1
|
Häder DP, Hemmersbach R. Gravitaxis in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:237-266. [DOI: 10.1007/978-3-319-54910-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Krause M, Bräucker R, Hemmersbach R. Gravikinesis in Stylonychia mytilus is based on membrane potential changes. J Exp Biol 2010; 213:161-71. [DOI: 10.1242/jeb.030940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The graviperception of the hypotrichous ciliate Stylonychia mytilus was investigated using electrophysiological methods and behavioural analysis. It is shown that Stylonychia can sense gravity and thereby compensates sedimentation rate by a negative gravikinesis. The graviresponse consists of a velocity-regulating physiological component (negative gravikinesis) and an additional orientational component. The latter is largely based on a physical mechanism but might, in addition, be affected by the frequency of ciliary reversals, which is under physiological control. We show that the external stimulus of gravity is transformed to a physiological signal, activating mechanosensitive calcium and potassium channels. Earlier electrophysiological experiments revealed that these ion channels are distributed in the manner of two opposing gradients over the surface membrane. Here, we show, for the first time, records of gravireceptor potentials in Stylonychia that are presumably based on this two-gradient system of ion channels. The gravireceptor potentials had maximum amplitudes of approximately 4 mV and slow activation characteristics (0.03 mV s–1). The presumptive number of involved graviperceptive ion channels was calculated and correlates with the analysis of the locomotive behaviour.
Collapse
Affiliation(s)
- Martin Krause
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | - Ruth Hemmersbach
- DLR, Institute of Aerospace Medicine, Linder Höhe, D-51174 Köln, Germany
| |
Collapse
|
3
|
Hemmersbach R, Bräucker R. Gravity-related behaviour in ciliates and flagellates. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2003; 8:59-75. [PMID: 12951693 DOI: 10.1016/s1569-2574(02)08015-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
RICCI NICOLA, CIONINI KETTY, BANCHETTI ROSALBA, ERRA FABRIZIO. Rheotaxis In Uronychia Setigera (Ciliata, Hypotrichida). J Eukaryot Microbiol 1999. [DOI: 10.1111/j.1550-7408.1999.tb05124.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|