1
|
Lindblad KA, Pathmanathan JS, Moreira S, Bracht JR, Sebra RP, Hutton ER, Landweber LF. Capture of complete ciliate chromosomes in single sequencing reads reveals widespread chromosome isoforms. BMC Genomics 2019; 20:1037. [PMID: 31888453 PMCID: PMC6937825 DOI: 10.1186/s12864-019-6189-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Whole-genome shotgun sequencing, which stitches together millions of short sequencing reads into a single genome, ushered in the era of modern genomics and led to a rapid expansion of the number of genome sequences available. Nevertheless, assembly of short reads remains difficult, resulting in fragmented genome sequences. Ultimately, only a sequencing technology capable of capturing complete chromosomes in a single run could resolve all ambiguities. Even "third generation" sequencing technologies produce reads far shorter than most eukaryotic chromosomes. However, the ciliate Oxytricha trifallax has a somatic genome with thousands of chromosomes averaging only 3.2 kbp, making it an ideal candidate for exploring the benefits of sequencing whole chromosomes without assembly. RESULTS We used single-molecule real-time sequencing to capture thousands of complete chromosomes in single reads and to update the published Oxytricha trifallax JRB310 genome assembly. In this version, over 50% of the completed chromosomes with two telomeres derive from single reads. The improved assembly includes over 12,000 new chromosome isoforms, and demonstrates that somatic chromosomes derive from variable rearrangements between somatic segments encoded up to 191,000 base pairs away. However, while long reads reduce the need for assembly, a hybrid approach that supplements long-read sequencing with short reads for error correction produced the most complete and accurate assembly, overall. CONCLUSIONS This assembly provides the first example of complete eukaryotic chromosomes captured by single sequencing reads and demonstrates that traditional approaches to genome assembly can mask considerable structural variation.
Collapse
Affiliation(s)
- Kelsi A. Lindblad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032 USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
| | - Jananan S. Pathmanathan
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032 USA
| | - Sandrine Moreira
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032 USA
| | - John R. Bracht
- Department of Biology, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016 USA
| | - Robert P. Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Elizabeth R. Hutton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 USA
- Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor,, NY 11724 USA
| | - Laura F. Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032 USA
| |
Collapse
|
2
|
Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46:4921-4931. [PMID: 31273612 DOI: 10.1007/s11033-019-04942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.
Collapse
|
3
|
Aeschlimann SH, Jönsson F, Postberg J, Stover NA, Petera RL, Lipps HJ, Nowacki M, Swart EC. The draft assembly of the radically organized Stylonychia lemnae macronuclear genome. Genome Biol Evol 2014; 6:1707-23. [PMID: 24951568 PMCID: PMC4122937 DOI: 10.1093/gbe/evu139] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stylonychia lemnae is a classical model single-celled eukaryote, and a quintessential ciliate typified by dimorphic nuclei: A small, germline micronucleus and a massive, vegetative macronucleus. The genome within Stylonychia’s macronucleus has a very unusual architecture, comprised variably and highly amplified “nanochromosomes,” each usually encoding a single gene with a minimal amount of surrounding noncoding DNA. As only a tiny fraction of the Stylonychia genes has been sequenced, and to promote research using this organism, we sequenced its macronuclear genome. We report the analysis of the 50.2-Mb draft S. lemnae macronuclear genome assembly, containing in excess of 16,000 complete nanochromosomes, assembled as less than 20,000 contigs. We found considerable conservation of fundamental genomic properties between S. lemnae and its close relative, Oxytricha trifallax, including nanochromosomal gene synteny, alternative fragmentation, and copy number. Protein domain searches in Stylonychia revealed two new telomere-binding protein homologs and the presence of linker histones. Among the diverse histone variants of S. lemnae and O. trifallax, we found divergent, coexpressed variants corresponding to four of the five core nucleosomal proteins (H1.2, H2A.6, H2B.4, and H3.7) suggesting that these ciliates may possess specialized nucleosomes involved in genome processing during nuclear differentiation. The assembly of the S. lemnae macronuclear genome demonstrates that largely complete, well-assembled highly fragmented genomes of similar size and complexity may be produced from one library and lane of Illumina HiSeq 2000 shotgun sequencing. The provision of the S. lemnae macronuclear genome sets the stage for future detailed experimental studies of chromatin-mediated, RNA-guided developmental genome rearrangements.
Collapse
Affiliation(s)
| | - Franziska Jönsson
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, Germany
| | - Jan Postberg
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, GermanyDepartment of Neonatology, HELIOS Children's Hospital, Witten/Herdecke University, Wuppertal, Germany
| | | | | | - Hans-Joachim Lipps
- Centre for Biological Research and Education (ZBAF), Institute of Cell Biology, Witten/Herdecke University, Wuppertal, Germany
| | | | | |
Collapse
|
4
|
Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy SR, Herrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol 2013; 11:e1001473. [PMID: 23382650 PMCID: PMC3558436 DOI: 10.1371/journal.pbio.1001473] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/12/2012] [Indexed: 01/03/2023] Open
Abstract
With more chromosomes than any other sequenced genome, the macronuclear genome of Oxytricha trifallax has a unique and complex architecture, including alternative fragmentation and predominantly single-gene chromosomes. The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease. The macronuclear genome of the ciliate Oxytricha trifallax, contained in its somatic nucleus, has a unique genome architecture. Unlike its diploid germline genome, which is transcriptionally inactive during normal cellular growth, the macronuclear genome is fragmented into at least 16,000 tiny (∼3.2 kb mean length) chromosomes, most of which encode single actively transcribed genes and are differentially amplified to a few thousand copies each. The smallest chromosome is just 469 bp, while the largest is 66 kb and encodes a single enormous protein. We found considerable variation in the genome, including frequent alternative fragmentation patterns, generating chromosome isoforms with shared sequence. We also found limited variation in chromosome amplification levels, though insufficient to explain mRNA transcript level variation. Another remarkable feature of Oxytricha's macronuclear genome is its inordinate fondness for telomeres. In conjunction with its possession of tens of millions of chromosome-ending telomeres per macronucleus, we show that Oxytricha has evolved multiple putative telomere-binding proteins. In addition, we identified two new domesticated transposase-like protein classes that we propose may participate in the process of genome rearrangement. The macronuclear genome now provides a crucial resource for ongoing studies of genome rearrangement processes that use Oxytricha as an experimental or comparative model.
