1
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2024. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
2
|
Lenière AC, Vlandas A, Follet J. Treating cryptosporidiosis: A review on drug discovery strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100542. [PMID: 38669849 PMCID: PMC11066572 DOI: 10.1016/j.ijpddr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Despite several decades of research on therapeutics, cryptosporidiosis remains a major concern for human and animal health. Even though this field of research to assess antiparasitic drug activity is highly active and competitive, only one molecule is authorized to be used in humans. However, this molecule was not efficacious in immunocompromised people and the lack of animal therapeutics remains a cause of concern. Indeed, the therapeutic arsenal needs to be developed for both humans and animals. Our work aims to clarify research strategies that historically were diffuse and poorly directed. This paper reviews in vitro and in vivo methodologies to assess the activity of future therapeutic compounds by screening drug libraries or through drug repurposing. It focuses on High Throughput Screening methodologies (HTS) and discusses the lack of knowledge of target mechanisms. In addition, an overview of several specific metabolic pathways and enzymatic activities used as targets against Cryptosporidium is provided. These metabolic processes include glycolytic pathways, fatty acid production, kinase activities, tRNA elaboration, nucleotide synthesis, gene expression and mRNA maturation. As a conclusion, we highlight emerging future strategies for screening natural compounds and assessing drug resistance issues.
Collapse
Affiliation(s)
- Anne-Charlotte Lenière
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Alexis Vlandas
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France
| | - Jérôme Follet
- University of Lille, CNRS, Centrale Lille, Junia, Université Polytechnique Hauts de France, UMR 8520, IEMN Institut d'Electronique de Microélectronique et de Nanotechnologie, F, 59000, Lille, France.
| |
Collapse
|
3
|
Shunmugam S, Arnold CS, Dass S, Katris NJ, Botté CY. The flexibility of Apicomplexa parasites in lipid metabolism. PLoS Pathog 2022; 18:e1010313. [PMID: 35298557 PMCID: PMC8929637 DOI: 10.1371/journal.ppat.1010313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| |
Collapse
|
4
|
Dual transcriptomics to determine interferon-gamma independent host response to intestinal Cryptosporidium parvum infection. Infect Immun 2021; 90:e0063821. [PMID: 34928716 PMCID: PMC8852703 DOI: 10.1128/iai.00638-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.
Collapse
|
5
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Velásquez ZD, López-Osorio S, Mazurek S, Hermosilla C, Taubert A. Eimeria bovis Macromeront Formation Induces Glycolytic Responses and Mitochondrial Changes in Primary Host Endothelial Cells. Front Cell Infect Microbiol 2021; 11:703413. [PMID: 34336724 PMCID: PMC8319763 DOI: 10.3389/fcimb.2021.703413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Eimeria bovis is an intracellular apicomplexan parasite that causes considerable economic losses in the cattle industry worldwide. During the first merogony, E. bovis forms large macromeronts with >140,000 merozoites I in host endothelial cells. Because this is a high-energy demanding process, E. bovis exploits the host cellular metabolism to fulfill its metabolic requirements. We here analyzed the carbohydrate-related energetic metabolism of E. bovis–infected primary bovine umbilical vein endothelial cells during first merogony and showed that during the infection, E. bovis–infected culture presented considerable changes in metabolic signatures, glycolytic, and mitochondrial responses. Thus, an increase in both oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) were found in E. bovis–infected host cells indicating a shift from quiescent to energetic cell status. Enhanced levels of glucose and pyruvate consumption in addition to increased lactate production, suggesting an important role of glycolysis in E. bovis–infected culture from 12 days p.i. onward. This was also tested by glycolytic inhibitors (2-DG) treatment, which reduced the macromeront development and diminished merozoite I production. As an interesting finding, we observed that 2-DG treatment boosted sporozoite egress. Referring to mitochondrial activities, intracellular ROS production was increased toward the end of merogony, and mitochondrial potential was enhanced from 12 d p. i. onward in E. bovis–infected culture. Besides, morphological alterations of membrane potential signals also indicated mitochondrial dysfunction in macromeront-carrying host endothelial culture.
Collapse
Affiliation(s)
- Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany.,Research Group CIBAV, School of Veterinary Medicine, Faculty of Agrarian Sciences, University of Antioquia, Medellin, Colombia
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
7
|
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol 2021; 11:626183. [PMID: 33505389 PMCID: PMC7829456 DOI: 10.3389/fmicb.2020.626183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.
Collapse
Affiliation(s)
- Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Medical College of Soochow University, Suzhou, China
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Qingfeng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Tomčala A, Michálek J, Schneedorferová I, Füssy Z, Gruber A, Vancová M, Oborník M. Fatty Acid Biosynthesis in Chromerids. Biomolecules 2020; 10:E1102. [PMID: 32722284 PMCID: PMC7464705 DOI: 10.3390/biom10081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Fatty acids are essential components of biological membranes, important for the maintenance of cellular structures, especially in organisms with complex life cycles like protozoan parasites. Apicomplexans are obligate parasites responsible for various deadly diseases of humans and livestock. We analyzed the fatty acids produced by the closest phototrophic relatives of parasitic apicomplexans, the chromerids Chromera velia and Vitrella brassicaformis, and investigated the genes coding for enzymes involved in fatty acids biosynthesis in chromerids, in comparison to their parasitic relatives. Based on evidence from genomic and metabolomic data, we propose a model of fatty acid synthesis in chromerids: the plastid-localized FAS-II pathway is responsible for the de novo synthesis of fatty acids reaching the maximum length of 18 carbon units. Short saturated fatty acids (C14:0-C18:0) originate from the plastid are then elongated and desaturated in the cytosol and the endoplasmic reticulum. We identified giant FAS I-like multi-modular enzymes in both chromerids, which seem to be involved in polyketide synthesis and fatty acid elongation. This full-scale description of the biosynthesis of fatty acids and their derivatives provides important insights into the reductive evolutionary transition of a phototropic algal ancestor to obligate parasites.
Collapse
Affiliation(s)
- Aleš Tomčala
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Fisheries and Protection of Waters, CENAKVA, Institute of Aquaculture and Protection of Waters, University of South Bohemia, Husova 458/102, 370 05 České Budějovice, Czech Republic
| | - Jan Michálek
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Ivana Schneedorferová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zoltán Füssy
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Ansgar Gruber
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Marie Vancová
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
| | - Miroslav Oborník
- Biology Centre CAS, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (A.T.); (J.M.); (I.S.); (Z.F.); (A.G.); (M.V.)
