1
|
Saha A, Gaurav AK, Pandya UM, Afrin M, Sandhu R, Nanavaty V, Schnur B, Li B. TbTRF suppresses the TERRA level and regulates the cell cycle-dependent TERRA foci number with a TERRA binding activity in its C-terminal Myb domain. Nucleic Acids Res 2021; 49:5637-5653. [PMID: 34048580 PMCID: PMC8191777 DOI: 10.1093/nar/gkab401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Amit Kumar Gaurav
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Unnati M Pandya
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Marjia Afrin
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Brittny Schnur
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Davies C, Ooi CP, Sioutas G, Hall BS, Sidhu H, Butter F, Alsford S, Wickstead B, Rudenko G. TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2021; 49:3242-3262. [PMID: 33660774 PMCID: PMC8034637 DOI: 10.1093/nar/gkab109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more ‘metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.
Collapse
Affiliation(s)
- Carys Davies
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda S Hall
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Haneesh Sidhu
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Bill Wickstead
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gloria Rudenko
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
3
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|
4
|
Glover L, Marques CA, Suska O, Horn D. Persistent DNA Damage Foci and DNA Replication with a Broken Chromosome in the African Trypanosome. mBio 2019; 10:e01252-19. [PMID: 31289179 PMCID: PMC6747728 DOI: 10.1128/mbio.01252-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Damaged DNA typically imposes stringent controls on eukaryotic cell cycle progression, ensuring faithful transmission of genetic material. Some DNA breaks, and the resulting rearrangements, are advantageous, however. For example, antigenic variation in the parasitic African trypanosome, Trypanosoma brucei, relies upon homologous recombination-based rearrangements of telomeric variant surface glycoprotein (VSG) genes, triggered by breaks. Surprisingly, trypanosomes with a severed telomere continued to grow while progressively losing subtelomeric DNA, suggesting a nominal telomeric DNA damage checkpoint response. Here, we monitor the single-stranded DNA-binding protein replication protein A (RPA) in response to induced, locus-specific DNA breaks in T. brucei RPA foci accumulated at nucleolar sites following a break within ribosomal DNA and at extranucleolar sites following a break elsewhere, including adjacent to transcribed or silent telomeric VSG genes. As in other eukaryotes, RPA foci were formed in S phase and γH2A and RAD51 damage foci were disassembled prior to mitosis. Unlike in other eukaryotes, however, and regardless of the damaged locus, RPA foci persisted through the cell cycle, and these cells continued to replicate their DNA. We conclude that a DNA break, regardless of the damaged locus, fails to trigger a stringent cell cycle checkpoint in T. brucei This DNA damage tolerance may facilitate the generation of virulence-enhancing genetic diversity, within subtelomeric domains in particular. Stringent checkpoints may be similarly lacking in some other eukaryotic cells.IMPORTANCE Chromosome damage must be repaired to prevent the proliferation of defective cells. Alternatively, cells with damage must be eliminated. This is true of human and several other cell types but may not be the case for single-celled parasites, such as trypanosomes. African trypanosomes, which cause lethal diseases in both humans and livestock, can actually exploit chromosomal damage to activate new surface coat proteins and to evade host immune responses, for example. We monitored responses to single chromosomal breaks in trypanosomes using a DNA-binding protein that, in response to DNA damage, forms nuclear foci visible using a microscope. Surprisingly, and unlike what is seen in mammalian cells, these foci persist while cells continue to divide. We also demonstrate chromosome replication even when one chromosome is broken. These results reveal a remarkable degree of damage tolerance in trypanosomes, which may suit the lifestyle of a single-celled parasite, potentially facilitating adaptation and enhancing virulence.
Collapse
Affiliation(s)
- Lucy Glover
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catarina A Marques
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olga Suska
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Klebanov-Akopyan O, Mishra A, Glousker G, Tzfati Y, Shlomai J. Trypanosoma brucei UMSBP2 is a single-stranded telomeric DNA binding protein essential for chromosome end protection. Nucleic Acids Res 2019; 46:7757-7771. [PMID: 30007364 PMCID: PMC6125633 DOI: 10.1093/nar/gky597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/06/2018] [Indexed: 01/22/2023] Open
Abstract
Universal minicircle sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind a single-stranded G-rich sequence, UMS, conserved at the replication origins of the mitochondrial (kinetoplast) DNA of trypanosomatids. Here, we report that Trypanosoma brucei TbUMSBP2, which has been previously proposed to function in the replication and segregation of the mitochondrial DNA, colocalizes with telomeres at the nucleus and is essential for their structure, protection and function. Knockdown of TbUMSBP2 resulted in telomere clustering in one or few foci, phosphorylation of histone H2A at the vicinity of the telomeres, impaired nuclear division, endoreduplication and cell growth arrest. Furthermore, TbUMSBP2 depletion caused rapid reduction in the G-rich telomeric overhang, and an increase in C-rich single-stranded telomeric DNA and in extrachromosomal telomeric circles. These results indicate that TbUMSBP2 is essential for the integrity and function of telomeres. The sequence similarity between the mitochondrial UMS and the telomeric overhang and the finding that UMSBPs bind both sequences suggest a common origin and/or function of these interactions in the replication and maintenance of the genomes in the two organelles. This feature could have converged or preserved during the evolution of the nuclear and mitochondrial genomes from their ancestral (likely circular) genome in early diverged protists.
