1
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
2
|
Frolov AO, Kostygov AY, Yurchenko V. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Trends Parasitol 2021; 37:538-551. [PMID: 33714646 DOI: 10.1016/j.pt.2021.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
In this review, we summarize the current data on development of monoxenous trypanosomatids and phytomonads in various insects. Of these, Diptera and Hemiptera are the main host groups, and, consequently, most available information concerns their parasites. Within the insect body, the midgut and hindgut are the predominant colonization sites; in addition, some trypanosomatids can invade the foregut, Malpighian tubules, hemolymph, and/or salivary glands. Differences in the intestinal structure and biology of the host determine the variety of parasites' developmental and transmission strategies. Meanwhile, similar mechanisms are used by unrelated trypanosomatids, reflecting the limited range of options to achieve the same goal.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia.
| | - Alexei Y Kostygov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
3
|
Boucinha C, Caetano AR, Santos HLC, Helaers R, Vikkula M, Branquinha MH, dos Santos ALS, Grellier P, Morelli KA, d‘Avila-Levy CM. Analysing ambiguities in trypanosomatids taxonomy by barcoding. Mem Inst Oswaldo Cruz 2020; 115:e200504. [PMID: 32578684 PMCID: PMC7304411 DOI: 10.1590/0074-02760200504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.
Collapse
Affiliation(s)
- Carolina Boucinha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Amanda R Caetano
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Helena LC Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Raphael Helaers
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Miikka Vikkula
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
| | | | - Philippe Grellier
- Muséum National d‘Histoire Naturelle, Unité Molécules de Communication et Adaptation des Microorganisme, Paris, France
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini d‘Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| |
Collapse
|
4
|
Yurchenko V, Kostygov A, Havlová J, Grybchuk-Ieremenko A, Ševčíková T, Lukeš J, Ševčík J, Votýpka J. Diversity of Trypanosomatids in Cockroaches and the Description of Herpetomonas tarakana sp. n. J Eukaryot Microbiol 2015; 63:198-209. [PMID: 26352484 DOI: 10.1111/jeu.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/01/2022]
Abstract
In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.
Collapse
Affiliation(s)
- Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic
| | - Alexei Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.,Zoological Institute, Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Jolana Havlová
- Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | | | - Tereza Ševčíková
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice (Budweis), Czech Republic.,Canadian Institute for Advanced Research, Toronto, Ontorio, M5G 1Z8, Canada
| | - Jan Ševčík
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05, České Budějovice (Budweis), Czech Republic.,Department of Parasitology, Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| |
Collapse
|
5
|
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol 2015; 52:1-10. [PMID: 26555733 DOI: 10.1016/j.ejop.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/06/2015] [Accepted: 08/15/2015] [Indexed: 11/30/2022]
Abstract
The trypanosomatid Phytomonas nordicus parasitizing the predatory bug Troilus luridus was described at the twilight of the morphotype-based systematics. Despite its monoxenous life cycle, this species was attributed to the dixenous genus Phytomonas due to the presence of long twisted promastigotes and development of flagellates in salivary glands. However, these characteristics were considered insufficient for proving the phytomonad nature of the species and therefore its description remained virtually unnoticed. Here, we performed molecular phylogenetic analyses using 18S ribosomal RNA (rRNA) gene and region containing internal trascribed spacers (ITS) 1 and 2 and convincingly demonstrated the affinity of P. nordicus to the genus Phytomonas. In addition, we investigated its development in the salivary glands. We argue that in many aspects the life cycle of monoxenous P. nordicus resembles that of its dixenous relatives represented by tomato-parasitizing Phytomonas serpens.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Marina N Malysheva
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alexei Yu Kostygov
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
6
|