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E. Diversified secondary metabolite biosynthesis gene repertoire revealed in symbiotic dinoflagellates. Sci Rep 2019; 9:1204. [PMID: 30718591 PMCID: PMC6361889 DOI: 10.1038/s41598-018-37792-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
Symbiodiniaceae dinoflagellates possess smaller nuclear genomes than other dinoflagellates and produce structurally specialized, biologically active, secondary metabolites. Till date, little is known about the evolution of secondary metabolism in dinoflagellates as comparative genomic approaches have been hampered by their large genome sizes. Here, we overcome this challenge by combining genomic and metabolomics approaches to investigate how chemical diversity arises in three decoded Symbiodiniaceae genomes (clades A3, B1 and C). Our analyses identify extensive diversification of polyketide synthase and non-ribosomal peptide synthetase genes from two newly decoded genomes of Symbiodinium tridacnidorum (A3) and Cladocopium sp. (C). Phylogenetic analyses indicate that almost all the gene families are derived from lineage-specific gene duplications in all three clades, suggesting divergence for environmental adaptation. Few metabolic pathways are conserved among the three clades and we detect metabolic similarity only in the recently diverged clades, B1 and C. We establish that secondary metabolism protein architecture guides substrate specificity and that gene duplication and domain shuffling have resulted in diversification of secondary metabolism genes.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michael C Roy
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Frances M Van Dolah
- College of Charleston, School of Sciences and Mathematics, 66 George St., Charleston, South Carolina, 29424, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
10
|
Miller CN, Jossé L, Brown I, Blakeman B, Povey J, Yiangou L, Price M, Cinatl J, Xue WF, Michaelis M, Tsaousis AD. A cell culture platform for Cryptosporidium that enables long-term cultivation and new tools for the systematic investigation of its biology. Int J Parasitol 2018; 48:197-201. [PMID: 29195082 PMCID: PMC5854368 DOI: 10.1016/j.ijpara.2017.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parasites are a major cause of diarrhoea that pose a particular threat to children in developing areas and immunocompromised individuals. Curative therapies and vaccines are lacking, mainly due to lack of a long-term culturing system of this parasite. Here, we show that COLO-680N cells infected with two different Cryptosporidium parvum strains produce sufficient infectious oocysts to infect subsequent cultures, showing a substantial fold increase in production, depending on the experiment, over the most optimistic HCT-8 models. Oocyst identity was confirmed using a variety of microscopic- and molecular-based methods. This culturing system will accelerate research on Cryptosporidium and the development of anti-Cryptosporidium drugs.
Collapse
Affiliation(s)
- Christopher N Miller
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK; School of Biosciences, University of Kent, Canterbury, UK
| | - Lyne Jossé
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK; School of Biosciences, University of Kent, Canterbury, UK; Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ben Blakeman
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jane Povey
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, UK
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK; School of Biosciences, University of Kent, Canterbury, UK; Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, UK
| | - Mark Price
- School of Physical Sciences, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Wei-Feng Xue
- School of Biosciences, University of Kent, Canterbury, UK
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, UK; Industrial Biotechnology Centre, School of Biosciences, University of Kent, Canterbury, UK.
| | - Anastasios D Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK; School of Biosciences, University of Kent, Canterbury, UK.
| |
Collapse
|
11
|
Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.03133-16. [PMID: 28213537 DOI: 10.1128/aem.03133-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. colifabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in ThraustochytriumIMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs.
Collapse
|
12
|
Metabolic signatures of Besnoitia besnoiti-infected endothelial host cells and blockage of key metabolic pathways indicate high glycolytic and glutaminolytic needs of the parasite. Parasitol Res 2016; 115:2023-34. [PMID: 26852124 DOI: 10.1007/s00436-016-4946-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle with a significant economic impact on cattle industry. During acute infection, fast-proliferating tachyzoites are continuously formed mainly in endothelial host cells of infected animals. Given that offspring formation is a highly energy and cell building block demanding process, the parasite needs to exploit host cellular metabolism to meet its metabolic demands. Here, we analyzed the metabolic signatures of B. besnoiti-infected endothelial host cells and aimed to influence parasite proliferation by inhibitors of specific metabolic pathways. The following inhibitors were tested: fluoro 2-deoxy-D-glucose and 2-deoxy-D-glucose (FDG, DG; inhibitors of glycolysis), 6-diazo-5-oxo-L-norleucin (DON; inhibitor of glutaminolysis), dichloroacetate (DCA; inhibitor of pyruvate dehydrogenase kinase which favorites channeling of glucose carbons into the TCA cycle) and adenosine-monophosphate (AMP; inhibitor of ribose 5-P synthesis). Overall, B. besnoiti infections of bovine endothelial cells induced a significant and infection rate-dependent increase of glucose, lactate, glutamine, glutamate, pyruvate, alanine, and serine conversion rates which together indicate a parasite-triggered up-regulation of glycolysis and glutaminolysis. Thus, addition of DON, FDG, and DG into the cultivation medium of B. besnoiti infected endothelial cells led to a dose-dependent inhibition of parasite replication (4 μM DON, 99.5 % inhibition; 2 mM FDG, 99.1 % inhibition; 2 mM DG, 93 % inhibition; and 8 mM DCA, 71.9 % inhibition). In contrast, AMP had no significant effects on total tachyzoite production up to a concentration of 20 mM. Together, these data may open new strategies for the development of therapeutics for B. besnoiti infections.
Collapse
|
13
|
Ramakrishnan S, Docampo MD, MacRae JI, Ralton JE, Rupasinghe T, McConville MJ, Striepen B. The intracellular parasite Toxoplasma gondii depends on the synthesis of long-chain and very long-chain unsaturated fatty acids not supplied by the host cell. Mol Microbiol 2015; 97:64-76. [PMID: 25825226 DOI: 10.1111/mmi.13010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 12/15/2022]
Abstract
Apicomplexa are parasitic protozoa that cause important human diseases including malaria, cryptosporidiosis and toxoplasmosis. The replication of these parasites within their target host cell is dependent on both salvage as well as de novo synthesis of fatty acids. In Toxoplasma gondii, fatty acid synthesis via the apicoplast-localized FASII is essential for pathogenesis, while the role of two other fatty acid biosynthetic complexes remains unclear. Here, we demonstrate that the ER-localized fatty acid elongation (ELO) complexes are essential for parasite growth. Conditional knockdown of the nonredundant hydroxyacyl-CoA dehydratase and enoyl-CoA reductase enzymes in the ELO pathway severely repressed intracellular parasite growth. (13) C-glucose and (13) C-acetate labeling and comprehensive lipidomic analyses of these mutants showed a selective defect in synthesis of unsaturated long and very long-chain fatty acids (LCFAs and VLCFAs) and depletion of phosphatidylinositol and phosphatidylethanolamine species containing unsaturated LCFAs and VLCFAs. This requirement for ELO pathway was bypassed by supplementing the media with specific fatty acids, indicating active but inefficient import of host fatty acids. Our experiments highlight a gap between the fatty acid needs of the parasite and availability of specific fatty acids in the host cell that the parasite has to close using a dedicated synthesis and modification pathway.
