1
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
2
|
Rippin M, Lange S, Sausen N, Becker B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol Ecol 2019. [PMID: 29514253 DOI: 10.1093/femsec/fiy036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biological soil crusts (BSCs) are amalgamations of autotrophic, heterotrophic and saprotrophic organisms. In the Polar Regions, these unique communities occupy essential ecological functions such as primary production, nitrogen fixation and ecosystem engineering. Here, we present the first molecular survey of BSCs from the Arctic and Antarctica focused on both eukaryotes and prokaryotes as well as passive and active biodiversity. Considering sequence abundance, Bryophyta is among the most abundant taxa in all analyzed BSCs suggesting that they were in a late successional stage. In terms of algal and cyanobacterial biodiversity, the genera Chloromonas, Coccomyxa, Elliptochloris and Nostoc were identified in all samples regardless of origin confirming their ubiquitous distribution. For the first time, we found the chrysophyte Spumella to be common in polar BSCs as it was present in all analyzed samples. Co-occurrence analysis revealed the presence of sulfur metabolizing microbes indicating that BSCs also play an important role for the sulfur cycle. In general, phototrophs were most abundant within the BSCs but there was also a diverse community of heterotrophs and saprotrophs. Our results show that BSCs are unique microecosystems in polar environments with an unexpectedly high biodiversity.
Collapse
Affiliation(s)
- Martin Rippin
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Sebastian Lange
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Nicole Sausen
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| | - Burkhard Becker
- University of Cologne, Botanical Institute, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
3
|
Ren K, Xue Y, Rønn R, Liu L, Chen H, Rensing C, Yang J. Dynamics and determinants of amoeba community, occurrence and abundance in subtropical reservoirs and rivers. WATER RESEARCH 2018; 146:177-186. [PMID: 30243060 DOI: 10.1016/j.watres.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Free-living amoebae are widespread in freshwater ecosystems. Although many studies have investigated changes in their communities across space, the temporal variability and the drivers of community changes across different habitat types are poorly understood. A total of 108 surface water samples were collected on a seasonal basis from four reservoirs and two rivers in Xiamen city, subtropical China. We used high throughput sequencing and qPCR methods to explore the occurrence and abundance of free-living amoebae. In total, 335 amoeba OTUs were detected, and only 32 OTUs were shared by reservoir and river habitats. The reservoirs and rivers harbored unique amoebae communities and exhibited distinct seasonal patterns in community composition. High abundance of the 18S rRNA gene of Acanthamoeba was observed in spring and summer, whereas the abundance was low in autumn and winter. In addition, the abundance of Hartmannella was significantly higher when isolated from reservoirs in summer/autumn and from river in spring/summer. Moreover, the temporal patterns of amoebae communities were significantly associated with water temperature, indicating that temperature is an important variable controlling the ecological dynamics of amoebae populations. However, our comparative analysis indicated that both environmental selection, and neutral processes, significantly contributed to amoeba community assembly. The genera detected here include pathogenic species and species that can act as vectors for microbial pathogens, which can cause human infections.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lemian Liu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Lindley LA, Stephenson SL, Spiegel FW. Protostelids and myxomycetes isolated from aquatic habitats. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Frederick W. Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
5
|
Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T. Metatranscriptomic census of active protists in soils. THE ISME JOURNAL 2015; 9:2178-90. [PMID: 25822483 PMCID: PMC4579471 DOI: 10.1038/ismej.2015.30] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 11/08/2022]
Abstract
The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.