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, Lukeš J, Yurchenko V. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 2014; 165:825-38. [PMID: 25460233 DOI: 10.1016/j.protis.2014.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Compared to their relatives, the diversity of endosymbiont-containing Trypanosomatidae remains under-investigated, with only two new species described in the past 25 years, bringing the total to six. The possible reasons for such a poor representation of this group are either their overall scarcity or susceptibility of their symbionts to antibiotics that are traditionally used for cultivation of flagellates. In this work we describe the isolation, cultivation, as well as morphological and molecular characterization of a novel endosymbiont-harboring trypanosomatid species, Kentomonas sorsogonicus sp. n. The newly erected genus Kentomonas gen. n. shares many common features with the genera Angomonas and Strigomonas, such as the presence of an extensive system of peripheral mitochondrial branches distorting the corset of subpellicular microtubules, large and loosely packed kinetoplast, and a rudimentary paraflagellar rod. Here we also propose to unite all endosymbiont-bearing trypanosomatids into the new subfamily Strigomonadinae subfam. n.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Sciences, Charles University, Prague, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Martina Tesařová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
7
|
Fokin SI, Schrallhammer M, Chiellini C, Verni F, Petroni G. Free-living ciliates as potential reservoirs for eukaryotic parasites: occurrence of a trypanosomatid in the macronucleus of Euplotes encysticus. Parasit Vectors 2014; 7:203. [PMID: 24774858 PMCID: PMC4022238 DOI: 10.1186/1756-3305-7-203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 12/27/2022] Open
Abstract
Background Flagellates of the family Trypanosomatidae are obligate endoparasites, which can be found in various hosts. Several genera infect insects and occur as monoxenous parasites especially in representatives of Diptera and Hemiptera. These trypanosomatid flagellates probably share the worldwide distribution of their hosts, which are often infested by large numbers of endoparasites. Traditionally, their taxonomy was based on morphology, host origin, and life cycle. Here we report the characterization of a trypanosomatid infection detected in a protozoan, a ciliate collected from a polluted freshwater pond in a suburb of New Delhi (India). Methods Live observations and morphological studies applying light, fluorescence and transmission electron microscopy were conducted. Molecular analyses of host and parasite were performed and used for phylogenetic reconstructions and species (host) or genus level (parasite) identification. Results Although the morphological characteristics were not revealing, a high similarity of the trypanosomatids 18S rRNA gene sequence to Herpetomonas ztiplika and Herpetomonas trimorpha (Kinetoplastida, Trypanosomatidae), both parasites of biting midges (Culicoides kibunensis and Culicoides truncorum, respectively) allowed the assignment to this genus. The majority of the host population displayed a heavy infection that significantly affected the shape of the host macronucleus, which was the main site of parasite localization. In addition, the growth rate of host cultures, identified as Euplotes encysticus according to cell morphology and 18S rRNA gene sequence, was severely impacted by the infection. Conclusions The host-parasite system described here represents a recent example of free-living protists acting as environmental reservoirs for parasitic eukaryotic microorganisms.
Collapse
Affiliation(s)
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany.
| | | | | | | |
Collapse
|
8
|
Borghesan TC, Ferreira RC, Takata CSA, Campaner M, Borda CC, Paiva F, Milder RV, Teixeira MMG, Camargo EP. Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 2012; 164:129-52. [PMID: 22938923 DOI: 10.1016/j.protis.2012.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022]
Abstract
In order to review the taxonomy of the genus Herpetomonas through phylogenetic and morphological analyses we barcoded 527 insect trypanosomatids by sequencing the V7V8 region of the small subunit ribosomal RNA (SSU rRNA) gene. Fifty two flagellates, 90% of them from Diptera, revealed to be related to known species of Herpetomonas. Sequences of entire glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and SSU rRNA genes were employed for phylogenetic inferences including representatives of all genera of Trypanosomatidae. In the resulting phylogenetic trees, the selected flagellates clustered into a monophyletic assemblage that we are considering as the redefined genus Herpetomonas. Internal transcribed spacer 1 (ITS1) rDNA sequences and putative secondary structures of this region were compared for evaluation of inter- and intraspecific variability. The flagellates were classified in six already known species and five new species. In addition, two Leptomonas spp. were moved to Herpetomonas, now comprising 13 valid species, while four species were excluded from the genus. Light and electron microscopy revealed the extreme polymorphism of Herpetomonas, hindering genus and species identification by morphological characteristics. Our findings also showed that some species of Herpetomonas are generalist parasites of flies and appear to be as cosmopolitan as their hosts.
