1
|
Ortiz S, Verdan R, Benchimol M. Three-dimensional cellular architecture of the sigmoid filament in Trichomonas vaginalis. J Struct Biol 2024; 216:108127. [PMID: 39244171 DOI: 10.1016/j.jsb.2024.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Trichomonas vaginalis is a parasite protozoan that causes human trichomoniasis, a sexually transmitted infection (STI) that affects more than 156 million people worldwide. T. vaginalis contains an uncommon and complex cytoskeleton constituting the mastigont system, formed by several fibers and proteinaceous structures associated with basal bodies. Among these structures is the pelta-axostylar complex made of microtubules and striated filaments such as the costa and the parabasal filaments. In addition, some structures are poorly known and studied, such as the sigmoid filament and the X-filament. Here, we have isolated the Trichomonas vaginalis cytoskeleton and used UHR-SEM (ultra-high resolution scanning electron microscopy), tomography, immunofluorescence, immunolabeling, and backscattered electrons on SEM, negative staining to model the three-dimensional architecture and possible function of the sigmoid.
Collapse
Affiliation(s)
- Sharmila Ortiz
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Raphael Verdan
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Marlene Benchimol
- BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro 96200-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
3
|
Cheng WH, Huang KY, Huang PJ, Lee CC, Yeh YM, Ku FM, Lin R, Cheng ML, Chiu CH, Tang P. γ-Carboxymuconolactone decarboxylase: a novel cell cycle-related basal body protein in the early branching eukaryote Trichomonas vaginalis. Parasit Vectors 2017; 10:443. [PMID: 28950916 PMCID: PMC5615479 DOI: 10.1186/s13071-017-2381-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND γ-Carboxymuconolactone decarboxylase (CMD) participates in the β-ketoadipate pathway, which catalyzes aromatic compounds to produce acetyl- or succinyl-CoA, in prokaryotes and yeast. Our previous study demonstrated that expression of a CMD homologue that contains two signatures (dualCMD) is negatively regulated by iron in Trichomonas vaginalis. However, we were not able to identify the components of the β-ketoadipate pathway in the parasite's genome. These observations prompted us to investigate the biological functions of this novel CMD homologue in T. vaginalis. METHODS The specific anti-TvCMD1 antibody was generated, and the expression of TvCMD1 in T. vaginalis cultured under iron-rich and iron-deficient were evaluated. Phylogenetic, metabolomic and substrate induction (protocatechuate and benzoate) analysis were conducted to clarify the function of dualCMD in trichomonad cells. Subcellular localization of TvCMD1 was observed by confocal microscopy. The cell cycle-related role of TvCMD1 was assessed by treating cells with G2/M inhibitor nocodazole. RESULTS We confirmed that T. vaginalis is not able to catabolize the aromatic compounds benzoate and protocatechuate, which are known substrates of the β-ketoadipate pathway. Using immunofluorescence microscopy, we found that TvCMD1 is spatially associated with the basal body, a part of the cytoskeletal organizing center in T. vaginalis. TvCMD1 accumulated upon treatment with the G2/M inhibitor nocodazole. Additionally, TvCMD1 was expressed and transported to/from the basal body during cytokinesis, suggesting that TvCMD1 plays a role in cell division. CONCLUSION We demonstrated that TvCMD1 is unlikely to participate in the β-ketoadipate pathway and demonstrated that it is a novel basal body-localizing (associated) protein. This model sheds light on the importance of genes that are acquired laterally in the coevolution of ancient protists, which surprisingly functions in cell cycle regulation of T. vaginalis.
