1
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Choy L, Yeo JM, Tse V, Chan SP, Tse G. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. IJC HEART & VASCULATURE 2016; 12:1-10. [PMID: 27766308 PMCID: PMC5064289 DOI: 10.1016/j.ijcha.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022]
Abstract
The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.
Collapse
Affiliation(s)
- Lois Choy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Jie Ming Yeo
- School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Vivian Tse
- Department of Physiology, McGill University, Canada
| | - Shing Po Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
3
|
Abriel H, Zaklyazminskaya EV. Cardiac channelopathies: genetic and molecular mechanisms. Gene 2012; 517:1-11. [PMID: 23266818 DOI: 10.1016/j.gene.2012.12.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012.
Collapse
Affiliation(s)
- Hugues Abriel
- Department of Clinical Research, University of Bern, Switzerland.
| | | |
Collapse
|
4
|
PET/CT imaging in mouse models of myocardial ischemia. J Biomed Biotechnol 2012; 2012:541872. [PMID: 22505813 PMCID: PMC3312322 DOI: 10.1155/2012/541872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/16/2011] [Accepted: 12/30/2011] [Indexed: 01/06/2023] Open
Abstract
Different species have been used to reproduce myocardial infarction models but in the last years mice became the animals of choice for the analysis of several diseases, due to their short life cycle and the possibility of genetic manipulation. Many techniques are currently used for cardiovascular imaging in mice, including X-ray computed tomography (CT), high-resolution ultrasound, magnetic resonance imaging, and nuclear medicine procedures. Cardiac positron emission tomography (PET) allows to examine noninvasively, on a molecular level and with high sensitivity, regional changes in myocardial perfusion, metabolism, apoptosis, inflammation, and gene expression or to measure changes in anatomical and functional parameters in heart diseases. Currently hybrid PET/CT scanners for small laboratory animals are available, where CT adds high-resolution anatomical information. This paper reviews mouse models of myocardial infarction and discusses the applications of dedicated PET/CT systems technology, including animal preparation, anesthesia, radiotracers, and images postprocessing.
Collapse
|
5
|
Probing human cardiovascular congenital disease using transgenic mouse models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:83-110. [PMID: 21377625 DOI: 10.1016/b978-0-12-384878-9.00003-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Congenital heart defects (CHDs) impact in utero embryonic viability, children, and surviving adults. Since the first transfer of genes into mice, transgenic mouse models have enabled researchers to experimentally study and genetically test the roles of genes in development, physiology, and disease progression. Transgenic mice have become a bona fide human CHD pathology model and their use has dramatically increased within the past two decades. Now that the entire mouse and human genomes are known, it is possible to knock out, mutate, misexpress, and/or replace every gene. Not only have transgenic mouse models changed our understanding of normal development, CHD processes, and the complex interactions of genes and pathways required during heart development, but they are also being used to identify new avenues for medical therapy.
Collapse
|
6
|
Abstract
Establishment of methods to inactivate genes by homologous recombination in embryonic stem (ES) cells has provided great advantages to the field of mouse genetics. Using this technology, a number of null mutant mice, so-called knock-out mice, have been generated. The gene-targeting technology offers a strong tool that allows us to understand the function of a particular gene of interest in the whole animal and has contributed to studies in a wide variety of biological research areas. More recently, the original knock-out technology has been further refined to develop advanced strategies to generate conditional knock-out and knock-in mice. In this chapter, an overview of gene-targeting strategies is presented and procedures to generate these genetically engineered mice are discussed.