Collapse
Affiliation(s)
| | - Melissa D Docampo
- Center for Tropical & Emerging Global, University of Georgia, Athens, GA, USA
| | - James I MacRae
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Julie E Ralton
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Vic., Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Boris Striepen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.,Center for Tropical & Emerging Global, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 2015; 112:5767-72. [PMID: 25902514 DOI: 10.1073/pnas.1423400112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organelle gain through endosymbiosis has been integral to the origin and diversification of eukaryotes, and, once gained, plastids and mitochondria seem seldom lost. Indeed, discovery of nonphotosynthetic plastids in many eukaryotes--notably, the apicoplast in apicomplexan parasites such as the malaria pathogen Plasmodium--highlights the essential metabolic functions performed by plastids beyond photosynthesis. Once a cell becomes reliant on these ancillary functions, organelle dependence is apparently difficult to overcome. Previous examples of endosymbiotic organelle loss (either mitochondria or plastids), which have been invoked to explain the origin of eukaryotic diversity, have subsequently been recognized as organelle reduction to cryptic forms, such as mitosomes and apicoplasts. Integration of these ancient symbionts with their hosts has been too well developed to reverse. Here, we provide evidence that the dinoflagellate Hematodinium sp., a marine parasite of crustaceans, represents a rare case of endosymbiotic organelle loss by the elimination of the plastid. Extensive RNA and genomic sequencing data provide no evidence for a plastid organelle, but, rather, reveal a metabolic decoupling from known plastid functions that typically impede organelle loss. This independence has been achieved through retention of ancestral anabolic pathways, enzyme relocation from the plastid to the cytosol, and metabolic scavenging from the parasite's host. Hematodinium sp. thus represents a further dimension of endosymbiosis--life after the organelle.
Collapse
|
15
|
A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 2014; 165:701-14. [PMID: 25216472 DOI: 10.1016/j.protis.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023]
Abstract
Cryptosporidium parvum may cause virtually untreatable infections in AIDS patients, and is recently identified as one of the top four diarrheal pathogens in children in developing countries. Cryptosporidium differs from other apicomplexans (e.g., Plasmodium and Toxoplasma) by lacking many metabolic pathways including the Krebs cycle and cytochrome-based respiratory chain, thus relying mainly on glycolysis for ATP production. Here we report the molecular and biochemical characterizations of a hexokinase in C. parvum (CpHK). Our phylogenetic reconstructions indicated that apicomplexan hexokinases including CpHK were highly divergent from those of humans and animals (i.e., at the base of the eukaryotic clade). CpHK displays unique kinetic features that differ from those in mammals and Toxoplasma gondii (TgHK) in the preference towards various hexoses and its capacity to use ATP and other NTPs. CpHK also displays substrate inhibition by ATP. Moreover, 2-deoxy-D-glucose (2DG) could not only inhibit the CpHK activity, but also the parasite growth in vitro at concentrations nontoxic to host cells (IC(50) = 0.54 mM). While the exact action of 2-deoxy-D-glucose on the parasite is subject to further verification, our data suggest that CpHK and the glycolytic pathway may be explored for developing anti-cryptosporidial therapeutics.
Collapse
|
16
|
Abstract
SUMMARYCryptosporidiumhost cell interaction remains fairly obscure compared with other apicomplexans such asPlasmodiumorToxoplasma. The reason for this is probably the inability of this parasite to complete its life cyclein vitroand the lack of a system to genetically modifyCryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.
Collapse
|
17
|
Sun M, Zhu G, Qin Z, Wu C, Lv M, Liao S, Qi N, Xie M, Cai J. Functional characterizations of malonyl-CoA:acyl carrier protein transacylase (MCAT) in Eimeria tenella. Mol Biochem Parasitol 2012; 184:20-8. [PMID: 22525053 DOI: 10.1016/j.molbiopara.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022]
Abstract
Eimeria tenella, an apicomplexan parasite in chickens, possesses an apicoplast and its associated metabolic pathways including the Type II fatty acid synthesis (FAS II). Malonyl-CoA:acyl-carry protein transacylase (MCAT) encoded by the fabD gene is one of the essential enzymes in the FAS II system. In the present study, the entire E. tenella MCAT gene (EtfabD) was cloned and sequenced. Immunolabeling located this protein in the apicoplast organelle in coccidial sporozoites. Functional replacement of the fabD gene with amber mutation of E. coli temperature-sensitive LA2-89 strain by E. tenella EtMCAT demonstrated that EcFabD and EtMCAT perform the same biochemical function. The recombinant EtMCAT protein was expressed and its general biochemical features were also determined. An alkaloid natural product corytuberine (CAS: 517-56-6) could specifically inhibit the EtMCAT activity (IC(50)=16.47μM), but the inhibition of parasite growth in vitro by corytuberine was very weak (the predicted MIC(50)=0.65mM).
Collapse
Affiliation(s)
- Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barbosa-Cabrera E, Salas-Casas A, Rojas-Hernández S, Jarillo-Luna A, Abarca-Rojano E, Rodríguez MA, Campos-Rodríguez R. Purification and cellular localization of the Entamoeba histolytica transcarboxylase. Parasitol Res 2012; 111:1401-5. [PMID: 22453500 DOI: 10.1007/s00436-012-2898-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/14/2012] [Indexed: 11/26/2022]
Abstract
Genome analysis of Entamoeba histolytica predicts the presence of acetyl-CoA carboxylase. Using Western blot, histochemistry, and confocal microscopy, we demonstrated the presence of a biotin-containing protein in the cytoplasm of E. histolytica, with a molecular weight of 136 kDa and biotin-carboxylase activity. This protein probably corresponds to a transcarboxylase that catalyzes the rate-limiting reaction leading to fatty acid elongation.
Collapse
Affiliation(s)
- E Barbosa-Cabrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP 11340, Mexico, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
19
|
González-Díaz H, Munteanu CR, Postelnicu L, Prado-Prado F, Gestal M, Pazos A. LIBP-Pred: web server for lipid binding proteins using structural network parameters; PDB mining of human cancer biomarkers and drug targets in parasites and bacteria. MOLECULAR BIOSYSTEMS 2012; 8:851-62. [DOI: 10.1039/c2mb05432a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Ramakrishnan S, Docampo MD, Macrae JI, Pujol FM, Brooks CF, van Dooren GG, Hiltunen JK, Kastaniotis AJ, McConville MJ, Striepen B. Apicoplast and endoplasmic reticulum cooperate in fatty acid biosynthesis in apicomplexan parasite Toxoplasma gondii. J Biol Chem 2011; 287:4957-71. [PMID: 22179608 DOI: 10.1074/jbc.m111.310144] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [(13)C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0-26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host.
Collapse
Affiliation(s)
- Srinivasan Ramakrishnan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens,Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fritzler JM, Zhu G. Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP). J Antimicrob Chemother 2011; 67:609-17. [PMID: 22167242 DOI: 10.1093/jac/dkr516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cryptosporidium parvum causes an opportunistic infection in AIDS patients, and no effective treatments are yet available. This parasite possesses a single fatty acyl-CoA binding protein (CpACBP1) that is localized to the unique parasitophorous vacuole membrane (PVM). The major goal of this study was to identify inhibitors from known drugs against CpACBP1 as potential new anti-Cryptosporidium agents. METHODS A fluorescence assay was developed to detect CpACBP1 activity and to identify inhibitors by screening known drugs. Efficacies of top CpACBP1 inhibitors against Cryptosporidium growth in vitro were evaluated using a quantitative RT-PCR assay. RESULTS Nitrobenzoxadiazole-labelled palmitoyl-CoA significantly increased the fluorescent emission upon binding to CpACBP1 (excitation/emission 460/538 nm), which was quantified to determine the CpACBP1 activity and binding kinetics. The fluorescence assay was used to screen a collection of 1040 compounds containing mostly known drugs, and identified the 28 most active compounds that could inhibit CpACBP1 activity with sub-micromolar IC(50) values. Among them, four compounds displayed efficacies against parasite growth in vitro with low micromolar IC(50) values. The effective compounds were broxyquinoline (IC(50) 64.9 μM), cloxyquin (IC(50) 25.1 μM), cloxacillin sodium (IC(50) 36.2 μM) and sodium dehydrocholate (IC(50) 53.2 μM). CONCLUSIONS The fluorescence ACBP assay can be effectively used to screen known drugs or other compound libraries. Novel anti-Cryptosporidium activity was observed in four top CpACBP1 inhibitors, which may be further investigated for their potential to be repurposed to treat cryptosporidiosis and to serve as leads for drug development.
