1
|
Lozano-Edo S, Jover-Pastor P, Osa-Saez A, Buendia-Fuentes F, Rodriguez-Serrano M, Arnau-Vives MA, Rueda-Soriano J, Calvillo-Batlles P, Fonfria-Esparcia C, Martinez-Dolz L, Agüero J. Spatiotemporal Complexity of Vena Contracta and Mitral Regurgitation Grading Using Three-Dimensional Echocardiographic Analysis. J Am Soc Echocardiogr 2023; 36:77-86.e7. [PMID: 36208654 DOI: 10.1016/j.echo.2022.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spatiotemporal complexity of the color Doppler vena contracta challenging the assumption of a circular and constant orifice may lead to mitral regurgitation (MR) grading inconsistencies. Using 3D transesophageal echocardiography, we characterized spatiotemporal vena contracta complexity and its impact on MR severity grading. METHODS In 192 patients with suspected moderate or severe MR (100 primary MR [PMR]; 92 secondary MR [SMR]), we performed three-dimensional vena contracta area (VCA) quantification using single-frame (midsystolic or VCAmid, maximum or VCAmax) and multiframe (VCAmean) methods, as well as measures of orifice shape (shape index) and systolic variation of VCA. Vena contracta complexity and intermethod discrepancies were analyzed and correlated with functional class and pulmonary vein flow (PVF) patterns and with cardiac magnetic resonance (CMR) in a subset of cases (n = 20). RESULTS The vena contracta was noncircular (shape index > 1.5) in 90% of patients. Severe noncircularity (shape index > 3) was more prevalent in SMR than in PMR (32.4% vs 14.6%). Variations of the VCA were more prominent in SMR than in PMR. VCAmid showed a low grading agreement with VCAmax (62%) and high grading agreement with VCAmean (83.3%). Pulmonary vein flow systolic reversal was associated with MR severity by VCA in SMR but not in PMR. VCAmid and VCAmean showed a stronger association with systolic flow reversal than VCAmax (area under the curve, 0.88, 0.86, and 0.79, respectively). In the subset of patients with CMR quantification, severe MR by VCAmax was graded as nonsevere by CMR more frequently compared with VCAmid and VCAmean. CONCLUSIONS Highly prevalent spatiotemporal vena contracta complexity features in MR challenge the assumption of a circular and constant orifice. VCAmid seems the best single-frame approximation to multiframe quantification, and VCAmax may lead to severity overestimation.
Collapse
Affiliation(s)
| | | | - Ana Osa-Saez
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Buendia-Fuentes
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Maria Rodriguez-Serrano
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Angel Arnau-Vives
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Joaquin Rueda-Soriano
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Luis Martinez-Dolz
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jaume Agüero
- Hospital Universitari i Politecnic La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
2
|
Lovhale PS, Gadhinglajkar S, Sreedhar R, Sukesan S, Pillai V. Intraoperative comparison of 2D versus 3D transesophageal echocardiography for quantitative assessment of mitral regurgitation. Ann Card Anaesth 2021; 24:163-171. [PMID: 33884971 PMCID: PMC8253015 DOI: 10.4103/aca.aca_28_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Effective regurgitant orifice area (EROA) can be represented by 3D echocardiographic vena contracta cross-sectional area (3D-VCA) as a reference method for the quantification of mitral regurgitation (MR) without making any geometrical assumptions. EROA can also be derived from 3D PISA technique with a hemispherical (HS) or hemielliptical (HE) assumption of the proximal flow convergence. However, it is not clear whether HS-PISA and HE-PISA has better agreement with 3D-VCA. Aims: This study was conducted to compare the EROA and Rvol obtained from 3D-VCA with those obtained from 2D-VC, 2D-HS-PISA, 3D-HS-PISA, and 3D-HE-PISA. Setting: Tertiary care hospital. Design: Prospective observational study. Materials and Methods: After anesthesia induction, 43 consecutive patients were evaluated with RT-3D-TEE after acquiring images from midesophegeal views and performing the offline analysis of volume dataset. 3D-VCA was measured using multiplanar reconstruction mode and EROA and regurgitant volume were estimated using HS-PISA and HE-PISA methods. The HE-PISA was calculated by using the Knud Thomsen formula. Statistical Analysis: Agreement between methods to estimate EROA and regurgitant volumes were tested using Bland–Altman analysis. The interobserver variability and intraobserver variability were assessed using an intraclass correlation coefficient. Results: The EROA estimated by 3D-VCA was larger than EROA obtained by 2D-HS-PISA and 3D-HS-PISA, which were significantly greater than 3D-HE-PISA. 3D-HS-PISA-EROA showed the best agreement with 3D-VCA (bias: 0.21; limits of agreement: −0.01 to 0.41; SD: 0.1). Correlation between various methods as compared to 3D-VCA was better in the organic MR group than functional MR group. Conclusion: 3D-HS-PISA showed the best agreement with 3D-VCA compared to other PISA methods. Better correlation between PISA-EROA and 3D-VCA was observed in patients with organic MR than functional MR.
