1
|
Bernhard JM, Fisher LA, Murphy Q, Sen L, Yeh HD, Louyakis A, Gomaa F, Reilly M, Batta-Lona PG, Bucklin A, Le Roux V, Visscher PT. Transition from stromatolite to thrombolite fabric: potential role for reticulopodial protists in lake microbialites of a Proterozoic ecosystem analog. Front Microbiol 2023; 14:1210781. [PMID: 37965561 PMCID: PMC10642914 DOI: 10.3389/fmicb.2023.1210781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Prior observations suggest that foraminiferan protists use their reticulopodia (anastomosing pseudopodia) to alter sediment fabric by disrupting laminations of subtidal marine stromatolites, erasing the layered structures in an experimental setting. Because microbialites and foraminifera are found in non-marine settings, we hypothesized that foraminifera living in lakes could also disrupt layered microbialite fabric. With this aim and using a variety of multidisciplinary approaches, we conducted field surveys and an experiment on microbialites from Green Lake (GL; Fayetteville, New York State, United States), which has been studied as a Proterozoic ecosystem analog. The lake is meromictic and alkaline, receiving calcium sulfate-rich water in the monimolimnion; it supports a well-developed carbonate platform that provides access to living and relict microbialites. The living microbialites grow from early spring to autumn, forming a laminated mat at their surface (top ~5 mm), but a clotted or massive structure exists at depth (> ~ 1 cm). We observed a morphotype of "naked" foraminiferan-like protist in samples from GL microbialites and sediments; thus, considered the possibility of freshwater foraminiferan impact on microbialite fabric. Results of an experiment that seeded the cultured freshwater foraminifer Haplomyxa saranae onto the GL microbialite surface indicates via micro-CT scanning and anisotropy analysis that the introduced foraminifer impacted uppermost microbialite layering (n = 3 cores); those cores with an added inhibitor lacked changes in anisotropy for two of those three cores. Thus, it remains plausible that the much smaller, relatively common, native free-form reticulate protist, which we identified as Chlamydomyxa labyrinthuloides, can disrupt microbialite fabrics on sub-millimeter scales. Our observations do not exclude contributions of other possible causal factors.
Collapse
Affiliation(s)
- Joan M. Bernhard
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Luke A. Fisher
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Quinne Murphy
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Leena Sen
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, United States
| | - Heidi D. Yeh
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Artemis Louyakis
- Department of Marine Sciences, Northeastern University, Boston, MA, United States
| | - Fatma Gomaa
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Megan Reilly
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Department of Marine Sciences, Northeastern University, Boston, MA, United States
| | - Paola G. Batta-Lona
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Ann Bucklin
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| | - Veronique Le Roux
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
2
|
Bloodgood RA. Prey capture in protists utilizing microtubule filled processes and surface motility. Cytoskeleton (Hoboken) 2020; 77:500-514. [PMID: 33190423 DOI: 10.1002/cm.21644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/05/2022]
Abstract
Surface motility, which can be visualized by the movement of live prey organisms, polystyrene microspheres or other inert particles, has been shown to occur in a wide variety of microtubule-filled extensions of the protistan cell surface, although the associated functions remain enigmatic. This article integrates an extensive but poorly known body of literature showing that surface motility, associated with microtubule-filled cell extensions such as flagella, axopodia, actinopodia, reticulopodia, and haptonema, plays a crucial role in protistan prey capture. Surface motility has been most extensively studied in Chlamydomonas where it is responsible for flagella-dependent whole cell gliding motility. The force transduction machinery for gliding motility in Chlamydomonas is intraflagellar transport. Other than in Chlamydomonas, this field has not moved far beyond the descriptive to the mechanistic because of technical challenges associated with many of the protistan organisms that utilize surface motility for prey capture. The purpose of this article is to rekindle interest in the protistan systems that utilize surface motility for prey capture at a time when newly emerging molecular tools for working with protists are poised to reinvigorate a field that has been quiescent too long.
Collapse
Affiliation(s)
- Robert A Bloodgood
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Enrichment of intracellular sulphur cycle -associated bacteria in intertidal benthic foraminifera revealed by 16S and aprA gene analysis. Sci Rep 2019; 9:11692. [PMID: 31406214 PMCID: PMC6690927 DOI: 10.1038/s41598-019-48166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here, we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera (Ammonia sp. (T6), Haynesina sp. (S16) and Elphidium sp. (S5)), using a metabarcoding approach targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the genus Sulfurovum and the order Desulfobacterales. The bacterial 16S OTUs are likely to originate from the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the sediment. The fact that 16S rRNA and aprA -gene derived intracellular bacterial OTUs were species-specific and significantly different from the ambient sediment community implies that bacterivory is an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore, these foraminiferal species are known to prefer other food sources than bacteria. The detection of sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the metabolism of the foraminiferal host. Future investigation into environmental conditions under which transcription of S-cycle genes are activated would enable assessment of their role and the potential foraminiferal/endobiont contribution to the sulphur-cycle.