Collapse
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
- Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), Wageningen, The Netherlands
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ian M Clark
- Department of AgroEcology, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Andreas Richter
- Department of Microbiology and Ecosystem Sciences, University of Vienna, Vienna, Austria
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Wheat WH, Casali AL, Thomas V, Spencer JS, Lahiri R, Williams DL, McDonnell GE, Gonzalez-Juarrero M, Brennan PJ, Jackson M. Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS Negl Trop Dis 2014; 8:e3405. [PMID: 25521850 PMCID: PMC4270725 DOI: 10.1371/journal.pntd.0003405] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Leprosy is a curable neglected disease of humans caused by Mycobacterium leprae that affects the skin and peripheral nerves and manifests clinically in various forms ranging from self-resolving, tuberculoid leprosy to lepromatous leprosy having significant pathology with ensuing disfiguration disability and social stigma. Despite the global success of multi-drug therapy (MDT), incidences of clinical leprosy have been observed in individuals with no apparent exposure to other cases, suggestive of possible non-human sources of the bacteria. In this study we show that common free-living amoebae (FLA) can phagocytose M. leprae, and allow the bacillus to remain viable for up to 8 months within amoebic cysts. Viable bacilli were extracted from separate encysted cocultures comprising three common Acanthamoeba spp.: A. lenticulata, A. castellanii, and A. polyphaga and two strains of Hartmannella vermiformis. Trophozoites of these common FLA take up M. leprae by phagocytosis. M. leprae from infected trophozoites induced to encyst for long-term storage of the bacilli emerged viable by assessment of membrane integrity. The majority (80%) of mice that were injected with bacilli extracted from 35 day cocultures of encysted/excysted A. castellanii and A. polyphaga showed lesion development that was similar to mice challenged with fresh M. leprae from passage mice albeit at a slower initial rate. Mice challenged with coculture-extracted bacilli showed evidence of acid-fast bacteria and positive PCR signal for M. leprae. These data support the conclusion that M. leprae can remain viable long-term in environmentally ubiquitous FLA and retain virulence as assessed in the nu/nu mouse model. Additionally, this work supports the idea that M. leprae might be sustained in the environment between hosts in FLA and such residence in FLA may provide a macrophage-like niche contributing to the higher-than-expected rate of leprosy transmission despite a significant decrease in human reservoirs due to MDT.
Collapse
Affiliation(s)
- William H. Wheat
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy L. Casali
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - John S. Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ramanuj Lahiri
- Department of Health & Human Services, HRSA, HSB, National Hansen's Disease Programs, Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Diana L. Williams
- Department of Health & Human Services, HRSA, HSB, National Hansen's Disease Programs, Laboratory Research Branch, Baton Rouge, Louisiana, United States of America
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gerald E. McDonnell
- Department of Research and Development, STERIS Corporation, Mentor, Ohio, United States of America
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Patrick J. Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
7
|
Hsu BM, Huang CC, Chen JS, Chen NH, Huang JT. Comparison of potentially pathogenic free-living amoeba hosts by Legionella spp. in substrate-associated biofilms and floating biofilms from spring environments. WATER RESEARCH 2011; 45:5171-5183. [PMID: 21831404 DOI: 10.1016/j.watres.2011.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
This study compares five genera of free-living amoebae (FLA) hosts by Legionella spp. in the fixed and floating biofilm samples from spring environments. Detection rate of Legionella spp. was 26.9% for the floating biofilms and 3.1% for the fixed biofilms. Acanthamoeba spp., Hartmanella vermiformis, and Naegleria spp. were more frequently detected in floating biofilm than in fixed biofilm samples. The percentage of pathogenic Acanthamoeba spp. among all the genus Acanthamoeba detected positive samples was 19.6%. The potential pathogenic Naegleria spp. (for example, Naegleria australiensis, Naegleria philippinensis, and Naegleria italica) was 54.2% to all the Naegleria detected positive samples. In the study, 12 serotypes of possible pneumonia causing Legionella spp. were detected, and their percentage in all the Legionella containing samples was 42.4%. The FLA parasitized by Legionella included unnamed Acanthamoeba genotype, Acanthamoeba griffini, Acanthamoeba jacobsi, H. vermiformis, and N. australiensis. Significant differences were also observed between the presence/absence of H. vermiformis and Legionella parasitism in FLA. Comparisons between the culture-confirmed method and the PCR-based detection method for detecting FLA and Legionella in biofilms showed great variation. Therefore, using these analysis methods together to detect FLA and Legionella is recommended.
