Bruining N, Lancée C, Roelandt JR, Bom N. Three-dimensional echocardiography paves the way toward virtual reality.
ULTRASOUND IN MEDICINE & BIOLOGY 2000;
26:1065-1074. [PMID:
11053740 DOI:
10.1016/s0301-5629(00)00256-8]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The heart is a three-dimensional (3-D) object and, with the help of 3-D echocardiography (3-DE), it can be shown in a realistic fashion. This capability decreases variability in the interpretation of complex pathology among investigators. Therefore, it is likely that the method will become the standard echocardiography examination in the future. The availability of volumetric data sets allows retrieval of an infinite number of cardiac cross-sections. This results in more accurate and reproducible measurements of valve areas, cardiac mass and cavity volumes by obviating geometric assumptions. Typical 3-DE parameters, such as ejection fraction, flow jets, myocardial perfusion and LV wall curvature, may become important diagnostic parameters based on 3-DE. However, the freedom of an infinite number of cross-sections of the heart can result in an often-encountered problem of being "lost in space" when an observer works on a 3-DE image data set. Virtual reality computing techniques in the form of a virtual heart model can be useful by providing spatial "cardiac" information. With the recent introduction of relatively low cost portable echo devices, it is envisaged that use of diagnostic ultrasound (US) will be further boosted. This, in turn, will require further teaching facilities. Coupling of a cardiac model with true 3-D echo data in a virtual reality setting may be the answer.
Collapse