Collapse
|
4
|
Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, Jesus B, Filipsson HL, Maire O, Meibom A. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol 2018; 21:125-141. [PMID: 30277305 DOI: 10.1111/1462-2920.14433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
The assimilation of inorganic compounds in foraminiferal metabolism compared to predation or organic matter assimilation is unknown. Here, we investigate possible inorganic-compound assimilation in Nonionellina labradorica, a common kleptoplastidic benthic foraminifer from Arctic and North Atlantic sublittoral regions. The objectives were to identify the source of the foraminiferal kleptoplasts, assess their photosynthetic functionality in light and darkness and investigate inorganic nitrogen and sulfate assimilation. We used DNA barcoding of a ~ 830 bp fragment from the SSU rDNA to identify the kleptoplasts and correlated transmission electron microscopy and nanometre-scale secondary ion mass spectrometry (TEM-NanoSIMS) isotopic imaging to study 13 C-bicarbonate, 15 N-ammonium and 34 S-sulfate uptake. In addition, respiration rate measurements were determined to assess the response of N. labradorica to light. The DNA sequences established that over 80% of the kleptoplasts belonged to Thalassiosira (with 96%-99% identity), a cosmopolitan planktonic diatom. TEM-NanoSIMS imaging revealed degraded cytoplasm and an absence of 13 C assimilation in foraminifera exposed to light. Oxygen measurements showed higher respiration rates under light than dark conditions, and no O2 production was detected. These results indicate that the photosynthetic pathways in N. labradorica are not functional. Furthermore, N. labradorica assimilated both 15 N-ammonium and 34 S-sulfate into its cytoplasm, which suggests that foraminifera might have several ammonium or sulfate assimilation pathways, involving either the kleptoplasts or bona fide foraminiferal pathway(s) not yet identified.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897, Nouméa, New Caledonia
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France.,Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Université d'Angers, 2 Boulevard Lavoisier, 49045, Angers Cedex 1, France
| | - Joan M Bernhard
- Woods Hole Oceanographic Institution, Geology & Geophysics Department, Woods Hole, MA, USA
| | - Bruno Jesus
- EA2160, Laboratoire Mer Molécules Santé, Université de Nantes, Nantes, France.,BioISI - Biosystems & Integrative Sciences Institute, Campo Grande University of Lisboa, Faculty of Sciences, Lisbon, Portugal
| | - Helena L Filipsson
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Olivier Maire
- Univ. Bordeaux, EPOC, UMR 5805, 33400, Talence, France.,CNRS, EPOC, UMR 5805, 33400, Talence, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Insights into foraminiferal influences on microfabrics of microbialites at Highborne Cay, Bahamas. Proc Natl Acad Sci U S A 2013; 110:9830-4. [PMID: 23716649 DOI: 10.1073/pnas.1221721110] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbialites, which are organosedimentary structures formed by microbial communities through binding and trapping and/or in situ precipitation, have a wide array of distinctive morphologies and long geologic record. The origin of morphological variability is hotly debated; elucidating the cause or causes of microfabric differences could provide insights into ecosystem functioning and biogeochemistry during much of Earth's history. Although rare today, morphologically distinct, co-occurring extant microbialites provide the opportunity to examine and compare microbial communities that may be responsible for establishing and modifying microbialite microfabrics. Highborne Cay, Bahamas, has extant laminated (i.e., stromatolites) and clotted (i.e., thrombolites) marine microbialites in close proximity, allowing focused questions about how community composition relates to physical attributes. Considerable knowledge exists about prokaryotic composition of microbialite mats (i.e., stromatolitic and thrombolitic mats), but little is known about their eukaryotic communities, especially regarding heterotrophic taxa. Thus, the heterotrophic eukaryotic communities of Highborne stromatolites and thrombolites were studied. Here, we show that diverse foraminiferal communities inhabit microbialite mat surfaces and subsurfaces; thecate foraminifera are relatively abundant in all microbialite types, especially thrombolitic mats; foraminifera stabilize grains in mats; and thecate reticulopod activities can impact stromatolitic mat lamination. Accordingly, and in light of foraminiferal impacts on modern microbialites, our results indicate that the microbialite fossil record may reflect the impact of the radiation of these protists.
Collapse
|
6
|
Bernhard JM, Habura A, Bowser SS. An endobiont-bearing allogromiid from the Santa Barbara Basin: Implications for the early diversification of foraminifera. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jg000158] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Pawlowski J, Holzmann M, Berney C, Fahrni J, Gooday AJ, Cedhagen T, Habura A, Bowser SS. The evolution of early Foraminifera. Proc Natl Acad Sci U S A 2003; 100:11494-8. [PMID: 14504394 PMCID: PMC208786 DOI: 10.1073/pnas.2035132100] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Indexed: 11/18/2022] Open
Abstract
Fossil Foraminifera appear in the Early Cambrian, at about the same time as the first skeletonized metazoans. However, due to the inadequate preservation of early unilocular (single-chambered) foraminiferal tests and difficulties in their identification, the evolution of early foraminifers is poorly understood. By using molecular data from a wide range of extant naked and testate unilocular species, we demonstrate that a large radiation of nonfossilized unilocular Foraminifera preceded the diversification of multilocular lineages during the Carboniferous. Within this radiation, similar test morphologies and wall types developed several times independently. Our findings indicate that the early Foraminifera were an important component of Neoproterozoic protistan community, whose ecological complexity was probably much higher than has been generally accepted.
Collapse
Affiliation(s)
- Jan Pawlowski
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
BOWSER SAMUELS, BERNHARD JOANM. Structure, Bioadhesive Distribution and Elastic Properties of the Agglutinated Test of Astrammina rara (Protozoa: Foraminiferida). J Eukaryot Microbiol 1993. [DOI: 10.1111/j.1550-7408.1993.tb04891.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|