Collapse
Affiliation(s)
- Olga Klebanov-Akopyan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Amartya Mishra
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Edmond Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
6
|
Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG, Alvarez VE. SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One 2018; 13:e0193528. [PMID: 29474435 PMCID: PMC5825156 DOI: 10.1371/journal.pone.0193528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 01/10/2023] Open
Abstract
SUMOylation is a post-translational modification conserved in eukaryotic organisms that involves the covalent attachment of the small ubiquitin-like protein SUMO to internal lysine residues in target proteins. This tag usually alters the interaction surface of the modified protein and can be translated into changes in its biological activity, stability or subcellular localization, among other possible outputs. SUMO can be attached as a single moiety or as SUMO polymers in case there are internal acceptor sites in SUMO itself. These chains have been shown to be important for proteasomal degradation as well as for the formation of subnuclear structures such as the synaptonemal complex in Saccharomyces cerevisiae or promyelocytic leukemia nuclear bodies in mammals. In this work, we have examined SUMO chain formation in the protozoan parasite Trypanosoma brucei. Using a recently developed bacterial strain engineered to produce SUMOylated proteins we confirmed the ability of TbSUMO to form polymers and determined the type of linkage using site-directed mutational analysis. By generating transgenic procyclic parasites unable to form chains we demonstrated that although not essential for normal growth, SUMO polymerization determines the localization of the modified proteins in the nucleus. In addition, FISH analysis of telomeres showed a differential positioning depending on the polySUMOylation abilities of the cells. Thus, our observations suggest that TbSUMO chains might play a role in establishing interaction platforms contributing to chromatin organization.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Javier Gerardo De Gaudenzi
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde—Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Campus Miguelete, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
- * E-mail: (VEA); (JGDG)
| |
Collapse
|
7
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
8
|
Abstract
Studies on Variant Surface Glycoproteins (VSGs) and antigenic variation in the African trypanosome, Trypanosoma brucei, have yielded a remarkable range of novel and important insights. The features first identified in T. brucei extend from unique to conserved-among-trypanosomatids to conserved-among-eukaryotes. Consequently, much of what we now know about trypanosomatid biology and much of the technology available has its origin in studies related to VSGs. T. brucei is now probably the most advanced early branched eukaryote in terms of experimental tractability and can be approached as a pathogen, as a model for studies on fundamental processes, as a model for studies on eukaryotic evolution or often all of the above. In terms of antigenic variation itself, substantial progress has been made in understanding the expression and switching of the VSG coat, while outstanding questions continue to stimulate innovative new approaches. There are large numbers of VSG genes in the genome but only one is expressed at a time, always immediately adjacent to a telomere. DNA repair processes allow a new VSG to be copied into the single transcribed locus. A coordinated transcriptional switch can also allow a new VSG gene to be activated without any detectable change in the DNA sequence, thereby maintaining singular expression, also known as allelic exclusion. I review the story behind VSGs; the genes, their expression and switching, their central role in T. brucei virulence, the discoveries that emerged along the way and the persistent questions relating to allelic exclusion in particular.
Collapse
Affiliation(s)
- David Horn
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
9
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
10
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
11
|
Alsford S, Horn D, Glover L. DNA breaks as triggers for antigenic variation in African trypanosomes. Genome Biol 2009; 10:223. [PMID: 19519956 PMCID: PMC2718488 DOI: 10.1186/gb-2009-10-6-223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Double-strand breaks initiate coat protein switching in African trypanosomes. The DNA repair machinery has been co-opted for antigenic variation in African trypanosomes. New work directly demonstrates that a double-strand break initiates a switch in the expressed variant surface coat.
