Kharbanda RK, Ramdat Misier NL, van Schie MS, Zwijnenburg RD, Amesz JH, Knops P, Bogers AJJC, Taverne YJHJ, de Groot NMS. Insights Into the Effects of Low-Level Vagus Nerve Stimulation on Atrial Electrophysiology: Towards Patient-Tailored Cardiac Neuromodulation.
JACC Clin Electrophysiol 2023;
9:1843-1853. [PMID:
37480858 DOI:
10.1016/j.jacep.2023.05.011]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND
Low-level vagus nerve stimulation through the tragus (tLLVNS) is increasingly acknowledged as a therapeutic strategy to prevent and treat atrial fibrillation. However, a lack in understanding of the exact antiarrhythmic properties of tLLVNS has hampered clinical implementation.
OBJECTIVES
In this study, the authors aimed to study the effects of tLLVNS on atrial electrophysiology by performing intraoperative epicardial mapping during acute and chronic tLLVNS.
METHODS
Epicardial mapping of the superior right atrium was performed before and after arterial graft harvesting in patients undergoing coronary artery bypass grafting without a history of atrial fibrillation. The time needed for arterial graft harvesting was used to perform chronic tLLVNS. Electrophysiological properties were compared before and during chronic tLLVNS.
RESULTS
A total of 10 patients (median age 74 years [IQR: 69-78 years]) underwent tLLVNS for a duration of 56 minutes (IQR: 43-73 minutes). During acute and chronic tLLVNS, a shift of the sinoatrial node exit site toward a more cranial direction was observed in 5 (50%) patients. Unipolar potential voltage increased significantly during acute and chronic tLLVNS (3.9 mV [IQR: 3.1-4.8 mV] vs 4.7 mV [IQR: 4.0-5.3 mV] vs 5.2 mV [IQR: 4.8-7.0 mV]; P = 0.027, P = 0.02, respectively). Total activation time, slope of unipolar potentials, amount of fractionation, low-voltage areas and conduction velocity did not differ significantly between baseline measurements and tLLVNS. Two patients showed consistent "improvement" of all electrophysiological properties during tLLVNS, while 1 patient appeared to have no beneficial effect.
CONCLUSIONS
We demonstrated that tLLVNS resulted in a significant increase in unipolar potential voltage. In addition, we observed the following in selective patients: 1) reduction in total activation time; 2) steeper slope of unipolar potentials; 3) decrease in the amount of fractionation; and 4) change in sinoatrial node exit sites.
Collapse