Collapse
Affiliation(s)
- Estienne C. Swart
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - John R. Bracht
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick Minx
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiao Chen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yi Zhou
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Jaspreet S. Khurana
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Aaron D. Goldman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mariusz Nowacki
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Klaas Schotanus
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Seolkyoung Jung
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Robert S. Fulton
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amy Ly
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sean McGrath
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kevin Haub
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica L. Wiggins
- Sequencing Core Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Donna Storton
- Sequencing Core Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - John C. Matese
- Sequencing Core Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Lance Parsons
- Bioinformatics Group, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, New York, United States of America
| | - Michael S. Bowen
- Biology Department, Bradley University, Peoria, Illinois, United States of America
| | - Nicholas A. Stover
- Biology Department, Bradley University, Peoria, Illinois, United States of America
| | - Thomas A. Jones
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Sean R. Eddy
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Glenn A. Herrick
- Biology Department, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas G. Doak
- Department of Biology, University of Indiana, Bloomington, Indiana, United States of America
| | - Richard K. Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elaine R. Mardis
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
5
|
Zoller SD, Hammersmith RL, Swart EC, Higgins BP, Doak TG, Herrick G, Landweber LF. Characterization and taxonomic validity of the ciliate Oxytricha trifallax (Class Spirotrichea) based on multiple gene sequences: limitations in identifying genera solely by morphology. Protist 2012; 163:643-57. [PMID: 22325790 PMCID: PMC3433844 DOI: 10.1016/j.protis.2011.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/08/2023]
Abstract
Oxytricha trifallax - an established model organism for studying genome rearrangements, chromosome structure, scrambled genes, RNA-mediated epigenetic inheritance, and other phenomena - has been the subject of a nomenclature controversy for several years. Originally isolated as a sibling species of O. fallax, O. trifallax was reclassified in 1999 as Sterkiella histriomuscorum, a previously identified species, based on morphological similarity. The proper identification of O. trifallax is crucial to resolve in order to prevent confusion in both the comparative genomics and the general scientific communities. We analyzed nine conserved nuclear gene sequences between the two given species and several related ciliates. Phylogenetic analyses suggest that O. trifallax and a bona fide S. histriomuscorum have accumulated significant evolutionary divergence from each other relative to other ciliates such that they should be unequivocally classified as separate species. We also describe the original isolation of O. trifallax, including its comparison to O. fallax, and we provide criteria to identify future isolates of O. trifallax.
Collapse
Affiliation(s)
- Stephen D. Zoller
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | | | - Estienne C. Swart
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | - Brian P. Higgins
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| | - Thomas G. Doak
- Department of Biology, Indiana University, IN 47405, USA
| | - Glenn Herrick
- Department of Biology, University of Utah, UT 84112, USA
| | - Laura F. Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, NJ 08544, USA
| |
Collapse
|
6
|
Katz LA, Kovner AM. Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:480-8. [PMID: 20700892 DOI: 10.1002/jez.b.21354] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In ciliates, chromosomal rearrangements occur during the development of the somatic macronuclear genome from the germline micronuclear genome. These rearrangements are extensive in three ciliate classes-Armophorea, Spirotrichea, and Phyllopharyngea-generating a macronucleus with up to 20,000,000 gene-sized chromosomes. Earlier, we have shown that these three classes also share elevated rates of protein evolution relative to other ciliates. To assess the evolution of germline-limited sequences in the class Phyllopharyngea, we used a combination of traditional and walking PCR to analyze micronuclear copies of multiple genes from two lines of the morphospecies Chilodonella uncinata for which we had previously characterized macronuclear sequences. Analyses of the resulting data yield three main results: (1) conserved macronuclear (somatic) regions are found within rapidly evolving micronuclear (germline) regions; (2) gene scrambling exists within this ciliate lineage; and (3) alternative processing of micronuclear regions yields diverse macronuclear beta-tubulin paralogs. To our knowledge, this is the first study to demonstrate gene scrambling outside the nonsister class Spirotrichea, and to show that alternative processing of scrambled genes generates diversity in gene families. Intriguingly, the Spirotrichea and Phyllopharyngea are also united in having transient "giant" polytene chromosomes, gene-sized somatic chromosomes, and elevated rates of protein evolution. We hypothesize that this suite of characters enables these ciliates to enjoy the benefits of asexuality while still maintaining the ability to go through sexual cycles. The data presented here add to the growing evidence of the dynamic nature of eukaryotic genomes within diverse lineages across the tree of life.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA.
| | | |
Collapse
|
7
|
Abstract
Increasing evidence suggests that parentally supplied RNA plays crucial roles during eukaryotic development. This epigenetic contribution may regulate gene expression from the earliest stages. Although present in a variety of eukaryotes, maternally inherited characters are especially prominent in ciliated protozoa, in which parental noncoding RNA molecules instruct whole-genome reorganization. This includes removal of nearly all noncoding DNA and sorting the remaining fragments, producing extremely gene-rich somatic genomes. Chromosome fragmentation and extensive replication produce variable DNA copy numbers in the somatic genome. Understanding the forces that drive and regulate copy number change is fundamental. We show that RNA molecules present in parental cells during sexual reproduction can regulate chromosome copy number in the developing nucleus of the ciliate Oxytricha. Experimentally induced changes in RNA abundance can both increase and decrease the levels of corresponding DNA molecules in progeny, demonstrating epigenetic inheritance of chromosome copy number. These results suggest that maternal RNA, in addition to controlling gene expression or DNA processing, can also program DNA amplification levels.