Collapse
MESH Headings
- Animals
- Cluster Analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Diptera/parasitology
- Genes, rRNA
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Microscopy
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
- Trypanosomatina/classification
- Trypanosomatina/cytology
- Trypanosomatina/genetics
- Trypanosomatina/isolation & purification
Collapse
Affiliation(s)
- Tarcilla C Borghesan
- Department of Parasitology, ICB, University of São Paulo (USP), São Paulo, 05508-000, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dollet M, Sturm NR, Campbell DA. The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (Phytomonas spp.) resolves 10 groups. INFECTION GENETICS AND EVOLUTION 2012; 12:299-308. [DOI: 10.1016/j.meegid.2011.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/24/2022]
|
10
|
Ienne S, Pappas G, Benabdellah K, González A, Zingales B. Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid Phytomonas serpens. INFECTION GENETICS AND EVOLUTION 2012; 12:539-48. [PMID: 22293462 DOI: 10.1016/j.meegid.2012.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 11/28/2022]
Abstract
Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of γ-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas, Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation.
Collapse
Affiliation(s)
- Susan Ienne
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | | | | | | | | |
Collapse
|
11
|
Zídková L, Cepicka I, Votýpka J, Svobodová M. Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol 2009; 60:2236-2246. [PMID: 19819998 DOI: 10.1099/ijs.0.014555-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoxenous trypanosomatid Herpetomonas trimorpha sp. nov. was isolated from the digestive tract of the biting midge Culicoides truncorum (Ceratopogonidae, Diptera). This species forms three distinct morphotypes in culture: the microflagellate promastigote, the small promastigote and the long promastigote. The last form is unique for the newly described species. Phylogenetic analyses of SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase genes showed that H. trimorpha sp. nov. is the closest relative of Herpetomonas ztiplika, another monoxenous trypanosomatid isolated from biting midges. However, morphological and randomly amplified polymorphic DNA analyses confirmed that H. trimorpha sp. nov. is distinct from H. ztiplika.
Collapse
Affiliation(s)
- Lenka Zídková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 128 44, Czech Republic
| |
Collapse
|
12
|
Marín C, Dollet M, Pagès M, Bastien P. Large differences in the genome organization of different plant Trypanosomatid parasites (Phytomonas spp.) reveal wide evolutionary divergences between taxa. INFECTION GENETICS AND EVOLUTION 2008; 9:235-40. [PMID: 19111630 DOI: 10.1016/j.meegid.2008.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/24/2022]
Abstract
All currently known plant trypanosomes have been grouped in the genus Phytomonas spp., although they can differ greatly in terms of both their biological properties and effects upon the host. Those parasitizing the phloem sap are specifically associated with lethal syndromes in Latin America, such as, phloem necrosis of coffee, 'Hartrot' of coconut and 'Marchitez sorpresiva' of oil palm, that inflict considerable economic losses in endemic countries. The genomic organization of one group of Phytomonas (D) considered as representative of the genus has been published previously. The present work presents the genomic structure of two representative isolates from the pathogenic phloem-restricted group (H) of Phytomonas, analyzed by pulsed field gel electrophoresis followed by hybridization with chromosome-specific DNA markers. It came as a surprise to observe an extremely different genomic organization in this group as compared with that of group D. Most notably, the chromosome number is 7 in this group (with a genome size of 10 Mb) versus 21 in the group D (totalling 25 Mb). These data unravel an unsuspected genomic diversity within plant trypanosomatids, that may justify a further debate about their division into different genera.
