Doerder FP. Sequence and expression of the SerJ immobilization antigen gene of Tetrahymena thermophila regulated by dominant epistasis.
Gene 2000;
257:319-26. [PMID:
11080598 DOI:
10.1016/s0378-1119(00)00380-2]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In ciliates, variable surface protein genes encoding the immobilization antigen (-ag) are expressed under different environmental conditions, including temperature and salt stress. These i-ags are GPI-linked and coat the entire external surface of the cell, including the cilia. In Tetrahymena thermophila-ag in natural isolates is the result of dominant epistasis masking the expression of the H i-ag ordinarily expressed at 20-36 degrees C. This report describes the expression and sequence of the Ser-ag. J is present on the cell surface up to 38 degrees C; above 38 degrees C SerSeranked by an A-rich 5' UTR and a 3' UTR containing putative mRNA destabilization motifs. The encoded J polypeptide consists of 438 amino acids and is rich in alanine, cysteine, serine and threonine. The N- and resemble signal peptide and GPI-anchor addition sites, respectively. The majority of the molecule consists of four imperfect repeats with 10 periodic cysteines per repeat in the pattern CX(6)CX(2)CX(21)CX(4)CX(13-15)CX(2)CX(18)CX(3)CX(11)CX(9-10). Although H i-ags encoded by paralogous SerH genes have 3.5 imperfect repeats with eight periodic cysteines per repeat, J nevertheless resembles H with respect to amino acid composition, codon usage, N- and C-termini, the arrangement of the cysteine periods, and regulation by mRNA stability. However, despite these similarities and epistasis, the evolutionary relationship between SerH and SerJ is unclear.
Collapse