Collapse
|
8
|
Le Mouël A, Butler A, Caron F, Meyer E. Developmentally regulated chromosome fragmentation linked to imprecise elimination of repeated sequences in paramecia. EUKARYOTIC CELL 2004; 2:1076-90. [PMID: 14555491 PMCID: PMC219357 DOI: 10.1128/ec.2.5.1076-1090.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chromosomes of ciliates are fragmented at reproducible sites during the development of the polyploid somatic macronucleus, but the mechanisms involved appear to be quite diverse in different species. In Paramecium aurelia, the process is imprecise and results in de novo telomere addition at locally heterogeneous positions. To search for possible determinants of chromosome fragmentation, we have studied an approximately 21-kb fragmentation region from the germ line genome of P. primaurelia. The mapping and sequencing of alternative macronuclear versions of the region show that two distinct multicopy elements, a minisatellite and a degenerate transposon copy, are eliminated by an imprecise mechanism leading either to chromosome fragmentation and the formation of new telomeres or to the rejoining of flanking sequences. Heterogeneous internal deletions occur between short direct repeats containing TA dinucleotides. The complex rearrangement patterns produced vary slightly among genetically identical cell lines, show non-Mendelian inheritance during sexual reproduction, and can be experimentally modified by transformation of the maternal macronucleus with homologous sequences. These results suggest that chromosome fragmentation in Paramecium is the consequence of imprecise DNA elimination events that are distinct from the precise excision of single-copy internal eliminated sequences and that target multicopy germ line sequences by homology-dependent epigenetic mechanisms.
Collapse
Affiliation(s)
- Anne Le Mouël
- Laboratoire de Génétique Moléculaire, CNRS UMR 8541, Ecole Normale Supérieure, 75005 Paris, France
| | | | | | | |
Collapse
|
9
|
Seegmiller A, Williams KR, Herrick G. Two two-gene macronuclear chromosomes of the hypotrichous ciliates Oxytricha fallax and O. trifallax generated by alternative processing of the 81 locus. DEVELOPMENTAL GENETICS 2000; 20:348-57. [PMID: 9254909 DOI: 10.1002/(sici)1520-6408(1997)20:4<348::aid-dvg6>3.0.co;2-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the first know macronuclear chromosomes that carry more than one gene in hypotrichous ciliated protozoa. These 4.9- and 2.8-kbp chromosomes each consist almost exclusively of two protein-coding genes, which are conserved and transcribed. The two chromosomes share a common region that consists of a gene that is a member of the family of mitochondrial solute carrier genes (CR-MSC; [Williams and Herrick (1991): Nucleic Acids Res 19:4717-4724]. Each chromosome also carries another gene appended to its common region: The 4.9-kbp chromosome also carries a gene that encodes a protein that is rich in glutamine and charged amino acids and bears regions of heptad repeats characteristic of coiled-coils. Its function is unknown. The second gene of the 2.8 kbp chromosome is a mitochondrial solute carrier gene (LA-MSC); thus, the 2.8-kbp chromosomes consists of two mitochondrial solute carrier paralogs. Phylogenetic analysis indicates that the two genes were duplicated before ciliates diverged from the main eukaryotic lineage and were subsequently juxtaposed. The CR- and LA-MSC genes are each interrupted by three introns. The introns are not in homologous positions, suggesting that they may have originated from multiple group II intron transpositions. These chromosomes and their genes are encoded in the Oxytricha germline by the 81 locus. This locus is alternatively processed to generate a nested set of three macronuclear chromosomes, the 4.9- and 2.8-kbp chromosomes and a third (1.6 kbp) which consists almost exclusively of the shared common gene, CR-MSC. Such alternative processing is common in macronuclear development of O. fallax [Cartinhour and Herrick (1984): Mol Cell Biol 4:931-938]. Possible functions for alternative processing are considered; e.g., it may serve to physically link genes to allow co-regulation or co-replication by a common cis-acting sequence.
Collapse
Affiliation(s)
- A Seegmiller
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | |
Collapse
|
10
|
Seegmiller A, Herrick G. A short internal eliminated sequence with central conserved sequences interrupting the LA-MSC gene of the 81 locus in the hypotrichous ciliates Oxytricha fallax and O. trifallax. J Eukaryot Microbiol 1998; 45:55-8. [PMID: 9495033 DOI: 10.1111/j.1550-7408.1998.tb05069.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IES-LA is a short Internal Eliminated Sequence interrupting LA-MSC, a protein-coding gene of the 81 locus of Oxytricha fallax and O. trifallax. IES-LA is precisely excised from the gene during development of the macronucleus. The internal eliminated sequence is bounded by CAAT ... AATG, and thereby resembles a TBE1 transposon internal eliminated sequence insertion that is grossly shortened (4.1 kbp to 52-64 bp), consistent with the hypothesis that short IESs are degenerated ancient transposons. The pattern of sequence conservation between five alleles of IES-LA shows that it differs from previously characterized classes of ciliate short IESs: while many short IESs have conserved ends and diverged centers, IES-LA is more conserved in its center and its ends are diverged. This implies a excision mechanism for IES-LA that is distinct from those for other known Oxytricha IESs.