Collapse
Affiliation(s)
- Jason M Fritzler
- Department of Biology, College of Sciences and Mathematics, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
| | | |
Collapse
|
22
|
Abstract
Background As an obligate intracellular parasite, Apicomplexa interacts with the host in the special living environment, competing for energy and nutrients from the host cells by manipulating the host metabolism. Previous studies of host-parasite interaction mainly focused on using cellular and biochemical methods to investigate molecular functions in metabolic pathways of parasite infected hosts. Computational approaches taking advantage of high-throughput biological data and topology of metabolic pathways have a great potential in revealing the details and mechanism of parasites-to-host interactions. A new analytical method was designed in this work to study host-parasite interactions in human cells infected with Plasmodium falciparum and Cryptosporidium parvum. Results We introduced a new method that analyzes the host metabolic pathways in divided parts: host specific subpathways and host-parasite common subpathways. Upon analysis on gene expression data from cells infected by Plasmodium falciparum or Cryptosporidium parvum, we found: (i) six host-parasite common subpathways and four host specific subpathways were significantly altered in plasmodium infected human cells; (ii) plasmodium utilized fatty acid biosynthesis and elongation, and Pantothenate and CoA biosynthesis to obtain nutrients from host environment; (iii) in Cryptosporidium parvum infected cells, most of the host-parasite common enzymes were down-regulated, whereas the host specific enzymes up-regulated; (iv) the down-regulation of common subpathways in host cells might be caused by competition for the substrates and up-regulation of host specific subpathways may be stimulated by parasite infection. Conclusion Results demonstrated a significantly coordinated expression pattern between the two groups of subpathways. The method helped expose the impact of parasite infection on host cell metabolism, which was previously concealed in the pathway enrichment analysis. Our approach revealed detailed subpathways and metabolic information are important to the symbiosis in two kinds of the apicomplex parasites, and highlighted its significance in research and understanding of parasite-host interactions.
Collapse
|
23
|
Zhu G, Shi X, Cai X. The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters. BMC BIOCHEMISTRY 2010; 11:46. [PMID: 21092192 PMCID: PMC2995488 DOI: 10.1186/1471-2091-11-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022]
Abstract
Background The apicomplexan Cryptosporidium parvum genome possesses a 25-kb intronless open reading frame (ORF) that predicts a multifunctional Type I fatty acid synthase (CpFAS1) with at least 21 enzymatic domains. Although the architecture of CpFAS1 resembles those of bacterial polyketide synthases (PKSs), this megasynthase is predicted to function as a fatty acyl elongase as our earlier studies have indicated that the N-terminal loading unit (acyl-[ACP] ligase) prefers using intermediate to long chain fatty acids as substrates, and each of the three internal elongation modules contains a complete set of enzymes to produce a saturated fatty acyl chain. Although the activities of almost all domains were confirmed using recombinant proteins, that of the C-terminal reductase domain (CpFAS1-R) was yet undetermined. In fact, there were no published studies to report the kinetic features of any reductase domains in bacterial PKSs using purified recombinant or native proteins. Results In the present study, the identity of CpFAS1-R as a reductase is confirmed by in silico analysis on sequence similarity and characteristic motifs. Phylogenetic analysis based on the R-domains supports a previous notion on the bacterial origin of apicomplexan Type I FAS/PKS genes. We also developed a novel assay using fatty acyl-CoAs as substrates, and determined that CpFAS1-R could only utilize very long chain fatty acyl-CoAs as substrates (i.e., with activity on C26 > C24 > C22 > C20, but no activity on C18 and C16). It was capable of using both NADPH and NADH as electron donors, but prefers NADPH to NADH. The activity of CpFAS1-R displayed allosteric kinetics towards C26 hexacosanoyl CoA as a substrate (h = 2.0; Vmax = 32.8 nmol min-1 mg-1 protein; and K50 = 0.91 mM). Conclusions We have confirmed the activity of CpFAS1-R by directly assaying its substrate preference and kinetic parameters, which is for the first time for a Type I FAS, PKS or non-ribosomal peptide synthase (NRPS) reductase domain. The restricted substrate preference towards very long chain fatty acyl thioesters may be an important feature for this megasynthase to avoid the release of product(s) with undesired lengths.
Collapse
Affiliation(s)
- Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA.
| | | | | |
Collapse
|
24
|
Pino P, Aeby E, Foth BJ, Sheiner L, Soldati T, Schneider A, Soldati-Favre D. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Mol Microbiol 2010; 76:706-18. [PMID: 20374492 DOI: 10.1111/j.1365-2958.2010.07128.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apicomplexans possess three translationally active compartments: the cytosol, a single tubular mitochondrion, and a vestigial plastid organelle called apicoplast. Mitochondrion and apicoplast are of bacterial evolutionary origin and therefore depend on a bacterial-like translation machinery. The minimal mitochondrial genome contains only three ORFs, and in Toxoplasma gondii the absence of mitochondrial tRNA genes is compensated for by the import of cytosolic eukaryotic tRNAs. Although all compartments require a complete set of charged tRNAs, the apicomplexan nuclear genomes do not hold sufficient aminoacyl-tRNA synthetase (aaRSs) genes to be targeted individually to each compartment. This study reveals that aaRSs are either cytosolic, apicoplastic or shared between the two compartments by dual targeting but are absent from the mitochondrion. Consequently, tRNAs are very likely imported in their aminoacylated form. Furthermore, the unexpected absence of tRNA(Met) formyltransferase and peptide deformylase implies that the requirement for a specialized formylmethionyl-tRNA(Met) for translation initiation is bypassed in the mitochondrion of Apicomplexa.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Appl Environ Microbiol 2010; 76:1926-34. [PMID: 20097810 DOI: 10.1128/aem.02295-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and composition of the oocyst wall are primary factors determining the survival and hydrologic transport of Cryptosporidium parvum oocysts outside the host. Microscopic and biochemical analyses of whole oocysts and purified oocyst walls were undertaken to better understand the inactivation kinetics and hydrologic transport of oocysts in terrestrial and aquatic environments. Results of microscopy showed an outer electron-dense layer, a translucent middle layer, two inner electron-dense layers, and a suture structure embedded in the inner electron-dense layers. Freeze-substitution showed an expanded glycocalyx layer external to the outer bilayer, and Alcian Blue staining confirmed its presence on some but not all oocysts. Biochemical analyses of purified oocyst walls revealed carbohydrate components, medium- and long-chain fatty acids, and aliphatic hydrocarbons. Purified walls contained 7.5% total protein (by the Lowry assay), with five major bands in SDS-PAGE gels. Staining of purified oocyst walls with magnesium anilinonaphthalene-8-sulfonic acid indicated the presence of hydrophobic proteins. These structural and biochemical analyses support a model of the oocyst wall that is variably impermeable and resistant to many environmental pressures. The strength and flexibility of oocyst walls appear to depend on an inner layer of glycoprotein. The temperature-dependent permeability of oocyst walls may be associated with waxy hydrocarbons in the electron-translucent layer. The complex chemistry of these layers may explain the known acid-fast staining properties of oocysts, as well as some of the survival characteristics of oocysts in terrestrial and aquatic environments. The outer glycocalyx surface layer provides immunogenicity and attachment possibilities, and its ephemeral nature may explain the variable surface properties noted in oocyst hydrologic transport studies.