Collapse
Affiliation(s)
- Wei-Hung Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jung Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chi-Ching Lee
- Department and Graduate Institute of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Ming Yeh
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Man Ku
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Rose Lin
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Bioinformatics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
4
|
Zhang Y, He CY. Centrins in unicellular organisms: functional diversity and specialization. PROTOPLASMA 2012; 249:459-467. [PMID: 21786168 DOI: 10.1007/s00709-011-0305-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | | |
Collapse
|
5
|
Esson HJ, Morriswood B, Yavuz S, Vidilaseris K, Dong G, Warren G. Morphology of the trypanosome bilobe, a novel cytoskeletal structure. EUKARYOTIC CELL 2012; 11:761-72. [PMID: 22327007 PMCID: PMC3370457 DOI: 10.1128/ec.05287-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/03/2012] [Indexed: 12/28/2022]
Abstract
The trypanosome bilobe is a cytoskeletal structure of unclear function. To date, four proteins have been shown to localize stably to it: TbMORN1, TbLRRP1, TbCentrin2, and TbCentrin4. In this study, a combination of immunofluorescence microscopy and electron microscopy was used to explore the morphology of the bilobe and its relationship to other nearby cytoskeletal structures in the African trypanosome procyclic trypomastigote. The use of detergent/salt-extracted flagellum preparations was found to be an effective way of discerning features of the cytoskeletal ultrastructure that are normally obscured. TbMORN1 and TbCentrin4 together define a hairpin structure comprising an arm of TbCentrin4 and a fishhook of TbMORN1. The two arms flank a specialized microtubule quartet and the flagellum attachment zone filament, with TbMORN1 running alongside the former and TbCentrin4 alongside the latter. The hooked part of TbMORN1 sits atop the flagellar pocket collar marked by TbBILBO1. The TbMORN1 bilobe occasionally exhibits tendrillar extensions that seem to be connected to the basal and probasal bodies. The TbMORN1 molecules present on these tendrils undergo higher rates of turnover than those for molecules on the main bilobe structure. These observations have been integrated with previous detailed descriptions of the cytoskeletal elements in trypanosome cells.
Collapse
Affiliation(s)
- Heather J Esson
- Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
7
|
Abstract
Eukaryotic cilia and flagella perform motility and sensory functions which are essential for cell survival in protozoans, and to organism development and homoeostasis in metazoans. Their ultrastructure has been studied from the early beginnings of electron microscopy, and these studies continue to contribute to much of our understanding about ciliary biology. In the light of the progress made in the visualization of cellular structures over the last decade, we revisit the ultrastructure of cilia and flagella. We briefly describe the typical features of a 9+2 axoneme before focusing extensively on the transition zone, the ciliary necklace, the singlet zone, the ciliary cap and the ciliary crown. We discuss how the singlet zone is linked to sensory and/or motile function, the contribution of the ciliary crown to ovocyte and mucosal propulsion, and the relationship between the ciliary cap and microtubule growth and shortening, and its relation to ciliary beat. We further examine the involvement of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier.
Collapse
|
8
|
Cavalier-Smith T, Lewis R, Chao EE, Oates B, Bass D. Morphology and Phylogeny of Sainouron acronematica sp. n. and the Ultrastructural Unity of Cercozoa. Protist 2008; 159:591-620. [DOI: 10.1016/j.protis.2008.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/27/2008] [Indexed: 11/30/2022]
|
9
|
Vieira P, Borges F, Gottardi B, Stuepp C, Larré A, Tasca T, De Carli G. Analysis of microtubule cytoskeleton distribution using a fluorescent taxoid in two trichomonadid protozoa: Trichomonas gallinae and Tritrichomonas foetus. Exp Parasitol 2008; 119:186-91. [DOI: 10.1016/j.exppara.2007.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 11/30/2022]
|
10
|
Cuervo P, Cupolillo E, Britto C, González LJ, E Silva-Filho FC, Lopes LC, Domont GB, De Jesus JB. Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes. J Proteomics 2008; 71:109-22. [PMID: 18541479 DOI: 10.1016/j.jprot.2008.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/18/2022]
Abstract
A comparative analysis of proteomic maps of long-term grown and fresh clinical Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes, respectively, was performed using two-dimensional gel electrophoresis and mass spectrometry. Of 29 protein spots differentially expressed between the isolates, 19 were over-expressed in the isolate exhibiting high virulence phenotype: proteins associated with cytoskeletal dynamics, such as coronin and several isoforms of actin, as well as proteins involved in signal transduction, protein turnover, proteolysis, and energetic and polyamine metabolisms were identified. Some malate dehydrogenase, fructose-1,6-bisphosphate aldolase and ornithine cyclodeamidase isoforms were exclusively expressed by the highly virulent isolate. During interaction assays with VEC, parasites exhibiting high virulence phenotype rapidly adhered and switched to amoeboid forms. In contrast, low adhesion and no morphological transformation were observed in parasites displaying low virulence phenotype. Our findings demonstrate that expression of specific proteins by high and low virulence parasites could be associated with the ability of each isolate to undergo morphological transformation and interact with host cells. Such data represent an important step towards understanding of the complex interaction network of proteins that participate in the mechanism of pathogenesis of this protozoan.