Collapse
Affiliation(s)
- Anne E Griep
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | |
Collapse
|
7
|
Barnabei MS, Palpant NJ, Metzger JM. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiol Genomics 2010; 42A:103-13. [PMID: 20627938 DOI: 10.1152/physiolgenomics.00071.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inbred mouse strains play a critical role in biomedical research. Genetic homogeneity within inbred strains and their general amenability to genetic manipulation have made them an ideal resource for dissecting the physiological function(s) of individual genes. However, the inbreeding that makes inbred mice so useful also results in genetic divergence between them. This genetic divergence is often unaccounted for but may be a confounding factor when comparing studies that have utilized distinct inbred strains. Here, we compared the cardiac function of C57BL/6J mice to seven other commonly used inbred mouse strains: FVB/NJ, DBA/2J, C3H/HeJ, BALB/cJ, 129X1/SvJ, C57BL/10SnJ, and 129S1/SvImJ. The assays used to compare cardiac function were the ex vivo isolated Langendorff heart preparation and in vivo real-time hemodynamic analysis using conductance micromanometry. We report significant strain-dependent differences in cardiac function between C57BL/6J and other commonly used inbred strains. C57BL/6J maintained better cardiac function than most inbred strains after ex vivo ischemia, particularly compared with 129S1/SvImJ, 129X1/SvJ, and C57BL/10SnJ strains. However, during in vivo acute hypoxia 129X1/SvJ and 129S1/SvImJ maintained relatively normal cardiac function, whereas C57BL/6J animals showed dramatic cardiac decompensation. Additionally, C3H/HeJ showed rapid and marked cardiac decompensation in response to esmolol infusion compared with effects of other strains. These findings demonstrate the complex effects of genetic divergence between inbred strains on cardiac function. These results may help inform analysis of gene ablation or transgenic studies and further demonstrate specific quantitative traits that could be useful in discovery of genetic modifiers relevant to cardiac health and disease.
Collapse
Affiliation(s)
- Matthew S Barnabei
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
8
|
Rokutan H, Anker SD, Springer J. In vivomodels of cardiac diseases: application to drug development and screening. Expert Opin Drug Discov 2009; 5:65-78. [DOI: 10.1517/17460440903460299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
|
10
|
Huggins CE, Bell JR, Pepe S, Delbridge LM. Benchmarking Ventricular Arrhythmias in the Mouse—Revisiting the ‘Lambeth Conventions’ 20 Years On. Heart Lung Circ 2008; 17:445-50. [DOI: 10.1016/j.hlc.2008.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
11
|
Rudy Y, Ackerman MJ, Bers DM, Clancy CE, Houser SR, London B, McCulloch AD, Przywara DA, Rasmusson RL, Solaro RJ, Trayanova NA, Van Wagoner DR, Varró A, Weiss JN, Lathrop DA. Systems approach to understanding electromechanical activity in the human heart: a national heart, lung, and blood institute workshop summary. Circulation 2008; 118:1202-11. [PMID: 18779456 DOI: 10.1161/circulationaha.108.772715] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of cardiologists, cardiac electrophysiologists, cell biophysicists, and computational modelers on August 20 and 21, 2007, in Washington, DC, to advise the NHLBI on new research directions needed to develop integrative approaches to elucidate human cardiac function. The workshop strove to identify limitations in the use of data from nonhuman animal species for elucidation of human electromechanical function/activity and to identify what specific information on ion channel kinetics, calcium handling, and dynamic changes in the intracellular/extracellular milieu is needed from human cardiac tissues to develop more robust computational models of human cardiac electromechanical activity. This article summarizes the workshop discussions and recommendations on the following topics: (1) limitations of animal models and differences from human electrophysiology, (2) modeling ion channel structure/function in the context of whole-cell electrophysiology, (3) excitation-contraction coupling and regulatory pathways, (4) whole-heart simulations of human electromechanical activity, and (5) what human data are currently needed and how to obtain them. The recommendations can be found on the NHLBI Web site at http://www.nhlbi.nih.gov/meetings/workshops/electro.htm.
Collapse
Affiliation(s)
- Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, The Fred Saigh Distinguished Professor, Washington University, Campus Box 1097, Whitaker Hall Room 290B, One Brookings Dr, St Louis, MO 63130-4899, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Congenital heart defects occur in nearly 1% of human live births and many are lethal if not surgically repaired. In addition, the genetic contribution to congenital or acquired cardiovascular diseases that are silent at birth, but progress to cause significant disease in later life is being increasingly appreciated. Heart development and structure are highly conserved between mouse and human. The discoveries that are being made in this model system are highly relevant to understanding the pathogenesis of human heart defects whether they occus in isolation, or in the context of a syndrome. Many of the genes required for cardiovascular development were discovered fortuitously when early lethality or structural defects were observed in mouse mutants generated for other purposes, and relevant genes continue to be defined in this manner. Candidate genes for this process are being identified by their roles other species, or by their expression in pertinent tissues in mice. In this review, I will briefly summarize heart development as currently understood in the mouse, and then discuss how complementary studies in mouse and human have identified genes and pathways that are critical for normal cardiovascular development, and for maintaining the structure and function of this organ system throughout life.
Collapse
Affiliation(s)
- Anne Moon
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|