1
|
Maliszewska-Olejniczak K, Gruchota J, Gromadka R, Denby Wilkes C, Arnaiz O, Mathy N, Duharcourt S, Bétermier M, Nowak JK. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genet 2015; 11:e1005383. [PMID: 26177014 PMCID: PMC4503560 DOI: 10.1371/journal.pgen.1005383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for the first time a specific role of TFIIS in non-coding transcription in eukaryotes. Paramecium tetraurelia provides an excellent model for studying the mechanisms involved in the production of non-coding transcripts and their mode of action. Different types of non-coding RNAs (ncRNAs) were shown to be implicated in the programmed DNA elimination process that occurs in this organism. At each sexual cycle, during development of the somatic nucleus from the germline nucleus, the genome is massively rearranged through the reproducible elimination of germline-specific sequences including thousands of short, single copy, non-coding Internal Eliminated Sequences (IES). Here, we demonstrate, using RNA interference, that the TFIIS4 gene encoding a development-specific homolog of RNA polymerase II elongation factor TFIIS, is indispensable for ncRNA synthesis in the new somatic nucleus. TFIIS4 depletion impairs the assembly of a functional somatic genome and affects excision of a large fraction of IESs, which leads to strong lethality in the sexual progeny. We propose that TFIIS4-dependent ncRNAs provide an important component of the molecular machinery that is responsible for developmental genome remodeling in Paramecium.
Collapse
Affiliation(s)
| | - Julita Gruchota
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Robert Gromadka
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Cyril Denby Wilkes
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Nathalie Mathy
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Sandra Duharcourt
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mireille Bétermier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, Gif-sur-Yvette, France
| | - Jacek K. Nowak
- Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
- * E-mail:
| |
Collapse
|
2
|
Paschka AG, Horejschi V, Jönsson F, Lindecke A, Weier G, Kaltschmidt C, Lipps HJ. A microarray analysis of developmentally regulated genes during macronuclear differentiation in the stichotrichous ciliate Stylonychia lemnae. Gene 2005; 359:81-90. [PMID: 16150557 DOI: 10.1016/j.gene.2005.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/17/2005] [Accepted: 06/03/2005] [Indexed: 11/21/2022]
Abstract
After sexual reproduction in ciliated protozoa a new macronucleus differentiates from a micronuclear derivative. In the course of macronuclear development dramatic DNA- and chromatin reorganisation processes occur, which include splicing of DNA sequences such as IES (internal eliminated sequences) and transposon-like elements during formation of polytene chromosomes, degradation of the polytene chromosomes and specific elimination of micronuclear-specific DNA, de novo addition of telomeres and specific amplification of DNA sequences. In order to understand the molecular basis of this nuclear differentiation process, analysis of developmentally regulated genes seems to be a necessary prerequisite. We performed a microarray analysis to identify genes differentially expressed during macronuclear differentiation. 467 sequences from cDNA libraries were identified as possible candidates from which 384 sequences were further characterised by sequence analysis. These sequences were identified, if possible, by DNA and protein BLAST analysis. Expression of one of these sequences was silenced by RNAi and a preliminary functional analysis performed. Results presented in this study provide the basis for a functional characterisation of genes differentially expressed during this nuclear differentiation process.
Collapse
|