Collapse
Affiliation(s)
- Pravin S Lovhale
- Consultant Cardiac Anaesthesia, Raheja Hospital, Mumbai, Maharashtra, India
| | - Shrinivas Gadhinglajkar
- Department of Anesthesia, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Rupa Sreedhar
- Department of Anesthesia, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Subin Sukesan
- Department of Anesthesia, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | - Vivek Pillai
- Department of CVTS, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| |
Collapse
|
3
|
Magunia H, Rosenberger P. [Application fields of intraoperative transesophageal 3D echocardiography]. Anaesthesist 2015; 63:662-72, 674-7. [PMID: 24994014 DOI: 10.1007/s00101-014-2346-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intraoperative transesophageal echocardiography (TEE) is an established diagnostic tool and has to be regarded as the standard of care for intraoperative monitoring and cardiac surgical decision-making. Furthermore, intraoperative TEE is also used for monitoring and assessment of hemodynamic changes and the detection of previously unknown pathologies. In the past few years 3D-TEE has extended the spectrum of 2D-TEE by allowing pathomorphological features to be more easily and intuitively linked to the anatomy of the heart and the great vessels. Thus, a comprehensive 2D-TEE examination is favorably complemented by focused 3D-TEE. Especially during mitral valve surgery, 3D-TEE has proven its superiority in the diagnosis of the underlying pathology as demonstrated by a large number of studies in this field. This review presents the available data about the role of intraoperative 3D-TEE echocardiography and introduces practical fields of application.
Collapse
Affiliation(s)
- H Magunia
- Universitätsklinik für Anästhesiologie und Intensivmedizin, Eberhard-Karls-Universität, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland,
| | | |
Collapse
|
4
|
Brugger N, Wustmann K, Hürzeler M, Wahl A, de Marchi SF, Steck H, Zürcher F, Seiler C. Comparison of three-dimensional proximal isovelocity surface area to cardiac magnetic resonance imaging for quantifying mitral regurgitation. Am J Cardiol 2015; 115:1130-6. [PMID: 25747111 DOI: 10.1016/j.amjcard.2015.01.550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
The aim of our study was to evaluate 3-dimensional (3D) color Doppler proximal isovelocity surface area (PISA) as a tool for quantitative assessment of mitral regurgitation (MR) against in vitro and in vivo reference methods. A customized 3D PISA software was validated in vitro against a flowmeter MR phantom. Sixty consecutive patients, with ≥mild MR of any cause, were recruited and the regurgitant volume (RVol) was measured by 2D PISA, 3D peak PISA, and 3D integrated PISA, using transthoracic (TTE) and transesophageal echocardiography (TEE). Cardiac magnetic resonance imaging (CMR) was used as reference method. Flowmeter RVol was associated with 3D integrated PISA as follows: y = 0.64x + 4.7, r(2) = 0.97, p <0.0001 for TEE and y = 0.88x + 4.07, r(2) = 0.96, p <0.0001 for TTE. The bias and limit of agreement in the Bland-Altman analysis were 6.8 ml [-3.5 to 17.1] for TEE and -0.059 ml [-6.2 to 6.1] for TTE. In vivo, TEE-derived 3D integrated PISA was the most accurate method for MR quantification compared to CMR: r(2) = 0.76, y = 0.95x - 3.95, p <0.0001; 5.1 ml (-14.7 to 26.5). It was superior to TEE 3D peak PISA (r(2) = 0.67, y = 1.00x + 6.20, p <0.0001; -6.3 ml [-33.4 to 21.0]), TEE 2D PISA (r(2) = 0.54, y = 0.76x + 0.18, p <0.0001; 8.4 ml [-20.4 to 37.2]), and TTE-derived measurements. It was also most accurate by receiver operating characteristic analysis (area under the curve 0.99) for the detection of severe MR, RVol cutoff = 48 ml, sensibility 100%, and specificity 96%. RVol and the cutoff to define severe MR were underestimated using the most accurate method. In conclusion, quantitative 3D color Doppler echocardiography of the PISA permits a more accurate MR assessment than conventional techniques and, consequently, should enable an optimized management of patients suffering from MR.