Collapse
|
26
|
Templeton TJ, Enomoto S, Chen WJ, Huang CG, Lancto CA, Abrahamsen MS, Zhu G. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol Biol Evol 2009; 27:235-48. [PMID: 19778951 DOI: 10.1093/molbev/msp226] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have performed a whole-genome-sequence survey for the gregarine, Ascogregarina taiwanensis and herein describe both features unique to this early diverging apicomplexan and properties that unite it with Cryptosporidium, the Coccidia, and the Apicomplexa. Phylogenetic trees inferred from a concatenated protein sequence comprised of 10,750 amino acid positions, as well as the large subunit rRNA genes, robustly support phylogenetic affinity of Ascogregarina with Cryptosporidium at the base of the apicomplexan clade. Unlike Cryptosporidium, Ascogregarina possesses numerous mitochondrion-associated pathways and proteins, including enzymes within the Krebs cycle and a cytochrome-based respiratory chain. Ascogregarina further differs in the capacity for de novo synthesis of pyrimidines and amino acids. Ascogregarina shares with Cryptosporidium a Type I fatty acid synthase and likely a polyketide synthase. Cryptosporidium and Ascogregarina possess a large repertoire of multidomain surface proteins that align it with Toxoplasma and are proposed to be involved in coccidian-like functions. Four families of retrotransposable elements were identified, and thus, retroelements are present in Ascogregarina and Eimeria but not in other apicomplexans that have been analyzed. The sum observations suggest that Ascogregarina and Cryptosporidium share numerous molecular similarities, not only including coccidian-like features to the exclusion of Haemosporidia and Piroplasmida but also differ from each other significantly in their metabolic capacity.
Collapse
Affiliation(s)
- Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. Cryptosporidium and cryptosporidiosis. ADVANCES IN PARASITOLOGY 2009; 59:77-158. [PMID: 16182865 DOI: 10.1016/s0065-308x(05)59002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptosporidium is one of the most common enteric protozoan parasites of vertebrates with a wide host range that includes humans and domestic animals. It is a significant cause of diarrhoeal disease and an ubiquitous contaminant of water which serves as an excellent vehicle for transmission. A better understanding of the development and life cycle of Cryptosporidium, and new insights into its phylogenetic relationships, have illustrated the need to re-evaluate many aspects of the biology of Cryptosporidium. This has been reinforced by information obtained from the recent successful Cryptosporidium genome sequencing project, which has emphasised the uniqueness of this organism in terms of its parasite life style and evolutionary biology. This chapter provides an up to date review of the biology, biochemistry and host parasite relationships of Cryptosporidium.
Collapse
Affiliation(s)
- R C A Thompson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Xiao L. Overview of Cryptosporidium presentations at the 10th International Workshops on Opportunistic Protists. EUKARYOTIC CELL 2009; 8:429-36. [PMID: 19168753 PMCID: PMC2669211 DOI: 10.1128/ec.00295-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lihua Xiao
- Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| |
Collapse
|
29
|
Rider SD, Zhu G. Cryptosporidium: genomic and biochemical features. Exp Parasitol 2008; 124:2-9. [PMID: 19187778 DOI: 10.1016/j.exppara.2008.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/24/2022]
Abstract
Recent progress in understanding the unique biochemistry of the two closely related human enteric pathogens Cryptosporidium parvum and Cryptosporidium hominis has been stimulated by the elucidation of the complete genome sequences for both pathogens. Much of the work that has occurred since that time has been focused on understanding the metabolic pathways encoded by the genome in hopes of providing increased understanding of the parasite biology, and in the identification of novel targets for pharmacological interventions. However, despite identifying the genes encoding enzymes that participate in many of the major metabolic pathways, only a hand full of proteins have actually been the subjects of detailed scrutiny. Thus, much of the biochemistry of these parasites remains a true mystery.
Collapse
Affiliation(s)
- Stanley Dean Rider
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA.
| | | |
Collapse
|
30
|
Seeber F, Limenitakis J, Soldati-Favre D. Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol 2008; 24:468-78. [PMID: 18775675 DOI: 10.1016/j.pt.2008.07.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/15/2022]
Abstract
Apicomplexans form a large group of obligate intracellular parasites that occupy diverse environmental niches. To adapt to their hosts, these parasites have evolved sophisticated strategies to access host-cell nutrients and minimize exposure to the host's defence mechanisms. Concomitantly, they have drastically reshaped their own metabolic functions by retaining, losing or gaining genes for metabolic enzymes. Although several Apicomplexans remain experimentally intractable, bioinformatic analyses of their genomes have generated preliminary metabolic maps. Here, we compare the metabolic pathways of five Apicomplexans, focusing on their different mitochondrial functions, which highlight their adaptation to their individual intracellular habitats.
Collapse
Affiliation(s)
- Frank Seeber
- Molecular Parasitology, Institute for Biology, Humboldt University, Philippstr. 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
31
|
Botté C, Saïdani N, Mondragon R, Mondragón M, Isaac G, Mui E, McLeod R, Dubremetz JF, Vial H, Welti R, Cesbron-Delauw MF, Mercier C, Maréchal E. Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii. J Lipid Res 2008; 49:746-62. [PMID: 18182683 DOI: 10.1194/jlr.m700476-jlr200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a unicellular parasite characterized by unique extracellular and intracellular membrane compartments. The lipid composition of subcellular membranes has not been determined, limiting our understanding of lipid homeostasis, control, and trafficking, a series of processes involved in pathogenesis. In addition to a mitochondrion, Toxoplasma contains a plastid called the apicoplast. The occurrence of a plastid raised the question of the presence of chloroplast galactolipids. Using three independent rabbit and rat antibodies against digalactosyldiacylglycerol (DGDG) from plant chloroplasts, we detected a class of Toxoplasma lipids harboring a digalactolipid-like epitope (DGLE). Immunolabeling characterization supports the notion that the DGLE polar head is similar to that of DGDG. Mass spectrometry analyses indicated that dihexosyl lipids having various hydrophobic moieties (ceramide, diacylglycerol, and acylalkylglycerol) might react with anti-DGDG, but we cannot exclude the possibility that more complex dihexosyl-terminated lipids might also be immunolabeled. DGLE localization was analyzed by immunofluorescence and immunoelectron microscopy and confirmed by subcellular fractionation. No immunolabeling of the apicoplast could be observed. DGLE was scattered in pellicle membrane domains in extracellular tachyzoites and was relocalized to the anterior tip of the cell upon invasion in an actin-dependent manner, providing insights on a possible role in pathogenetic processes. DGLE was detected in other Apicomplexa (i.e., Neospora, Plasmodium, Babesia, and Cryptosporidium).