Collapse
Affiliation(s)
- A Seegmiller
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
11
|
Klobutcher LA, Herrick G. Developmental genome reorganization in ciliated protozoa: the transposon link. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:1-62. [PMID: 9187050 DOI: 10.1016/s0079-6603(08)61001-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
12
|
Seegmiller A, Williams KR, Herrick G. Two two-gene macronuclear chromosomes of the hypotrichous ciliatesOxytricha fallax andO. trifallax generated by alternative processing of the 81 locus. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1520-6408(1997)20:4%3c348::aid-dvg6%3e3.0.co;2-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Coyne RS, Chalker DL, Yao MC. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructuring. Annu Rev Genet 1996; 30:557-78. [PMID: 8982465 DOI: 10.1146/annurev.genet.30.1.557] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ciliated protozoa divide the labor of germline and somatic genetic functions between two distinct nuclei. The development of the somatic (macro-) nucleus from the germinal (micro-) nucleus occurs during sexual reproduction and involves large-scale, genetic reorganization including site-specific chromosome breakage and DNA deletion. This intriguing process has been extensively studied in Tetrahymena thermophila. Characterization of cis-acting sequences, putative protein factors, and possible reaction intermediates has begun to shed light on the underlying mechanisms of genome rearrangement. This article summarizes the current understanding of this phenomenon and discusses its origin and biological function. We postulate that ciliate nuclear restructuring serves to segregate the two essential functions of chromosomes: the transmission and expression of genetic information.
Collapse
Affiliation(s)
- R S Coyne
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
14
|
Abstract
Internal eliminated segments (IESs) are sequences that interrupt coding and noncoding regions of germline (micronuclear) genes of ciliated protozoa. IESs are flanked by short, unique repeat sequences, which are presumably required for precise IES excision during macronuclear development. Coding and noncoding segments of genes separated by IESs are called macronuclear-destined segments, or MDSs. We have compiled the characteristics of 89 individual IESs in 12 micronuclear genes in the Oxytricha and Stylonychia genera to define the IES phenomenon precisely, a first step in determining the origin, function and significance of IESs. Although all 89 IESs among the 12 different genes are AT-rich, they show no other similarity in sequence, length, position or number. Two main types of IESs are present. IESs that separate scrambled MDSs are significantly shorter and more frequent and have longer flanking repeat sequences than IESs that intervene between nonscrambled MDSs. A comparison of the nonscrambled gene encoding beta-telomere binding protein in three species of hypotrichs shows that even in the same gene IESs are not conserved in sequence, length, position, or number from species to species. A comparison of IESs in the scrambled gene encoding actin I in the three species shows that the evolutionary behavior of IESs in a scrambled gene may be more constrained. However, IESs in the scrambled actin I gene have shifted along the DNA molecule during evolution. In total, the various studies show that IESs are hypermutable in sequence and length. They insert, excise, and shift along DNA molecules more or less randomly during evolution, with no discernible function or consequences.
Collapse
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | |
Collapse
|
15
|
Doerder FP. Nuclear wars: The relationship between the micronucleus and the macronucleus in ciliate protists. Eur J Protistol 1996. [DOI: 10.1016/s0932-4739(96)80071-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Klobutcher LA, Herrick G. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res 1995; 23:2006-13. [PMID: 7596830 PMCID: PMC306976 DOI: 10.1093/nar/23.11.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the formation of a transcriptionally active macronucleus, ciliated protozoa excise large numbers of interstitial segments of DNA (internal eliminated sequences; IESs) from their chromosomes. In this study we analyze the published sequences of 20 IESs that interrupt surface protein genes of Paramecium and identify a consensus inverted terminal repeat. This sequence is similar to the ends of the Tc1-related transposons found in nematodes and other metazoans, as well as to both the ends of the Tec transposons and at least some of the IESs in the distantly related ciliate Euplotes crassus. The results of these analyses bolster previous proposals that IESs were created by transposition.
Collapse
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
17
|
Hoffman DC, Anderson RC, DuBois ML, Prescott DM. Macronuclear gene-sized molecules of hypotrichs. Nucleic Acids Res 1995; 23:1279-83. [PMID: 7753617 PMCID: PMC306850 DOI: 10.1093/nar/23.8.1279] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.
Collapse
Affiliation(s)
- D C Hoffman
- University of Colorado, Department of Molecular, Cellular and Developmental Biology, Boulder 80309-0347, USA
| | | | | | | |
Collapse
|
18
|
DuBois M, Prescott DM. Scrambling of the actin I gene in two Oxytricha species. Proc Natl Acad Sci U S A 1995; 92:3888-92. [PMID: 7732002 PMCID: PMC42067 DOI: 10.1073/pnas.92.9.3888] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The DNA in a germ-line nucleus (a micronucleus) undergoes extensive processing when it develops into a somatic nucleus (a macronucleus) after cell mating in hypotrichous ciliates. Processing includes destruction of a large amount of spacer DNA between genes and excision of gene-sized molecules from chromosomes. Before processing, micronuclear genes are interrupted by numerous noncoding segments called internal eliminated sequences (IESs). The IESs are excised and destroyed, and the retained macro-nuclear-destined sequences (MDSs) are spliced. MDSs in some micronuclear genes are not in proper order and must be reordered during processing to create functional gene-sized molecules for the macronucleus. Here we report that the micronuclear actin I gene in Oxytricha trifallax WR consists of 10 MDSs and 9 IESs compared to the previously reported 9 MDSs and 8 IESs in the micronuclear actin I gene of Oxytricha nova. The MDSs in the actin I gene are scrambled in a similar pattern in the two species, but the positions of MDS-IES junctions are shifted by up to 14 bp for scrambled and 138 bp for the nonscrambled MDSs. The shifts in MDS-IES junctions create differences in the repeat sequences that are believed to guide MDS splicing. Also, the sizes and sequences of IESs in the micronuclear actin I genes are different in the two Oxytricha species. These observations give insight about the possible origins of IES insertion and MDS scrambling in evolution and show the extraordinary malleability of the germ-line DNA in hypotrichs.