Collapse
Affiliation(s)
- Patrícia Cuervo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Evolution of Ca2+-Signaling Mechanisms. Role of Calcium Ions in Signal Transduction in Lower Eukaryotes. J EVOL BIOCHEM PHYS+ 2005. [DOI: 10.1007/s10893-005-0073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Benchimol M. Trichomonads under Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:528-550. [PMID: 15525428 DOI: 10.1017/s1431927604040905] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Indexed: 05/24/2023]
Abstract
Trichomonads are flagellate protists, and among them Trichomonas vaginalis and Tritrichomonas foetus are the most studied because they are parasites of the urogenital tract of humans and cattle, respectively. Microscopy provides new insights into the cell biology and morphology of these parasites, and thus allows better understanding of the main aspects of their physiology. Here, we review the ultrastructure of T. foetus and T. vaginalis, stressing the participation of the axostyle in the process of cell division and showing that the pseudocyst may be a new form in the trichomonad cell cycle and not simply a degenerative form. Other organelles, such as the Golgi and hydrogenosomes, are also reviewed. The virus present in trichomonads is discussed.
Collapse
Affiliation(s)
- Marlene Benchimol
- Santa Ursula University, Rua Jornalista Orlando Dantas, 59, CEP 222-31-010, Botafogo, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Noël C, Gerbod D, Delgado-Viscogliosi P, Fast NM, Younes AB, Chose O, Roseto A, Capron M, Viscogliosi E. Morphogenesis during division and griseofulvin-induced changes of the microtubular cytoskeleton in the parasitic protist, Trichomonas vaginalis. Parasitol Res 2003; 89:487-94. [PMID: 12658461 DOI: 10.1007/s00436-002-0811-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Accepted: 11/25/2002] [Indexed: 10/25/2022]
Abstract
The behavior of microtubular structures during division was followed by immunofluorescence in Trichomonas vaginalis using an anti-alpha-tubulin monoclonal antibody together with nuclear staining by DAPI, allowing us to describe successive mitotic stages. In contrast to recent reports, we showed that: (1) the microtubular axostyle-pelta complex depolymerized during division, (2) the flagella were assembled during mitosis, and (3) the flagellar number was restored in each daughter kinetid before cytokinesis. Observation of griseofulvin-treated T. vaginalis cells revealed that the elongation of the mitotic spindle or paradesmosis was not the main motile force separating the daughter kinetids to opposite poles during division, suggesting the existence of other mechanisms and/or molecules involved in this morphogenetic event. Examination of treated cells re-incubated in fresh medium showed the nucleation of microtubules radiating from the perinuclear area, the origin of which is discussed. Finally, we confirm the effectiveness of griseofulvin against T. vaginalis and propose that this antifungal drug could be a promising antitrichomonal agent.
Collapse
Affiliation(s)
- C Noël
- Institut Pasteur, Unité Mixte INSERM-IPL U547, 1 Rue du Professeur Calmette, B.P. 245, 59019, Lille cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Brugerolle G, Bordereau C. Ultrastructure of Joenoides intermedia (Grassé 1952), a symbiotic parabasalid flagellate of Hodotermes mossambicus, and its comparison with other joeniid genera. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Lecke SB, Tasca T, Souto AA, De Carli GA. Trichomonas vaginalis: microtubule cytoskeleton distribution using fluorescent taxoid. Exp Parasitol 2002; 102:113-6. [PMID: 12706747 DOI: 10.1016/s0014-4894(03)00030-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trichomonas vaginalis is a flagellated parasitic protist of the human urogenital tract. The parasite has a poorly known cytoskeleton formed by an axostyle and a pelta, which are formed by stable structures such as microtubules, essential for the maintenance of cell shape and organization. FLUTAX-2 is an active fluorescent derivative of Taxol, binds to alphabeta-tubulin dimer polymerized. In this paper we present the analysis of microtubule distribution in living trophozoites of T. vaginalis using FLUTAX-2.