Collapse
Affiliation(s)
- Cyrille Botté
- Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique-Commissariat à l'Energie, Institut de Recherches en Technologies et Sciences pour le Vivant, 38058 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Welti R, Mui E, Sparks A, Wernimont S, Isaac G, Kirisits M, Roth M, Roberts CW, Botté C, Maréchal E, McLeod R. Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry 2007; 46:13882-90. [PMID: 17988103 PMCID: PMC2576749 DOI: 10.1021/bi7011993] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Analysis of the polar lipids of Toxoplasma gondii by electrospray ionization tandem mass spectrometry provides a detailed picture of the lipid molecular species of this parasitic protozoan. Most notably, T. gondii contains a relatively high level, estimated to about 2% of the total polar lipid, of ceramide phosphoethanolamine. The ceramide phosphoethanolamine has a fatty amide profile with only 16- and 18-carbon species. Compared with the host fibroblasts in which it was grown, T. gondii also has higher levels of phosphatidylcholine but lower levels of sphingomyelin and phosphatidylserine. Analysis at the molecular species level indicated that T. gondii has greater amounts of shorter-chain fatty acid in its polar lipid molecular species than the host fibroblasts. Shorter-chain fatty acids with a combined total of 30 or fewer acyl carbons make up 21% of Toxoplasma's, but only 3% of the host's, diacyl phosphatidylcholine. Furthermore, diacyl phosphatidylcholine with two saturated acyl chains with 12, 14, or 16 carbons make up over 11% of parasite phosphatidylcholine but less than 3% of the host phosphatidylcholine molecular species. The distinctive T. gondii tachyzoite lipid profile may be particularly suited to the function of parasitic membranes and the interaction of the parasite with the host cell and the host's immune system. Combined with T. gondii genomic data, these lipidomic data will assist in elucidation of metabolic pathways for lipid biosynthesis in this important human pathogen.
Collapse
Affiliation(s)
- Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Gregarines are early diverging apicomplexans that appear to be closely related to Cryptosporidium. Most apicomplexans, including Plasmodium, Toxoplasma, and Eimeria, possess both plastids and corresponding plastid genomes. Cryptosporidium lacks both the organelle and the genome. To investigate the evolutionary history of plastids in the Apicomplexa, we tried to determine whether gregarines possess a plastid and/or its genome. We used PCR and dot-blot hybridization to determine whether the gregarine Gregarina niphandrodes possesses a plastid genome. We used an inhibitor of plastid function for any reduction in gregarine infection, and transmission electron microscopy to search for plastid ultrastructure. Despite an extensive search, an organelle of the appropriate ultrastructure in transmission electron microscopy, was not observed. Triclosan, an inhibitor of the plastid-specific enoyl-acyl carrier reductase enzyme, did not reduce host infection by G. niphandrodes. Plastid-specific primers produced amplicons with the DNA of Babesia equi, Plasmodium falciparum, and Toxoplasma gondii as templates, but not with G. niphandrodes DNA. Plastid-specific DNA probes, which hybridized to Babesia equi, failed to hybridize to G. niphandrodes DNA. This evidence indicates that G. niphandrodes is not likely to possess either a plastid organelle or its genome. This raises the possibility that the plastid was lost in the Apicomplexan following the divergence of gregarines and Cryptosporidium.
Collapse
Affiliation(s)
- Marc A Toso
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA
| | | |
Collapse
|
34
|
Fritzler JM, Millership JJ, Zhu G. Cryptosporidium parvum long-chain fatty acid elongase. EUKARYOTIC CELL 2007; 6:2018-28. [PMID: 17827345 PMCID: PMC2168411 DOI: 10.1128/ec.00210-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the presence of a new fatty acyl coenzyme A (acyl-CoA) elongation system in Cryptosporidium and the functional characterization of the key enzyme, a single long-chain fatty acid elongase (LCE), in this parasite. This enzyme contains conserved motifs and predicted transmembrane domains characteristic to the elongase family and is placed within the ELO6 family specific for saturated substrates. CpLCE1 gene transcripts are present at all life cycle stages, but the levels are highest in free sporozoites and in stages at 36 h and 60 h postinfection that typically contain free merozoites. Immunostaining revealed localization to the outer surface of sporozoites and to the parasitophorous vacuolar membrane. Recombinant CpLCE1 displayed allosteric kinetics towards malonyl-CoA and palmitoyl-CoA and Michaelis-Menten kinetics towards NADPH. Myristoyl-CoA (C14:0) and palmitoyl-CoA (C16:0) display the highest activity when used as substrates, and only one round of elongation occurs. CpLCE1 is fairly resistant to cerulenin, an inhibitor for both type I and II fatty acid synthases (i.e., maximum inhibitions of 20.5% and 32.7% were observed when C16:0 and C14:0 were used as substrates, respectively). These observations ultimately validate the function of CpLCE1.
Collapse
Affiliation(s)
- Jason M Fritzler
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
35
|
Mazumdar J, Striepen B. Make it or take it: fatty acid metabolism of apicomplexan parasites. EUKARYOTIC CELL 2007; 6:1727-35. [PMID: 17715365 PMCID: PMC2043401 DOI: 10.1128/ec.00255-07] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jolly Mazumdar
- Department of Cellular Biology, University of Georgia, Paul D Coverdell Center, Athens, GA 30602, USA
| | | |
Collapse
|
36
|
Lee SH, Stephens JL, Englund PT. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 2007; 5:287-97. [PMID: 17363967 DOI: 10.1038/nrmicro1617] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most cells use either a type I or type II synthase to make fatty acids. Trypanosoma brucei, the sleeping sickness parasite, provides the first example of a third mechanism for this process. Trypanosomes use microsomal elongases to synthesize fatty acids de novo, whereas other cells use elongases to make long-chain fatty acids even longer. The modular nature of the pathway allows synthesis of different fatty-acid end products, which have important roles in trypanosome biology. Indeed, this newly discovered mechanism seems ideally suited for the parasitic lifestyle.
Collapse
Affiliation(s)
- Soo Hee Lee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
37
|
Abstract
Polyunsaturated fatty acids have important structural roles in cell membranes. They are also intermediates in the synthesis of biologically active molecules such as eicosanoids, which mediate fever, inflammation, blood pressure and neurotransmission. Arachidonic and docosahexaenoic acids are essential components of brain tissues and, through their involvement in the development of neural and retinal functions, important dietary nutrients for neonatal babies. Lower eukaryotes are particularly rich in C20-22 polyunsaturated fatty acids. Fungi and marine microalgae are currently used to produce nutraceutic oils. Other protists and algae are being studied because of the variability in their enzymes involved in polyunsaturated fatty acid biosynthesis. Such enzymes could be used as source for the production of transgenic organisms able to synthesize designed oils for human diet or, in the case of parasitic protozoa, they might be identified as putative chemotherapeutic targets. Polyunsaturated fatty acids can be synthesized by two different pathways: an anaerobic one, by using polyketide synthase related enzymes, and an aerobic one, which involves the action of elongases and oxygen dependent desaturases. Desaturases can be classified into three main types, depending on which of the consecutive steps of polyunsaturated fatty acid synthesis they are involved with. The enzymes may be specialized to act on: saturated substrates (type I); mono- and di-unsaturated fatty acids by introducing additional double bonds at the methyl-end site of the existing double bonds (type II); or the carboxy half ('front-end') of polyunsaturated ones (type III). Type III desaturases require the alternating action of elongases. A description of the enzymes that have been isolated and functionally characterized is provided, in order to highlight the different pathways found in lower eukaryotes.