Collapse
Affiliation(s)
- Sam Alsford
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | | | | |
Collapse
|
12
|
Dossin FDM, Dufour A, Dusch E, Siqueira-Neto JL, Moraes CB, Yang GS, Cano MI, Genovesio A, Freitas-Junior LH. Automated nuclear analysis of Leishmania major telomeric clusters reveals changes in their organization during the parasite's life cycle. PLoS One 2008; 3:e2313. [PMID: 18545650 PMCID: PMC2396463 DOI: 10.1371/journal.pone.0002313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Accepted: 04/20/2008] [Indexed: 12/16/2022] Open
Abstract
Parasite virulence genes are usually associated with telomeres. The clustering of the telomeres, together with their particular spatial distribution in the nucleus of human parasites such as Plasmodium falciparum and Trypanosoma brucei, has been suggested to play a role in facilitating ectopic recombination and in the emergence of new antigenic variants. Leishmania parasites, as well as other trypanosomes, have unusual gene expression characteristics, such as polycistronic and constitutive transcription of protein-coding genes. Leishmania subtelomeric regions are even more unique because unlike these regions in other trypanosomes they are devoid of virulence genes. Given these peculiarities of Leishmania, we sought to investigate how telomeres are organized in the nucleus of Leishmania major parasites at both the human and insect stages of their life cycle. We developed a new automated and precise method for identifying telomere position in the three-dimensional space of the nucleus, and we found that the telomeres are organized in clusters present in similar numbers in both the human and insect stages. While the number of clusters remained the same, their distribution differed between the two stages. The telomeric clusters were found more concentrated near the center of the nucleus in the human stage than in the insect stage suggesting reorganization during the parasite's differentiation process between the two hosts. These data provide the first 3D analysis of Leishmania telomere organization. The possible biological implications of these findings are discussed.
Collapse
Affiliation(s)
| | | | - Elodie Dusch
- Image Mining Group, Institut Pasteur Korea, Seoul, South Korea
| | | | - Carolina B. Moraes
- Systems Biology of Pathogens Group, Institut Pasteur Korea, Seoul, South Korea
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gyong Seon Yang
- Systems Biology of Pathogens Group, Institut Pasteur Korea, Seoul, South Korea
| | - Maria Isabel Cano
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Paeschke K, Juranek S, Rhodes D, Lipps HJ. Cell cycle-dependent regulation of telomere tethering in the nucleus. Chromosome Res 2008; 16:721-8. [DOI: 10.1007/s10577-008-1222-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/24/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
|
14
|
Navarro M, Peñate X, Landeira D. Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 2007; 15:263-70. [PMID: 17481901 DOI: 10.1016/j.tim.2007.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/26/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
The influence of nuclear architecture on the regulation of developmental gene expression has recently become evident in many organisms ranging from yeast to humans. During interphase, chromosomes and nuclear structures are in constant motion; therefore, correct temporal association is needed to meet the requirements of gene expression. Trypanosoma brucei is an excellent model system in which to analyze nuclear spatial implications in the regulation of gene expression because the two main surface-protein genes (procyclin and VSG) are transcribed by the highly compartmentalized RNA polymerase I and undergo distinct transcriptional activation or downregulation during developmental differentiation. Furthermore, the infective bloodstream form of the parasite undergoes antigenic variation, displaying sequentially different types of VSG by allelic exclusion. Here, we discuss recent advances in understanding the role of chromosomal nuclear positioning in the regulation of gene expression in T. brucei.
Collapse
Affiliation(s)
- Miguel Navarro
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (Spanish National Research Council), Avda. del Conocimiento s/n, 18100 Granada, Spain.