Collapse
Affiliation(s)
- M DuBois
- Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder 80309-0347, USA
| | | |
Collapse
|
19
|
Mitcham JL, Prescott DM, Miller MK. The micronuclear gene encoding beta-telomere binding protein in Oxytricha nova. J Eukaryot Microbiol 1994; 41:478-80. [PMID: 7804248 DOI: 10.1111/j.1550-7408.1994.tb06045.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The micronuclear version of the gene encoding beta-telomere binding protein (beta-TBP) in Oxytricha nova has been sequenced and compared to the macronuclear beta-TBP gene, previously described. The micronuclear gene contains three AT-rich internal eliminated sequences (IES) of 37, 40, and 43 bp and four macronuclear destined sequences (MDS). The IES interrupt the gene once near the 5' end of the coding region and twice in the 3' trailer downstream from the TGA stop codon. The sequences of the micronuclear and macronuclear genes are colinear. Thus, the micronuclear beta-TBP gene is not scrambled, which contrasts with the highly scrambled state among the 14 MDS in the micronuclear alpha-TBP gene.
Collapse
Affiliation(s)
- J L Mitcham
- Immunex Research and Development Corporation, Seattle, Washington 98101
| | | | | |
Collapse
|
20
|
Mansour SJ, Hoffman DC, Prescott DM. A gene-sized DNA molecule encoding the catalytic subunit of DNA polymerase alpha in the macronucleus of Oxytricha nova. Gene 1994; 144:155-61. [PMID: 8039700 DOI: 10.1016/0378-1119(94)90373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have isolated a gene-sized molecule encoding the catalytic subunit of DNA polymerase alpha from a macronuclear genomic library of Oxytricha nova, by using a 0.7-kb fragment of the corresponding human gene as a hybridization probe. Two different versions of the gene are present in the macronucleus, one with an EcoRI site (RI+) and one without an EcoRI site (RI-). The cloned RI- version has been characterized. It is 4938 bp in length, excluding telomeres. It consists of a 329-bp 5' leader, a 4479-bp coding region and a 130-bp 3' trailer. The deduced amino-acid sequence shares conserved regions with the yeast and human polypeptides. We also demonstrate by Southern analysis that gene-sized molecules of similar size, homologous to the isolated O. nova gene are present in the mac genome of closely and distantly related hypotrichs.
Collapse
Affiliation(s)
- S J Mansour
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
21
|
Abstract
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.
Collapse
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
22
|
Kuan J, Saier MH. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol 1993; 28:209-33. [PMID: 8325039 DOI: 10.3109/10409239309086795] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Energy transduction in mitochondria requires the transport of many specific metabolites across the inner membrane of this eukaryotic organelle. We have screened the protein sequence database for proteins homologous to the mitochondrial ATP/ADP exchange carrier, and the homologous proteins found were similarly screened to ensure that all currently sequenced members of the mitochondrial carrier family (MCF) had been identified. Thirty-seven proteins were identified, 28 of which were less than 90% identical to any other sequenced member of the MCF, and the latter proteins fell into 10 clusters or subfamilies as follows: (1) ATP/ADP exchangers of mammals, plants, algae, yeast, and fungi (11 members); (2) a bovine oxoglutarate/malate exchanger (one member); (3) mammalian uncoupling carriers (five members); (4) yeast and mammalian phosphate carriers (three members); (5) MRS proteins that suppress mitochondrial splicing defects in Saccharomyces cerevisiae (two members); (6) a putative peroxysomal carrier of Candida boidinii; (7) a putative solute carrier from the protozoan, Oxytricha fallax; (8) a putative solute carrier from S. cerevisiae; (9) a putative solute carrier from Zea mays, and (10) two putative solute carriers from the mammalian thyroid gland. The specificities of proteins in clusters 5 to 10 are not known. A multiple alignment and an evolutionary tree of the 28 selected members of the MCF were constructed, thus defining the conserved residues and the phylogenetic relationships of the proteins. Hydropathy plots of the homologous regions were determined and averaged, and the average hydropathy plots were evaluated for sequence similarity. These analyses revealed that the six transmembrane spanners exhibited varying degrees of sequence conservation and hydrophilicity. These spanners, and immediately adjacent hydrophilic loop regions, were more highly conserved than other regions of these proteins. All members of the MCF appear to consist of a tripartite structure with each of the three repeated segments being about 100 residues in length. Each repeat contains two transmembrane spanners, the first being more hydrophobic with conserved glycyl and prolyl residues, the second, preceded by a highly conserved glycyl residue, being more hydrophilic with largely conserved hydrophilic residues in certain positions. Five of the six spanners are followed by the largely conserved sequence (D/E)-Hy (K/R)[- = any residue; Hy = a hydrophobic residue]. Based on both intracluster and intercluster statistical comparisons, repeats 1, 2, and 3 are homologous, but repeats 1 are more similar to each other than they are to repeats 2 or 3 or repeats 2 or 3 are to each other.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Kuan
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
23
|
Caron F. A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. J Mol Biol 1992; 225:661-78. [PMID: 1602477 DOI: 10.1016/0022-2836(92)90393-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA rearrangements in Paramecium lead to the formation of macronuclear chromosomes, the sizes of which range from 50 and 800 kb (1 kb is 10(3) base-pairs). This process does not appear to be a simple size reduction of the micronuclear chromosomes by specific and reproducible DNA sequence elimination and chromosomal breakage followed by chromosomal amplification. On the contrary, this process generates a variety of different, but sequence-related, macronuclear chromosomes from a unique set of micronuclear chromosomes. This paper describes an attempt to understand the nature of the diversity of the macronuclear chromosomes and the mechanisms of their production. The structure of three macronuclear chromosomes, 480, 250 and 230 kb in size, have been determined utilizing chromosome-jumping and YAC-cloning techniques. The two smallest chromosomes correspond roughly to the two halves of the longest chromosome. The main contribution to the diversity arises from the chromosomal ends and is due to variable positions of the telomere addition sites and/or to variable rearrangements of DNA sequences. The 480 kb chromosome contains a region of variable length, which is likely to be due to a variable deletion, located at the position of telomerization seen in the two small chromosomes. A model of chromosomal breakage is proposed to rationalize this result where micronuclear DNA is first amplified, broken and degraded to various extent from the newly formed ends, which subsequently are either telomerized or religated. Potential implications of these processes for gene expression is discussed. Known phenotypes that have a macronuclear determinism could be explained by this type of process.