Collapse
Affiliation(s)
- Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Santa Fe, Argentina.
| |
Collapse
|
38
|
Fritzler JM, Zhu G. Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. Int J Parasitol 2006; 37:307-16. [PMID: 17161840 PMCID: PMC1828208 DOI: 10.1016/j.ijpara.2006.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/04/2006] [Accepted: 10/20/2006] [Indexed: 11/27/2022]
Abstract
The apicomplexan Cryptosporidium parvum possesses a unique 1500-kDa polyketide synthase (CpPKS1) comprised of 29 enzymes for synthesising a yet undetermined polyketide. This study focuses on the biochemical characterization of the 845-amino acid loading unit containing acyl-[ACP] ligase (AL) and acyl carrier protein (ACP). The CpPKS1-AL domain has a substrate preference for long chain fatty acids, particularly for the C20:0 arachidic acid. When using [3H]palmitic acid and CoA as co-substrates, the AL domain displayed allosteric kinetics towards palmitic acid (Hill coefficient, h=1.46, K50=0.751 microM, Vmax=2.236 micromol mg(-1) min(-1)) and CoA (h=0.704, K50=5.627 microM, Vmax=0.557 micromol mg(-1) min(-1)), and biphasic kinetics towards adenosine 5'-triphosphate (Km1=3.149 microM, Vmax1=373.3 nmol mg(-1) min(-1), Km2=121.0 microM, and Vmax2=563.7 nmol mg(-1) min(-1)). The AL domain is Mg2+-dependent and its activity could be inhibited by triacsin C (IC50=6.64 microM). Furthermore, the ACP domain within the loading unit could be activated by the C. parvum surfactin production element-type phosphopantetheinyl transferase. After attachment of the fatty acid substrate to the AL domain for conversion into the fatty-acyl intermediate, the AL domain is able to transfer palmitic acid to the activated holo-ACP in vitro. These observations ultimately validate the function of the CpPKS1-AL-ACP unit, and make it possible to further dissect the function of this megasynthase using recombinant proteins in a stepwise procedure.
Collapse
Affiliation(s)
- Jason M. Fritzler
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas 77843-4467 USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas 77843-4467 USA
- Faculty of Genetics Program, Texas A&M University, 4467 TAMU, College Station, Texas 77843-4467 USA
- * Corresponding author. Guan Zhu, Ph.D., Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843-4467, USA. Tel.: +1 979 845 6981; fax: +1 979 845 9972. E-mail address:
| |
Collapse
|
39
|
Oriá RB, Patrick PD, Blackman JA, Lima AAM, Guerrant RL. Role of apolipoprotein E4 in protecting children against early childhood diarrhea outcomes and implications for later development. Med Hypotheses 2006; 68:1099-107. [PMID: 17098371 PMCID: PMC3993898 DOI: 10.1016/j.mehy.2006.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
Our group and others have reported a series of studies showing that heavy burdens of diarrheal diseases in the formative first two years of life in children in urban shantytowns have profound consequences of impaired physical and cognitive development lasting into later childhood and schooling. Based on these previous studies showing that apolipoprotein E4 (APOE4) is relatively common in favela children, we review recent data suggesting a protective role for the APOE4 allele in the cognitive and physical development of children with heavy burdens of diarrhea in early childhood. Despite being a marker for cognitive decline with Alzheimer's and cardiovascular diseases later in life, APOE4 appears to be important for cognitive development under the stress of heavy diarrhea. The reviewed findings provide a potential explanation for the survival advantage in evolution of the thrifty APOE4 allele and raise questions about its implications for human development under life-style changes and environmental challenges.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- Center for Global Health, School of Medicine, University of Virginia, United States.
| | | | | | | | | |
Collapse
|
40
|
Bethke LL, Zilversmit M, Nielsen K, Daily J, Volkman SK, Ndiaye D, Lozovsky ER, Hartl DL, Wirth DF. Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. Mol Biochem Parasitol 2006; 150:10-24. [PMID: 16860410 DOI: 10.1016/j.molbiopara.2006.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 06/05/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
While genes encoding antigens and other highly polymorphic proteins are commonly found in subtelomeres, it is unusual to find a small family of housekeeping genes in these regions. We found that in the species Plasmodium falciparum only, a non-subtelomeric acyl-CoA synthetase (ACS) gene has expanded into a family of duplicated genes mainly located in the subtelomeres of the genome. We identified the putative parent of the duplicated family by analysis of synteny and phylogeny relative to other Plasmodium ACS genes. All ten ACS paralogs are transcribed in erythrocytic stages of laboratory and field isolates. We identified and confirmed a recent double gene conversion event involving ACS genes on three different chromosomes of isolate 3D7, resulting in the creation of a new hybrid gene. Southern hybridization analysis of geographically diverse P. falciparum isolates provides evidence for the strikingly global conservation of the ACS gene family, but also for some chromosomal events, including deletion and recombination, involving the duplicated paralogs. We found a dramatically higher rate of non-synonymous substitutions per non-synonymous site than synonymous substitutions per synonymous site in the closely related ACS paralogs we sequenced, suggesting that these genes are under a form of selection that favors change in the state of the protein. We also found that the gene encoding acyl-CoA binding protein has expanded and diversified in P. falciparum. We have described a new class of subtelomeric gene family with a unique capacity for diversity in P. falciparum.