Collapse
Affiliation(s)
- Nicolas Brugger
- Department of Cardiology, University Hospital Bern, Bern, Switzerland.
| | - Kerstin Wustmann
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Michael Hürzeler
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Andreas Wahl
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | | | - Hélène Steck
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Fabian Zürcher
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Christian Seiler
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
5
|
Ashikhmina E, Shook D, Cobey F, Bollen B, Fox J, Liu X, Worthington A, Song P, Shernan S. Three-dimensional versus two-dimensional echocardiographic assessment of functional mitral regurgitation proximal isovelocity surface area. Anesth Analg 2015; 120:534-542. [PMID: 25166465 DOI: 10.1213/ane.0000000000000409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The geometric shape of the mitral regurgitation (MR) proximal isovelocity surface area (PISA) is conventionally assumed to be a hemisphere (HS). However, in functional MR, PISA is frequently neither an HS nor a hemiellipse (HE) but is often asymmetric and crescent shaped. We used 3-dimensional transesophageal echocardiographic (3D TEE), full-volume data sets to directly measure the PISA and subsequently compared calculated values of effective regurgitant orifice area (EROA) with conventional 2D TEE techniques. EROA calculations from all PISA measurements were finally compared with the cross-sectional area at the vena contracta, a well-validated reference measure of the functional MR orifice area. METHODS Twenty-four cardiac surgical patients with functional MR, who underwent routine intraoperative TEE examinations with a 3D matrix array probe (X7-2t; IE33; Philips Healthcare, Inc., Andover, MA) were retrospectively evaluated for MR severity using quantitative 2D and 3D TEE-derived techniques. Conventional 2D TEE methods were used to estimate PISA assuming an HS shape and an HE shape. In addition, direct measurement of the 3D PISA was obtained (QLab, Philips Healthcare, Inc.) from corresponding full-volume, color-flow Doppler data sets. EROAs calculated from HS- and HE-PISA techniques were compared with the same values obtained from 3D TEE PISAs. EROAs obtained from all 3 PISA techniques were subsequently compared with vena contracta area. RESULTS Three-dimensional PISA was significantly larger than both HS-PISA and HE-PISA (mean ± SD: 4.65 ± 2.03 cm² vs 2.10 ± 1.58 cm² and 2.75 ± 1.42 cm²; both P < 0.0001), respectively. HE-PISA was also larger than HS-PISA (P = 0.042). In addition, 3D EROA was larger than both HS- and HE-acquired EROAs (mean ± SD: 0.44 ± 0.21 vs 0.19 ± 0.12 cm² and 0.26 ± 0.14; both P < 0.0001), respectively, while HE-EROA was larger than HS-EROA (P = 0.024). Vena contracta area correlated well with 3D EROA (Spearman r = 0.865), HS-EROA (Spearman r = 0.820; P < 0.001) and HE-EROA (Spearman r = 0.819). However, the difference between vena contracta area and 3D EROA was significantly less than the differences between vena contracta area and either 2D HS- or 2D HE-EROA (P < 0.0001). CONCLUSIONS Quantitative assessment of functional MR severity by 3D TEE may be superior to 2D methods by permitting more direct measures of PISA. Two-dimensional TEE techniques for assessing functional MR severity that rely on an HS- or HE-PISA shape may underestimate the EROA due to geometric assumptions that do not account for asymmetry.