Collapse
Affiliation(s)
- F Caron
- Laboratorie de Génétique Moléculaire, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
24
|
Mitcham JL, Lynn AJ, Prescott DM. Analysis of a scrambled gene: the gene encoding alpha-telomere-binding protein in Oxytricha nova. Genes Dev 1992; 6:788-800. [PMID: 1577273 DOI: 10.1101/gad.6.5.788] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following cell mating in ciliates, a copy of the micronuclear genome is processed into a new macronucleus through massive cutting, reordering, splicing, elimination, and amplification of the DNA. DNA processing includes the deletion of short interrupting elements called internal eliminated sequences (IESs), followed by the splicing of the remaining segments, known as macronuclear destined sequences (MDSs). The MDSs in some micronuclear genes, such as actin I, are scrambled and must be reordered during IES removal and MDS splicing to yield a functional gene. Here, we describe the cloning, sequencing, and characterization of a different scrambling pattern for the gene that encodes the alpha subunit of the telomere-binding protein of Oxytricha nova. The micronuclear gene is made up of 14 MDSs in the scrambled order 1-3-5-7-9-11-2-4-6-8-10-12-13-14. Only the scrambled version is present in the micronucleus, and only the unscrambled version is present in the macronucleus. We propose that unscrambling occurs by homologous recombination guided by pairs of direct repeats at MDS-IES junctions. The patterned array of scrambling may be a clue to the origin of scrambling in this gene.
Collapse
Affiliation(s)
- J L Mitcham
- University of Colorado, Department of Molecular, Cellular, and Developmental Biology, Boulder 80309-0347
| | | | | |
Collapse
|
25
|
Abstract
Healing of a broken chromosome and in eukaryotes involves acquisition of a telomere. During macronuclear development in ciliated protozoans, germline chromosomes are fragmented into linear subchromosomes, whose ends are healed by de novo addition of telomeres. We showed previously that the ribonucleoprotein enzyme telomerase elongates preexisting telomeres by synthesizing one telomeric DNA strand, using a template sequence in the RNA moiety of the enzyme. By marking telomerase with a mutation in the telomerase RNA template, which causes synthesis of novel telomeric sequences, we now show that in the ciliate Tetrahymena, telomerase directly adds telomeric DNA onto nontelomeric sequences during developmentally controlled chromosome healing. Unexpectedly, one telomerase RNA template mutation converted telomerase from an enzyme that normally synthesizes precisely templated sequences to a less precise polymerase that sometimes synthesizes irregular telomeric repeats in vivo.
Collapse
Affiliation(s)
- G L Yu
- Department of Microbiology and Immunology, University of California, San Francisco 94143
| | | |
Collapse
|
26
|
Klobutcher LA, Jahn CL. Developmentally controlled genomic rearrangements in ciliated protozoa. Curr Opin Genet Dev 1991; 1:397-403. [PMID: 1668650 DOI: 10.1016/s0959-437x(05)80306-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ciliated protozoa undergo an extensive genome reorganization during the course of forming a transcriptionally active macronucleus. The process includes numerous chromosome fragmentation and DNA breakage and rejoining events. Recent work indicates that transposable elements play a role in the process.
Collapse
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
27
|
Williams KR, Herrick G. Expression of the gene encoded by a family of macronuclear chromosomes generated by alternative DNA processing in Oxytricha fallax. Nucleic Acids Res 1991; 19:4717-24. [PMID: 1909784 PMCID: PMC328714 DOI: 10.1093/nar/19.17.4717] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypotrichous ciliated protozoa, such as Oxytricha fallax, produce tiny chromosomes during generation of the transcriptionally active macronucleus. The 81-MAC family of macronuclear chromosomes is produced by alternative DNA processing, such that the chromosomes share a common region of 1.6 kbp. Transcription of a 1.3 kb mRNA from the common region has been analyzed. Transcription starts very near the telomere (34 bp), in a 23 bp region of pure A + T DNA. Polyadenylation sites are very near the other telomere (26 bp), also in a region of nearly pure A + T DNA. Three introns are clustered in the first third of the gene. Intron removal can follow polyadenylation, and the order of removal is not fixed. All three known sequence versions of the 81-MAC chromosomes are represented in the mRNA pool, with no evidence of any further versions. The A + T sequences surrounding the transcription starts and polyadenylation sites are conserved among versions. Introns have conserved 5' and 3' ends and a putative branch-point sequence (YYRAT), but otherwise are highly diverged and are AT-rich. A single long open reading frame, interrupted by the three introns, encodes a homolog of known mitochondrial solute carriers, and contains the codon TAA, which does not encode 'stop,' but a conserved glutamine; TAG appears also to encode glutamine. The results significantly enlarge the small data set of transcription start and polyadenylation sites, of intron features, and of translation signals for hypotrichs.
