We examined 22 male patients, 12 with CHF [mean age 59 years, ejection fraction (EF) 32%, NYHA class II] and 10 patients with stable coronary artery disease (CAD) without CHF (mean age 65 years, EF 52%). Haemodynamic effects of water immersion and swimming in warm (32 degrees C) and moderately cold (22 degrees C) water were measured using an inert gas rebreathing method. The occurrence of arrhythmias during water activities was compared with those measured during a 24 h ECG recording. Rate pressure product during water immersion up to the chest was significantly higher in moderately cold (P = 0.043 in CHF, P = 0.028 in CAD patients) compared with warm water, but not during swimming. Rate pressure product reached 14200 in CAD and 12 400 in CHF patients during swimming. Changes in cardiac index (increase by 5-15%) and oxygen consumption (increase up to 20%) were of similar magnitude in moderately cold and warm water. Premature ventricular contractions (PVCs) increased significantly in moderately cold water from 15 +/- 41 to 76 +/- 163 beats per 30 min in CHF (P = 0.013) but not in CAD patients (20 +/- 33 vs. 42 +/- 125 beats per 30 min, P = 0.480). No ventricular tachycardia was noted. CONCLUSION Patients with compensated CHF tolerate water immersion and swimming in moderately cold water well. However, the increase in PVCs raises concerns about the potential danger of high-grade ventricular arrhythmias.
Collapse
Affiliation(s)
- Jean-Paul Schmid
- Cardiovascular Prevention and Rehabilitation, Swiss Cardiovascular Centre Bern, University Hospital (Inselspital), 3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
8
|
Kujanik S, Mikulecky M. Circadian and ultradian extrasystole rhythms in healthy individuals at elevated versus lowland altitudes. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2010; 54:531-538. [PMID: 20195873 DOI: 10.1007/s00484-010-0302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
We defined chronobiologic norms for supraventricular and ventricular single extrasystoles (SV and VE, respectively) in healthy older males in lowland areas. The study was extended to higher altitudes, where hypobaric hypoxia was expected to increase extrasystole frequency, while perhaps not changing rhythmicity. In healthy men (lowland n = 37, altitude n = 22), aged 49-72 years, mean numbers of SVs and VEs were counted over a 24-h period. Cosinor regression was used to test the 24-h rhythm and its 2nd-10th harmonics. The resulting approximating function for either extrasystole type includes its point, 95% confidence interval of the mean, and 95% tolerance for single measurement estimates. Separate hourly differences (delta) between altitude and lowland (n = 59) were also analysed. Hourly means were significantly higher in the mountains versus lowland, by +0.8 beats/h on average for SVs, and by +0.9 beats/h for VEs. A relatively rich chronogram for VEs in mountains versus lowland exists. Delta VEs clearly display a 24-h component and its 2nd, 3rd, 4th and 7th harmonics. This results in significantly higher accumulation of VEs around 8.00 a.m., 11.00 a.m. and 3.00 p.m. in the mountains. The increase in extrasystole occurrence in the mountains is probably caused by higher hypobaric hypoxia and resulting sympathetic drive. Healthy men at elevated altitudes show circadian and several ultradian rhythms of single VEs dependent on the hypoxia level. This new methodological approach--evaluating the differences between two locations using delta values--promises to provide deeper insight into the occurrence of premature beats.
Collapse
Affiliation(s)
- Stefan Kujanik
- Dept of Physiology, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 66 Kosice, Slovak Republic.
| | | |
Collapse
|