| | | | | |
Collapse
|
15
|
Aitcheson N, Talbot S, Shapiro J, Hughes K, Adkin C, Butt T, Sheader K, Rudenko G. VSG switching in Trypanosoma brucei: antigenic variation analysed using RNAi in the absence of immune selection. Mol Microbiol 2005; 57:1608-22. [PMID: 16135228 PMCID: PMC1618954 DOI: 10.1111/j.1365-2958.2005.04795.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosoma brucei relies on antigenic variation of its variant surface glycoprotein (VSG) coat for survival. We show that VSG switching can be efficiently studied in vitro using VSG RNAi in place of an immune system to select for switch variants. Contrary to models predicting an instant switch after inhibition of VSG synthesis, switching was not induced by VSG RNAi and occurred at a rate of 10(-4) per division. We find a highly reproducible hierarchy of VSG activation, which appears to be capable of resetting, whereby more than half of the switch events over 12 experiments were to one of two VSGs. We characterized switched clones according to switch mechanism using marker genes in the active VSG expression site (ES). Transcriptional switches between ESs were the preferred switching mechanism, whereby at least 10 of the 17 ESs identified in T. brucei 427 can be functionally active in vitro. We could specifically select for switches mediated by DNA rearrangements by inducing VSG RNAi in the presence of drug selection for the active ES. Most of the preferentially activated VSGs could be activated by multiple mechanisms. This VSG RNAi-based procedure provides a rapid and powerful means for analysing VSG switching in African trypanosomes entirely in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gloria Rudenko
- * To whom correspondence should be addressed. Tel: +44 1865 281 548, FAX: +44 1865 281 894, E-mail:
| |
Collapse
|
16
|
Horn D, Barry JD. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res 2005; 13:525-33. [PMID: 16132817 DOI: 10.1007/s10577-005-0991-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Telomeres and subtelomeres are important to the virulence of a number of pathogens, as they harbour large diverse gene families associated with the maintenance of infection. Evasion of immunity by African trypanosomes involves the differential expression of variant surface glycoproteins (VSGs), which are encoded by a family of >1500 genes and pseudogenes. This silent archive is located subtelomerically and is activated by gene conversion into specialized transcription units, which themselves are subject to silencing by allelic exclusion. Current research addresses the role of telomeres in the conversion and silencing mechanisms and in the diversification of the VSG archive.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
17
|
Pays E, Vanhamme L, Pérez-Morga D. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr Opin Microbiol 2004; 7:369-74. [PMID: 15288623 DOI: 10.1016/j.mib.2004.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antigenic variation allows African trypanosomes to develop chronic infections in mammalian hosts. This process results from the alternative occurrence of transcriptional switching and DNA recombination targeted to a telomeric locus that contains the gene of the variant antigen and is subjected to mono-allelic expression control. So far, the identification of mechanisms and factors involved still resists technological developments and genome sequencing.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium.
| | | | | |
Collapse
|
18
|
Amiguet-Vercher A, Pérez-Morga D, Pays A, Poelvoorde P, Van Xong H, Tebabi P, Vanhamme L, Pays E. Loss of the mono-allelic control of the VSG expression sites during the development of Trypanosoma brucei in the bloodstream. Mol Microbiol 2004; 51:1577-88. [PMID: 15009886 DOI: 10.1111/j.1365-2958.2003.03937.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcription of the variant surface glycoprotein (VSG) gene of Trypanosoma brucei occurs in a single of multiple polycistronic expression sites (ESs). Analysis of RNA from proliferative long slender (LS) bloodstream forms demonstrated that initiation of transcription occurs in different ESs, but inefficient RNA processing and elongation is linked to RNA polymerase arrest in all except one unit at a time. The pattern of ES transcripts was analysed during the transformation of dividing LS forms into quiescent short stumpy (SS) forms. The results demonstrated that the mono-allelic control allowing preferential RNA production from a given ES stops during this process. Accordingly, the steady-state ES transcripts, particularly the VSG mRNA, were strongly reduced. However, transcripts from the beginning of different ESs were still synthesized, and in vitro run-on transcription analysis indicated that RNA polymerase was still fully associated with the promoter-proximal half of the 'active' ES. Analysis of transcripts from two central tandem genes confirmed the existence of a residual decreasing transcriptional gradient in the 'active' ES of SS forms. Thus, in these forms the RNA polymerase of the ES is inactivated in situ. This inactivation is accompanied by a strong overall reduction of nuclear DNA transcription. Although cAMP is involved in the LS to SS transformation, no direct effect of cAMP was observed on the VSG ES control.