Collapse
Affiliation(s)
- K R Williams
- Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
28
|
Tausta SL, Turner LR, Buckley LK, Klobutcher LA. High fidelity developmental excision of Tec1 transposons and internal eliminated sequences in Euplotes crassus. Nucleic Acids Res 1991; 19:3229-36. [PMID: 1648202 PMCID: PMC328315 DOI: 10.1093/nar/19.12.3229] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Following the sexual phase of its life cycle, the hypotrichous ciliate Euplotes crassus transforms a copy of its chromosomal micronucleus into a transcriptionally active macronucleus containing short, linear, gene-sized DNA molecules. Tens of thousands of DNA breakage and joining, or splicing, events occur during macronuclear development. The DNA removed by such events includes transposon-like elements, referred to as Tec1 elements, as well as segments of unique sequence DNA, termed internal eliminated sequences (IESs). Both types of elements are bounded by short direct repeats. In the current study, a polymerase chain reaction (PCR) and DNA sequencing strategy has been used to examine the fidelity of excision of two Tec1 elements and three IESs. In all cases, the vast majority of excision events were found to be precise, with one copy of the terminal direct repeats retained at the empty site in the macronuclear DNA molecule. These results, in combination with previous studies that have characterized the excised DNA elements, indicate that the two products of excision (the free element and the macronuclear DNA molecule) share DNA sequences. This suggests that excision events are initiated by staggered cuts in the chromosomal DNA.
Collapse
Affiliation(s)
- S L Tausta
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030
| | | | | | | |
Collapse
|
29
|
|
30
|
Jahn CL. The nuclear genomes of hypotrichous ciliates: maintaining the maximum and the minimum of information. THE JOURNAL OF PROTOZOOLOGY 1991; 38:252-8. [PMID: 1652639 DOI: 10.1111/j.1550-7408.1991.tb04438.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C L Jahn
- Department of Biological Sciences, University of Illinois, Chicago 60680
| |
Collapse
|
31
|
Baird SE, Klobutcher LA. Differential DNA amplification and copy number control in the hypotrichous ciliate Euplotes crassus. THE JOURNAL OF PROTOZOOLOGY 1991; 38:136-40. [PMID: 1902260 DOI: 10.1111/j.1550-7408.1991.tb06033.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During macronuclear development in hypotrichous ciliated protozoans, several thousand macronuclear DNA molecules are amplified several-hundred fold. We investigated the regulation of this amplification by determining the copy numbers of three different macronuclear DNA molecules in the hypotrichous ciliate Euplotes crassus. Two of the macronuclear DNA molecules were present in approximately 1,000 copies per cell, while the third was present in approximately 6,500 copies per cell. These reiteration levels were achieved either during macronuclear development, or shortly thereafter, and were maintained during vegetative growth. The most abundant macronuclear DNA molecule is present as a single-copy sequence in the micronuclear genome. Thus, its high copy number results from differential amplification. These results indicate that DNA amplification during macronuclear development is regulated individually for each macronuclear DNA molecule.
Collapse
Affiliation(s)
- S E Baird
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
32
|
Harper DS, Song K, Jahn CL. Overamplification of macronuclear linear DNA molecules during prolonged vegetative growth of Oxytricha nova. Gene X 1991; 99:55-61. [PMID: 2022323 DOI: 10.1016/0378-1119(91)90033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During prolonged vegetative growth of a clonal line of Oxytricha nova, several macronuclear linear DNA molecules increased greatly in copy number over the rest of the approx. 24,000 kinds of molecules comprising the macronuclear genome. One of the amplified sequences was the linear DNA molecule encoding rRNA (rDNA). We have cloned and sequenced the other, smaller, amplified molecules and found that they comprise a gene family, with different allelic versions of one of the family members being amplified. Thus, increased replication is a general property of the molecules comprising this gene family. To date, no function has been assigned to these genes; thus, whether the amplification of these sequences has functional significance is unknown. The rDNA molecule and the two small amplified sequences increased 11-, 24- and 107-fold, respectively, during clonal growth of this line, eventually comprising up to 15% of the macronuclear DNA molecules. Seven other macronuclear DNA molecules did not vary substantially in copy number at different times during the clonal growth of this strain. Analysis of cell-to-cell differences in copy numbers in this clonally aged strain indicated more extensive variation than is evident when large populations from different times are compared.
Collapse
Affiliation(s)
- D S Harper
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
33
|
Tausta SL, Klobutcher LA. Internal eliminated sequences are removed prior to chromosome fragmentation during development in Euplotes crassus. Nucleic Acids Res 1990; 18:845-53. [PMID: 2107532 PMCID: PMC330336 DOI: 10.1093/nar/18.4.845] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hypotrichous ciliated protozoa undergo a massive genome rearrangement process after their sexual cycle. One frequent type of rearrangement is the removal of DNA sequences (internal eliminated sequences; IESs) from internal regions of DNA molecules. In this study, we characterized the removal of IESs in Euplotes crassus. Southern hybridization analyses combined with cytological observations indicated that IES removal is an early event in macronuclear development, occurring during the polytene chromosome stage and prior to the chromosome fragmentation process. The results are consistent with IES removal occurring via an intramolecular DNA breakage and rejoining process.
Collapse
Affiliation(s)
- S L Tausta
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
34
|
NG STEPHENF. DEVELOPMENTAL HETEROCHRONY IN CILIATED PROTOZOA: OVERLAP OF ASEXUAL AND SEXUAL CYCLES DURING CONJUGATION. Biol Rev Camb Philos Soc 1990. [DOI: 10.1111/j.1469-185x.1990.tb01131.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Robinson EK, Cohen PD, Blackburn EH. A novel DNA deletion-ligation reaction catalyzed in vitro by a developmentally controlled activity from Tetrahymena cells. Cell 1989; 58:887-900. [PMID: 2776215 DOI: 10.1016/0092-8674(89)90941-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Developmentally controlled genomic deletion-ligations occur during ciliate macronuclear differentiation. We have identified a novel activity in Tetrahymena cell-free extracts that efficiently catalyzes a specific set of intramolecular DNA deletion-ligation reactions. When synthetic DNA oligonucleotide substrates were used, all the deletion-ligation products resembled those formed in vivo in that they resulted from deletions between pairs of short direct repeats. The reaction is ATP-dependent, salt-sensitive, and strongly influenced by the oligonucleotide substrate sequence. The deletion-ligation activity has an apparent size of 200-500 kd, no nuclease-sensitive component, and is highly enriched in cells developing new macronuclei. The temperature inactivation profile of the activity parallels the temperature lethality profile specific for Tetrahymena cells developing new macronuclei. We suggest that this deletion-ligation activity carries out the genomic deletions in developing macronuclei in vivo.