Collapse
Affiliation(s)
- Sheila B Lecke
- Laboratório de Parasitologia Clínica, Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
16
|
Selvapandiyan A, Duncan R, Debrabant A, Bertholet S, Sreenivas G, Negi NS, Salotra P, Nakhasi HL. Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem 2001; 276:43253-61. [PMID: 11544261 DOI: 10.1074/jbc.m106806200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, causes visceral disease in humans. To identify genes that control growth, we have isolated for the first time in the order Kinetoplastida a gene encoding for centrin from L. donovani. Centrin is a calcium-binding cytoskeletal protein essential for centrosome duplication or segregation. Protein sequence similarity and immunoreactivity confirmed that Leishmania centrin is a homolog of human centrin 2. Immunofluorescence analysis localized the protein in the basal body. Calcium binding analysis revealed that its C-terminal Ca(2+) binding domain binds 16-fold more calcium than the N-terminal domain. Electrophoretic mobility shift of centrin treated with EGTA and abrogation of the shift in its mutants lacking a Ca(2+) binding site suggest that Ca(2+) binding to these regions may have a role in the protein conformation. The levels of centrin mRNA and protein were high during the exponential growth of the parasite in culture and declined to a low level in the stationary phase. Expression of N-terminal-deleted centrin in the parasite significantly reduces its growth rate, and it was found that significantly more cells are arrested in the G(2)/M stage than in control cells. These studies indicate that centrin may have a functional role in Leishmania growth.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Calcium/metabolism
- Calcium-Binding Proteins/chemistry
- Cell Cycle
- Chromosomal Proteins, Non-Histone/chemistry
- Cloning, Molecular
- Cytoskeleton/metabolism
- Egtazic Acid/pharmacology
- Flow Cytometry
- Gene Deletion
- Immunoblotting
- Leishmania donovani/chemistry
- Leishmania donovani/genetics
- Leishmania donovani/physiology
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Plasmids/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Time Factors
- Transfection
Collapse
Affiliation(s)
- A Selvapandiyan
- Laboratory of Bacterial, Parasitic, and Unconventional Agents, Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Daunderer C, Schliwa M, Gräf R. Dictyostelium centrin-related protein (DdCrp), the most divergent member of the centrin family, possesses only two EF hands and dissociates from the centrosome during mitosis. Eur J Cell Biol 2001; 80:621-30. [PMID: 11713866 DOI: 10.1078/0171-9335-00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a Dictyostelium discoideum cDNA sequence with homology to centrins. The derived protein, Dictyostelium discoideum centrinn-related protein (DdCrp), is the most divergent member of the centrin family. Most strikingly it lacks the first two EF-hand consensus motifs, whereas a number of other centrin-specific sequence features are conserved. Southern and Northern blot analysis and the data presently available from the Dictyostelium genome and cDNA projects suggest that DdCrp is the only centrin isoform present in Dictyostelium. Immunofluorescence analysis with anti-DdCrp antibodies revealed that the protein is localized to the centrosome, to a second, centrosome-associated structure close to the nucleus and to the nucleus itself. Confocal microscopy resolved that the centrosomal label is confined to the corona surrounding the centrosome core. Unlike for other centrins the localization of DdCrp is cell cycle-dependent. Both the centrosomal and the centrosome-associated label disappear during prometaphase, most likely in concert with the dissociation of the corona at this stage. The striking differences of DdCrp to all other centrins may be related to the distinct structure and duplication mode of the Dictyostelium centrosome.
Collapse
Affiliation(s)
- C Daunderer
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Germany
| | | | | |
Collapse
|
18
|
Brugerolle G. Morphological characters of Spirotrichonymphids: Microjoenia, Spirotrichonymphella and Spirotrichonympha symbionts of the australian termite Porotermes grandis. Eur J Protistol 2001. [DOI: 10.1078/0932-4739-00814] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Diogon M, Henou C, Ravet V, Bouchard P, Viguès B. Evidence for regional differences in the dynamicsof centrin cytoskeletal structures in the polymorphichymenostome ciliate Tetrahymena paravorax. Eur J Protistol 2001. [DOI: 10.1078/0932-4739-00824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Brugerolle G. A microscopical investigation of the genus Foaina, a parabasalid protist symbiotic in termites and phylogenetic considerations. Eur J Protistol 2000. [DOI: 10.1016/s0932-4739(00)80018-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|