Collapse
Affiliation(s)
- Lara L Bethke
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zeng B, Cai X, Zhu G. Functional characterization of a fatty acyl-CoA-binding protein (ACBP) from the apicomplexan Cryptosporidium parvum. MICROBIOLOGY-SGM 2006; 152:2355-2363. [PMID: 16849800 PMCID: PMC1513434 DOI: 10.1099/mic.0.28944-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, the identification and functional analysis of a fatty acyl-CoA-binding protein (ACBP) gene from the opportunistic protist Cryptosporidium parvum are described. The CpACBP1 gene encodes a protein of 268 aa that is three times larger than typical ACBPs (i.e. approximately 90 aa) of humans and animals. Sequence analysis indicated that the CpACBP1 protein consists of an N-terminal ACBP domain (approximately 90 aa) and a C-terminal ankyrin repeat sequence (approximately 170 aa). The entire CpACBP1 ORF was engineered into a maltose-binding protein fusion system and expressed as a recombinant protein for functional analysis. Acyl-CoA-binding assays clearly revealed that the preferred binding substrate for CpACBP1 is palmitoyl-CoA. RT-PCR, Western blotting and immunolabelling analyses clearly showed that the CpACBP1 gene is mainly expressed during the intracellular developmental stages and that the level increases during parasite development. Immunofluorescence microscopy showed that CpACBP1 is associated with the parasitophorous vacuole membrane (PVM), which implies that this protein may be involved in lipid remodelling in the PVM, or in the transport of fatty acids across the membrane.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| | - Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77483-4467, USA
| |
Collapse
|
42
|
Zeng B, Zhu G. Two distinct oxysterol binding protein-related proteins in the parasitic protist Cryptosporidium parvum (Apicomplexa). Biochem Biophys Res Commun 2006; 346:591-99. [PMID: 16765916 DOI: 10.1016/j.bbrc.2006.05.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 11/20/2022]
Abstract
Two distinct oxysterol binding protein (OSBP)-related proteins (ORPs) have been identified from the parasitic protist Cryptosporidium parvum (CpORP1 and CpORP2). The short-type CpOPR1 contains only a ligand binding (LB) domain, while the long-type CpORP2 contains Pleckstrin homology (PH) and LB domains. Lipid-protein overlay assays using recombinant proteins revealed that CpORP1 and CpORP2 could specifically bind to phosphatidic acid (PA), various phosphatidylinositol phosphates (PIPs), and sulfatide, but not to other types of lipids with simple heads. Cholesterol was not a ligand for these two proteins. CpOPR1 was found mainly on the parasitophorous vacuole membrane (PVM), suggesting that CpORP1 is probably involved in the lipid transport across this unique membrane barrier between parasites and host intestinal lumen. Although Cryptosporidium has two ORPs, other apicomplexans including Plasmodium, Toxoplasma, and Eimeria possess only a single long-type ORP, suggesting that this family of proteins may play different roles among apicomplexans.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, 4467 TAMU, College Station, TX 77483, USA
| | | |
Collapse
|
43
|
Mazumdar J, H. Wilson E, Masek K, A. Hunter C, Striepen B. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci U S A 2006; 103:13192-7. [PMID: 16920791 PMCID: PMC1559775 DOI: 10.1073/pnas.0603391103] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apicomplexan parasites are the cause of numerous important human diseases including malaria and AIDS-associated opportunistic infections. Drug treatment for these diseases is not satisfactory and is threatened by resistance. The discovery of the apicoplast, a chloroplast-like organelle, presents drug targets unique to these parasites. The apicoplast-localized fatty acid synthesis (FAS II) pathway, a metabolic process fundamentally divergent from the analogous FAS I pathway in humans, represents one such target. However, the specific biological roles of apicoplast FAS II remain elusive. Furthermore, the parasite genome encodes additional and potentially redundant pathways for the synthesis of fatty acids. We have constructed a conditional null mutant of acyl carrier protein, a central component of the FAS II pathway in Toxoplasma gondii. Loss of FAS II severely compromises parasite growth in culture. We show FAS II to be required for the activation of pyruvate dehydrogenase, an important source of the metabolic precursor acetyl-CoA. Interestingly, acyl carrier protein knockout also leads to defects in apicoplast biogenesis and a consequent loss of the organelle. Most importantly, in vivo knockdown of apicoplast FAS II in a mouse model results in cure from a lethal challenge infection. In conclusion, our study demonstrates a direct link between apicoplast FAS II functions and parasite survival and pathogenesis. Our genetic model also offers a platform to dissect the integration of the apicoplast into parasite metabolism, especially its postulated interaction with the mitochondrion.
Collapse
Affiliation(s)
| | - Emma H. Wilson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Kate Masek
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - Boris Striepen
- *Department of Cellular Biology and
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D. W. Brooks Drive, Athens, GA 30602; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Cai X, Herschap D, Zhu G. Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum. EUKARYOTIC CELL 2005; 4:1211-20. [PMID: 16002647 PMCID: PMC1168963 DOI: 10.1128/ec.4.7.1211-1220.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, two types of fatty acid synthases (FASs) have been discovered from apicomplexan parasites. Although significant progress has been made in characterizing these apicomplexan FASs, virtually nothing was previously known about the activation and regulation of these enzymes. In this study, we report the discovery and characterization of two distinct types of phosphopantetheinyl transferase (PPTase) that are responsible for synthesizing holo-acyl carrier protein (ACP) from three apicomplexan parasites: surfactin production element (SFP) type in Cryptosporidium parvum (CpSFP-PPT), holo-ACP synthase (ACPS)-type in Plasmodium falciparum (PfACPS-PPT), and both SFP and ACPS types in Toxoplasma gondii (TgSFP-PPT and TgACPS-PPT). CpSFP-PPT and TgSFP-PPT are monofunctional, cytosolic, and phylogenetically related to animal PPTases. However, PfACPS-PPT and TgACPS-PPT are bifunctional (fused with a metal-dependent hydrolase), likely targeted to the apicoplast, and more closely related to proteobacterial PPTases. The function of apicomplexan PPTases has been confirmed by detailed functional analysis using recombinant CpSFP-PPT expressed from an artificially synthesized gene with codon usage optimized for Escherichia coli. The recombinant CpSFP-PPT was able to activate the ACP domains from the C. parvum type I FAS in vitro using either CoA or acetyl-CoA as a substrate, or in vivo when coexpressed in bacteria, with kinetic characteristics typical of PPTases. These observations suggest that the two types of fatty acid synthases in the Apicomplexa are activated and regulated by two evolutionarily distinct PPTases.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A and M University, 4467 TAMU, College Station, TX 77843-4467, USA
| | | | | |
Collapse
|
45
|
Wiesner J, Seeber F. The plastid-derived organelle ofprotozoan human parasites asa target of established and emerging drugs. Expert Opin Ther Targets 2005; 9:23-44. [PMID: 15757480 DOI: 10.1517/14728222.9.1.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human diseases like malaria, toxoplasmosis or cryptosporidiosis are caused by intracellular protozoan parasites of the phylum Apicomplexa and are still a major health problem worldwide. In the case of Plasmodium falciparum, the causative agent of tropical malaria, resistance against previously highly effective drugs is widespread and requires the continued development of new and affordable drugs. Most apicomplexan parasites possess a single plastid-derived organelle called apicoplast, which offers the great opportunity to tailor highly specific inhibitors against vital metabolic pathways resident in this compartment. This is due to the fact that several of these pathways, being of bacterial or algal origin, are absent in the mammalian host. In fact, the targets of several antibiotics already in use for years against some of these diseases can now be traced to the apicoplast and by knowing the molecular entities which are affected by these substances, improved drugs or drug combinations can be envisaged to emerge from this knowledge. Likewise, apicoplast-resident pathways like fatty acid or isoprenoid biosynthesis have already been proven to be the likely targets of the next drug generation. In this review the current knowledge on the different targets and available inhibitors (both established and experimental) will be summarised and an overview of the clinical efficacy of drugs that inhibit functions in the apicoplast and which have been tested in humans so far will be given.
Collapse
Affiliation(s)
- Jochen Wiesner
- Justus-Liebig-Universität Giessen, Biochemisches Institut, Friedrichstr. 24, D-35392 Giessen, Germany
| | | |
Collapse
|