Collapse
Affiliation(s)
- E K Robinson
- Department of Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
36
|
Affiliation(s)
- J R Preer
- Department of Biology, Indiana University, Bloomington 47405
| |
Collapse
|
37
|
Abstract
In hypotrichous ciliated protozoa, genes are transcribed in the macronucleus where the genome consists of 'gene-sized' linear DNA molecules. We have isolated clones of actin, tubulin and H4 histone macronuclear genes from Oxytricha nova, Stylonychia lemnae and Euplotes crassus in an effort to determine if they possess molecules of similar size for a given coding function, and also to determine the size range of non-coding DNA present on these molecules. Our results indicate that while the length of their non-coding DNA can vary slightly, both between different hypotrichs and within the gene family of a single organism, actin and tubulin macronuclear molecules are similarly sized. The sizes observed for these molecules support the hypothesis that each macronuclear molecule encodes a single gene. However, the H4 histone macronuclear molecules show a much wider size range and generally are much longer than necessary to encode the H4 histone. We therefore sequenced a 1700-bp H4 histone macronuclear molecule from O. nova to determine if it might possibly encode additional gene products. Sequence data reveals the presence of nine open reading frames (ORFs) greater than 100 bp in length; however, Northern hybridization analysis of the products of this DNA molecule reveals only a single transcript.
Collapse
Affiliation(s)
- D S Harper
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | |
Collapse
|
38
|
Prescott DM. DNA gains, losses, and rearrangements in eukaryotes. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1989; 6:13-29. [PMID: 2516447 DOI: 10.1007/978-1-4615-6820-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- D M Prescott
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| |
Collapse
|
39
|
Baird SE, Klobutcher LA. Genetic characterization and use of a restriction fragment length variant in the hypotrichous ciliate Euplotes crassus. THE JOURNAL OF PROTOZOOLOGY 1988; 35:459-65. [PMID: 2904496 DOI: 10.1111/j.1550-7408.1988.tb04130.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two forms of a macronuclear DNA molecule differing in the presence or absence of a restriction endonuclease recognition site have been detected in the hypotrichous ciliate Euplotes crassus. Through a series of genetic crosses the two forms were shown to be allelic, being derived from a single micronuclear genetic locus. This restriction fragment length variant (RFLV) was used as a genetic marker to determine that the migratory and stationary pronuclei generated during mating can be genetically non-identical. In addition, the RFLV was used to investigate the efficiency of processing of the alternate alleles during macronuclear development and their subsequent transmission during vegetative growth. Little or no bias in the processing and/or amplification of the two alleles was observed during macronuclear development. During vegetative growth, however, changes in the relative amounts of the two alleles were observed.
Collapse
Affiliation(s)
- S E Baird
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
40
|
Jahn CL, Nilles LA, Krikau MF. Organization of the Euplotes crassus micronuclear genome. THE JOURNAL OF PROTOZOOLOGY 1988; 35:590-601. [PMID: 2974078 DOI: 10.1111/j.1550-7408.1988.tb04157.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.
Collapse
Affiliation(s)
- C L Jahn
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
41
|
Klobutcher LA, Huff ME, Gonye GE. Alternative use of chromosome fragmentation sites in the ciliated protozoan Oxytricha nova. Nucleic Acids Res 1988; 16:251-64. [PMID: 2829118 PMCID: PMC334624 DOI: 10.1093/nar/16.1.251] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During its life cycle, the hypotrichous ciliated protozoan Oxytricha nova transforms a copy of its micronucleus, which contains chromosome-sized DNA, into a macronucleus containing linear, gene-sized DNA molecules. A region of the micronuclear genome has been defined that gives rise to two distinct macronuclear DNA molecules during development. Through analysis of recombinant macronuclear and micronuclear clones, the generation of the two macronuclear DNA molecules was shown to be the result of alternative use of chromosome fragmentation sites. In addition, evidence was obtained that adjacent micronuclear precursors of macronuclear DNA molecules can overlap by a few base pairs. The significance of these findings in relation to developmental chromosome fragmentation is discussed.
Collapse
Affiliation(s)
- L A Klobutcher
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
42
|
Herrick G, Hunter D, Williams K, Kotter K. Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. Genes Dev 1987; 1:1047-58. [PMID: 3123312 DOI: 10.1101/gad.1.10.1047] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macronuclear chromosomes in Oxytricha fallax, a hypotrichous ciliate, are very short. They often belong to small families of cross-hybridizing chromosomes of two or three different sizes. For example, the 81-MAC family consists of three sizes of macronuclear chromosomes (4.9, 2.9, and 1.6 kbp) (Cartinhour and Herrick 1984). We show that the family actually consists of two closely related sets of three each and that the two sets are independently created by alternative processing of two separate precursor (micronuclear) versions. Chromosomes of a set share a common 1.6-kbp region, which contains a transcribed gene coding for a 25-kD protein. Different-sized macronuclear chromosomes of a set result from alternative choices of positions for telomere formation. All six members of the family are reproducibly generated in each developing macronucleus, and their copy numbers are stably maintained during vegetative replication of the macronucleus (Herrick et al. 1987). Here we argue for the existence of three distinct copy control elements in the 81-MAC family chromosomes. A model is discussed in which, following polytenization of the micronuclear chromosomes, different chromatids are processed differently, and, subsequently, replication-competent macronuclear chromosome products are amplified under the influence of the vegetative copy control elements.
Collapse
Affiliation(s)
- G Herrick
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|