Collapse
Affiliation(s)
- C Marín
- CIRAD, Department of Biological Systems, Research Unit 29 "Etiology wilts" TA A-29/F, 34398 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
13
|
Morphological Discordance of the New Trypanosomatid Species Phylogenetically Associated with the Genus Crithidia. Protist 2008; 159:99-114. [DOI: 10.1016/j.protis.2007.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 07/14/2007] [Indexed: 11/17/2022]
|
14
|
Sturm NR, Dollet M, Lukes J, Campbell DA. Rational sub-division of plant trypanosomes (Phytomonas spp.) based on minicircle conserved region analysis. INFECTION GENETICS AND EVOLUTION 2007; 7:570-6. [PMID: 17499027 DOI: 10.1016/j.meegid.2007.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
The sequences of minicircle conserved regions from various plant trypanosomatids have been determined and analyzed. The goal of this study was to add another tool to the arsenal of molecular probes for distinguishing between the different trypanosomatids occurring in plants: systemic trypanosomatids multiplying in the sap, those from the laticiferous tubes, and those developing in fruits, seeds or flowers but not in the plant itself and that are frequently considered as opportunistic insect trypanosomatids. As some plant intraphloemic trypanosomatids are the causative agents of important diseases, a clear definition of the different types of trypanosomatids is critical. The conserved region of the mitochondrial minicircle provides several specific features in a small sequence region containing three functionally elements required for minicircle replication. Trees generated from the analysis recapitulated trees drawn from analyses of isoenzymes, RAPD, and particular gene sequences, supporting the validity of the small region used in this work. Three groups of isolates were significant and in accordance with previous work. The peculiarity of phloem-restricted trypanosomatids associated with wilts of coconut and oil palm in Latin America - group H - is confirmed. In agreement with previous studies on their biological and serological properties the results highlighted this group called 'phloemicola'. It always differentiated from all other latex and fruit isolates or opportunistic trypanosomatids, like insect trypanosomatids. We can assert that phloemicola is the only well-defined taxon among all plant trypanosomatids. A group of non-pathogenic latex isolates from South American euphorbs (G), and a heterogenous group (A) including one fruit, one possible latex and one insect isolate are clearly distinct groups. The group of Mediterranean isolates from latex (D), even with a low boostrap, stood out well from other groups. The remainder of the isolates fell into a heterogeneous cluster. At least eight different groups in the plant trypanosomatids were identified.
Collapse
Affiliation(s)
- Nancy R Sturm
- CIRAD,UPR29 Etiologie Dépérissements, Département Systèmes Biologiques, TA A-29/F, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
15
|
Marín C, Fabre S, Sánchez-Moreno M, Dollet M. Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain. Exp Parasitol 2007; 116:88-90. [PMID: 17266953 DOI: 10.1016/j.exppara.2006.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/13/2006] [Accepted: 11/08/2006] [Indexed: 11/21/2022]
Abstract
A flagellate of the family Trypanosomatidae was isolated from fruits of Lycopersicon esculentum (tomato) in southeastern Spain. The isolate was successfully adapted to in vitro culture in monophasic media. The morphology showed the kinetoplast to be positioned towards the middle of the body, and the typical opistomastigote form characteristic of members of the genus Herpetomonas. Amplification of the mini-exon gene was negative, whilst for the 5S ribosomal rRNA gene the result was positive. The DNA sequence was obtained and its alignment with other trypasomatids, obtained using the BLAST algorithm, suggested it was closely related to Herpetomonas samuelpessoai.