Collapse
Affiliation(s)
- Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
8
|
Nassonova E, Smirnov A, Fahrni J, Pawlowski J. Barcoding Amoebae: Comparison of SSU, ITS and COI Genes as Tools for Molecular Identification of Naked Lobose Amoebae. Protist 2010; 161:102-15. [DOI: 10.1016/j.protis.2009.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
|
9
|
Hsu BM, Lin CL, Shih FC. Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. WATER RESEARCH 2009; 43:2817-2828. [PMID: 19457534 DOI: 10.1016/j.watres.2009.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
Acanthamoeba, Hartmannella, and Naegleria are free-living amoebae, ubiquitous in aquatic environments. Several species within these genera are recognized as potential human pathogens. These free-living amoebae may facilitate the proliferation of their parasitical bacteria, such as Legionella. In this study, we identified Acanthamoeba, Hartmannella, Naegleria, and Legionella using various analytical procedures and investigated their occurrence at a mud spring recreation area in Taiwan. We investigated factors potentially associated with the prevalence of the pathogens, including various water types, and physical and microbiological water quality parameters. Spring water was collected from 34 sites and Acanthamoeba, Hartmannella, Naegleria, and Legionella were detected in 8.8%, 35.3%, 14.7%, and 47.1%, respectively. The identified species of Acanthamoeba included Acanthamoeba castellanii and Acanthamoeba polyphaga. Nearly all the Hartmannella isolates are identified as Hartmannella vermiformis. The Naegleria species included Naegleria australiensis and its sister groups, and two other isolates referred to a new clade of Naegleria genotypes. The Legionella species identified included unnamed Legionella genotypes, Legionella pneumophila serotype 6, uncultured Legionella spp., Legionella lytica, Legionella drancourtii, and Legionella waltersii. Significant differences (Mann-Whitney U test, P<0.05) were observed between the presence/absence of Hartmannella and total coliforms, between the presence/absence of Naegleria and heterotrophic plate counts, and between the presence/absence of Legionella and heterotrophic plate counts. This survey confirms that pathogenic free-living amoebae and Legionella are prevalent in this Taiwanese mud spring recreation area. The presence of pathogens should be considered a potential health threat when associated with human activities in spring water.
Collapse
Affiliation(s)
- Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi, Taiwan, ROC.
| | | | | |
Collapse
|
10
|
Mattana A, Serra C, Mariotti E, Delogu G, Fiori PL, Cappuccinelli P. Acanthamoeba castellanii promotion of in vitro survival and transmission of coxsackie b3 viruses. EUKARYOTIC CELL 2006; 5:665-71. [PMID: 16607014 PMCID: PMC1459673 DOI: 10.1128/ec.5.4.665-671.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 01/18/2006] [Indexed: 11/20/2022]
Abstract
This work was undertaken to determine whether Acanthamoeba could play a role in the survival and transmission of coxsackieviruses and focused on in vitro interactions between Acanthamoeba castellanii and coxsackie B3 viruses (CVB-3). Residual virus titer evaluations and immunofluorescence experiments revealed a remarkable CVB-3 adsorption on amoeba surfaces and accumulation inside cells. The survival of viruses was independent of the dynamics of amoeba replication and encystment. In addition, our results indicated that virus-infected amoebas can release infectious viruses during interaction with human macrophages. On the basis of these data, Acanthamoeba appears to be a potential promoter of the survival of coxsackieviruses and their transmission to human hosts.
Collapse
Affiliation(s)
- A Mattana
- Dipartimento di Scienze del Farmaco, Via Muroni 23/A, 07100 Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
Collapse
Affiliation(s)
- Gilbert Greub
- Unité des Rickettsies, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|