Collapse
Affiliation(s)
- Elena Ashikhmina
- From the Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Anesthesiology, Tufts University School of Medicine, Boston, Massachusetts; and International Heart Institute of Montana, Missoula, Montana
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grossgasteiger M, Hien MD, Graser B, Rauch H, Gondan M, Motsch J, Rosendal C. Assessment of left ventricular size and function during cardiac surgery. An intraoperative evaluation of six two-dimensional echocardiographic methods with real time three-dimensional echocardiography as a reference. Echocardiography 2013; 30:672-81. [PMID: 23405969 DOI: 10.1111/echo.12116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transesophageal echocardiography is recommended to monitor left ventricular (LV) size and function in various operations. Generally, two-dimensional (2D) methods are applied intraoperatively. The aim of this study was to compare the accuracy and feasibility of 6 commonly used 2D methods to assess LV function during surgery. LV function in 120 consecutive patients was evaluated. Real time three-dimensional transesophageal echocardiograpy (3DTEE) served as reference. End-diastolic and end-systolic volumes and ejection fraction (EF) were analyzed with Simpson's method of discs (monoplane [MP] and biplane [BP]), eyeball method, Teichholz' method, and speckle tracking (ST) methods. Furthermore, fractional area change (FAC) and peak systolic pressure rise (dP/dt) were determined. Each 2D method was evaluated regarding correlation and agreement with 3DE, intra- and interobserver variability and the time required for evaluation. Simpson BP showed the strongest correlation and best agreement with 3DE for EF (limits of agreement 3.7 ± 11.6%) and volumes. Simpson MP showed similar agreement with 3DE compared to ST (2.8 ± 14.5% vs. 2.0 ± 15.3% and 3.8 ± 14.4% vs. 1.9 ± 15.6%, respectively). Both the eyeball method and Teichholz' method showed wide limits of agreement (-1.5 ± 18.2% and 5.2 ± 22.1%, respectively). DP/dt did not correlate with 3DE. FAC and ST FAC showed similar agreement. Application of 3DE (429 ± 108 seconds) took the longest time, and the eyeball method took the shortest time (8 ± 5 seconds) for analysis. Simpson BP is the most accurate intraoperative 2D method to evaluate LV function, followed by long-axis MP evaluations. Short-axis views were less accurate but may be suited for monitoring. We do not recommend using dP/dt.
Collapse
Affiliation(s)
- Manuel Grossgasteiger
- Research Training Group 1126: Intelligent Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Heß H, Eibel S, Mukherjee C, Kaisers UX, Ender J. Quantification of mitral valve regurgitation with color flow Doppler using baseline shift. Int J Cardiovasc Imaging 2012; 29:267-74. [PMID: 22752361 DOI: 10.1007/s10554-012-0084-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
Abstract
Vena contracta width (VCW) and effective regurgitant orifice area (EROA) are well established methods for evaluating mitral regurgitation using transesophageal echocardiography (TEE). For color-flow Doppler (CF) measurements Nyquist limit of 50-60 cm/s is recommended. Aim of the study was to investigate the effectiveness of a baseline shift of the Nyquist limit for these measurements. After a comprehensive 2-dimensional (2D) TEE examination, the mitral regurgitation jet was acquired with a Nyquist limit of 50 cm/s (NL50) along with a baseline shift to 37.5 cm/s (NL37.5) using CF. Moreover a real time 3-dimensional (RT 3D) color complete volume dataset was stored with a Nyquist limit of 50 cm/s (NL50) and 37.5 cm/s (NL37.5). Vena contracta width (VCW) as well as proximal isovelocity surface area (PISA) derived EROA were measured based on 2D TEE and compared to RT 3D echo measurements for vena contracta area (VCA) using planimetry method. Correlation between VCA 3D NL50 and VCW NL50 was 0.29 (p < 0.05) compared to 0.6 (p < 0.05) using NL37.5. Correlation between VCA 3D NL50 and EROA 2D NL50 was 0.46 (p < 0.05) vs. 0.6 (p < 0.05) EROA 2D NL37.5. Correlation between VCA 3D NL37.5 and VCW NL50 was 0.45 (p < 0.05) compared to 0.65 (p < 0.05) using VCW NL37.5. Correlation between VCA 3D NL37.5 and EROA 2D NL50 was 0.41 (p < 0.05) vs. 0.53 (p < 0.05) using EROA 2D NL37.5. Baseline shift of the NL to 37.5 cm/s improves the correlation for VCW and EROA when compared to RT 3D NL50 planimetry of the vena contracta area. Baseline shift in RT 3D to a NL of 37.5 cm/s shows similar results like NL50.
Collapse
Affiliation(s)
- Hannah Heß
- Department of Anesthesiology and Intensive Care Medicine, Heartcenter, University Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|