Collapse
Affiliation(s)
- Clotilde Marín
- Instituto de Biotecnología, Departamento de Parasitología, Facultad de Ciencias, Universidad de Granada, C/Severo Ochoa s/n. 18071 Granada, Spain
| | | | | | | |
Collapse
|
16
|
Yurchenko V, Lukes J, Xu X, Maslov DA. An Integrated Morphological and Molecular Approach to a New Species Description in the Trypanosomatidae: the Case of Leptomonas podlipaevi n. sp., a Parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 2006; 53:103-11. [PMID: 16579812 DOI: 10.1111/j.1550-7408.2005.00078.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Leptomonas podlipaevi n. sp., a new trypanosomatid species, is described herein based on light microscopic, ultrastructural, and molecular phylogenetic data. The organism is pleomorphic both in host and culture, with two predominant forms-a typical promastigote with a long flagellum and a shorter promastigote with a small or barely extending flagellum. Several spliced leader RNA repeat sequences obtained from the original cultures and the clonal lines representing two types of cells were all nearly identical. These sequences formed a tight cluster in the neighbor-joining tree well separated from other trypanosomatid species. Glyceraldehyde phosphate dehydrogenase gene sequences were determined for L. podlipaevi and 10 previously described trypanosomatid species. Molecular phylogenetic analysis has demonstrated that the new species is most closely related to Leptomonas seymouri and Leptomonas pyrrhocoris. The analysis has also highlighted the polyphyly of the genus Leptomonas.
Collapse
Affiliation(s)
- Vyacheslav Yurchenko
- Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, New York 1046 USA
| | | | | | | |
Collapse
|
17
|
Godoi MMI, Serrano MG, Teixeira MMG, Camargo EP. A PCR-based survey on Phytomonas (Euglenozoa: Trypanosomatidae) in phytophagous hemipterans of the Amazon region. J Eukaryot Microbiol 2002; 49:275-9. [PMID: 12188217 DOI: 10.1111/j.1550-7408.2002.tb00370.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have surveyed 244 hemipterans from Western Brazilian Amazĵnia for the presence of trypanosomatids and identification of members of the genus Phytomonas. Examination by phase microscopy of squashes of insect salivary glands (SG) and digestive tubes (DT) revealed that 44% (108/244) of insects from seven families harbored trypanosomatids. Infections were 5 times more frequent in Coreidae than in all other families together. Smears of SG and DT of the dissected insects were fixed on glass slides with methanol and stained with Giemsa for morphological analysis. DNA was recovered from these preparations and submitted to a PCR assay that permitted amplification of all trypanosomatid genera using primers of conserved sequences flanking a segment of the spliced leader (SL) gene. Upon PCR amplification of the recovered DNA, amplicons were hybridized with an oligonucletide probe (SL3') complementary to a SL intron sequence specific for flagellates of the genus Phytomonas. Among the trypanosomatid-positive insects, 38.8% harbored Phytomonas spp., corresponding to an overall Phytomonas prevalence of 17.1% among phytophagous bugs, their putative vectors. Since many Phytomonas are pathogenic in plants, this high prevalence in their vectors emphasizes the permanent risk of exposure to disease by native and cultured plants of the Amazon region.
Collapse
Affiliation(s)
- Mara M I Godoi
- Federal University of Rondĵnia, Department of Biomedical Science, Porto Velho, Brazil
| | | | | | | |
Collapse
|
18
|
Catarino LM, Serrano MG, Cavazzana M, Almeida ML, Kaneshina EK, Campaner M, Jankevicius JV, Teixeira MM, Itow-Jankevicius S. Classification of trypanosomatids from fruits and seeds using morphological, biochemical and molecular markers revealed several genera among fruit isolates. FEMS Microbiol Lett 2001; 201:65-72. [PMID: 11445169 DOI: 10.1111/j.1574-6968.2001.tb10734.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trypanosomatids are widespread in several plant families and although most isolates have been classified as Phytomonas, other trypanosomatid genera can also infect plants. In order to assess the natural occurrence of non-Phytomonas trypanosomatids in plants we characterized 21 new trypanosomatid cultures, 18 from fruits and three from seeds of 17 plant species. The trypanosomatids from fruit and seeds were compared in terms of morphological, growth, biochemical and molecular features. The high diversity among the isolates permitted the classification of the new flagellates into the genera Crithidia and Leptomonas as well as Phytomonas. The data showed that natural fruit infection with non-Phytomonas trypanosomatids is more common than usually thought, being detected in 43% of the fruit isolates.
Collapse
Affiliation(s)
- L M Catarino
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|