Collapse
MESH Headings
- Alleles
- Animals
- Antigenic Variation
- Base Sequence
- DNA, Protozoan/genetics
- Gene Expression Regulation
- Genes, Protozoan
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/growth & development
- Trypanosomiasis, African/parasitology
- Variant Surface Glycoproteins, Trypanosoma/genetics
Collapse
Affiliation(s)
- Amelia Amiguet-Vercher
- Laboratory of Molecular Parasitology, IBMM, Free University of Brussels, 12, rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sheader K, te Vruchte D, Rudenko G. Bloodstream form-specific up-regulation of silent vsg expression sites and procyclin in Trypanosoma brucei after inhibition of DNA synthesis or DNA damage. J Biol Chem 2004; 279:13363-74. [PMID: 14726511 DOI: 10.1074/jbc.m312307200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The African trypanosome Trypanosoma brucei transcribes the active variant surface glycoprotein (VSG) gene from one of about 20 VSG expression sites (ESs). In order to study ES control, we made reporter lines with a green fluorescent protein gene inserted behind the promoter of different ESs. We attempted to disrupt the silencing machinery, and we used fluorescence-activated cell sorter analysis for the rapid and sensitive detection of ES up-regulation. We find that a range of treatments that either block nuclear DNA synthesis, like aphidicolin, or modify DNA-like cisplatin and 1-methyl-3-nitro-1-nitrosoguanidine results in up-regulation of silent ESs. Aphidicolin treatment was the most effective, with almost 80% of the cells expressing green fluorescent protein from a silent ES. All of these treatments blocked the cells in S phase. In contrast, a range of toxic chemicals had little or no effect on expression. These included berenil and pentamidine, which selectively cleave the mitochondrial kinetoplast DNA, the metabolic inhibitors suramin and difluoromethylornithine, and the mitotic inhibitor rhizoxin. Up-regulation also affected other RNA polymerase I (pol I) transcription units, as procyclin genes were also up-regulated after cells were treated with either aphidicolin or DNA-modifying agents. Strikingly, this up-regulation of silent pol I transcription units was bloodstream form-specific and was not observed in insect form T. brucei. We postulate that the redistribution of a limiting bloodstream form-specific factor involved in both silencing and DNA repair results in the derepression of normally silenced pol I transcription units after DNA damage.
Collapse
Affiliation(s)
- Karen Sheader
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, United Kingdom
| | | | | |
Collapse
|
20
|
García-Salcedo JA, Gijón P, Nolan DP, Tebabi P, Pays E. A chromosomal SIR2 homologue with both histone NAD-dependent ADP-ribosyltransferase and deacetylase activities is involved in DNA repair in Trypanosoma brucei. EMBO J 2003; 22:5851-62. [PMID: 14592982 PMCID: PMC275410 DOI: 10.1093/emboj/cdg553] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SIR2-like proteins have been implicated in a wide range of cellular events including chromosome silencing, chromosome segregation, DNA recombination and the determination of life span. We report here the molecular and functional characterization of a SIR2-related protein from the protozoan parasite Trypanosoma brucei, which we termed TbSIR2RP1. This protein is a chromosome-associated NAD-dependent enzyme which, in contrast to other known proteins of this family, catalyses both ADP-ribosylation and deacetylation of histones, particulary H2A and H2B. Under- or overexpression of TbSIR2RP1 decreased or increased, respectively, cellular resistance to DNA damage. Treatment of trypanosomal nuclei with a DNA alkylating agent resulted in a significant increase in the level of histone ADP-ribosylation and a concomitant increase in chromatin sensitivity to micrococcal nuclease. Both of these responses correlated with the level of TbSIR2RP1 expression. We propose that histone modification by TbSIR2RP1 is involved in DNA repair.
Collapse
Affiliation(s)
- José A García-Salcedo
- Institute of Molecular Biology and Medicine, Free University of Brussels, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 2003; 67:360-75, table of contents. [PMID: 12966140 PMCID: PMC193867 DOI: 10.1128/mmbr.67.3.360-375.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA elements have been a part of the genomic fauna of eukaryotes perhaps since their very beginnings. Millions of years of coevolution have given repeats central roles in chromosome maintenance and genetic modulation. Here we review the genomes of parasitic protozoa in the context of the current understanding of repetitive elements. Particular reference is made to repeats in five medically important species with ongoing or completed genome sequencing projects: Plasmodium falciparum, Leishmania major, Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia. These organisms are used to illustrate five thematic classes of repeats with different structures and genomic locations. We discuss how these repeat classes may interact with parasitic life-style and also how they can be used as experimental tools. The story which emerges is one of opportunism and upheaval which have been employed to add genetic diversity and genomic flexibility.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
22
|
Abstract
Eukaryotes use sexual recombination to achieve innovation and adaptation to a changing environment, a mechanism that is exceptional in Leishmania. It is postulated that asexual mechanisms contribute efficiently to parasite fitness and that sexual recombination would not be necessary for the production of a large repertoire of genotypes. The model discussed in this review used a major Leishmania glycoprotein, gp63, which is involved in host-parasite relationships. Mitotic recombination, which occurs between and within tandem repeats, amplifies genes and generates genotypic diversity. The resulting variation in the protein sequence is concentrated in surface domains, in regions spanning T-cell epitopes and B-cell epitopes and might allow immune escape.
Collapse
Affiliation(s)
- Kathleen Victoir
- Dept of Parasitology, Prins Leopold Instituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000, Antwerpen, Belgium
| | | |
Collapse
|