1
|
Lang SN, Germerodt S, Glock C, Skerka C, Zipfel PF, Schuster S. Molecular crypsis by pathogenic fungi using human factor H. A numerical model. PLoS One 2019; 14:e0212187. [PMID: 30779817 PMCID: PMC6380567 DOI: 10.1371/journal.pone.0212187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Molecular mimicry is the formation of specific molecules by microbial pathogens to avoid recognition and attack by the immune system of the host. Several pathogenic Ascomycota and Zygomycota show such a behaviour by utilizing human complement factor H to hide in the blood stream. We call this type of mimicry molecular crypsis. Such a crypsis can reach a point where the immune system can no longer clearly distinguish between self and non-self cells. Thus, a trade-off between attacking disguised pathogens and erroneously attacking host cells has to be made. Based on signalling theory and protein-interaction modelling, we here present a mathematical model of molecular crypsis of pathogenic fungi using the example of Candida albicans. We tackle the question whether perfect crypsis is feasible, which would imply that protection of human cells by complement factors would be useless. The model identifies pathogen abundance relative to host cell abundance as the predominant factor influencing successful or unsuccessful molecular crypsis. If pathogen cells gain a (locally) quantitative advantage over host cells, even autoreactivity may occur. Our new model enables insights into the mechanisms of candidiasis-induced sepsis and complement-associated autoimmune diseases.
Collapse
Affiliation(s)
- Stefan N. Lang
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Christina Glock
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Skerka
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Peter F. Zipfel
- Dept. of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Schuster
- Dept. of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
2
|
Palmer DH, Tan YQ, Finkbeiner SD, Briscoe AD, Monteiro A, Kronforst MR. Experimental field tests of Batesian mimicry in the swallowtail butterfly Papilio polytes. Ecol Evol 2018; 8:7657-7666. [PMID: 30151179 PMCID: PMC6106175 DOI: 10.1002/ece3.4207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is known for its striking resemblance in wing pattern to the toxic butterfly Pachliopta aristolochiae and is a focal system for the study of mimicry evolution. Papilio polytes females are polymorphic in wing pattern, with mimetic and nonmimetic forms, while males are monomorphic and nonmimetic. Past work invokes selection for mimicry as the driving force behind wing pattern evolution in P. polytes. However, the mimetic relationship between P. polytes and P. aristolochiae is not well understood. In order to test the mimicry hypothesis, we constructed paper replicas of mimetic and nonmimetic P. polytes and P. aristolochiae, placed them in their natural habitat, and measured bird predation on replicas. In initial trials with stationary replicas and plasticine bodies, overall predation was low and we found no differences in predation between replica types. In later trials with replicas mounted on springs and with live mealworms standing in for the butterfly's body, we found less predation on mimetic P. polytes replicas compared to nonmimetic P. polytes replicas, consistent with the predator avoidance benefits of mimicry. While our results are mixed, they generally lend support to the mimicry hypothesis as well as the idea that behavioral differences between the sexes contributed to the evolution of sexually dimorphic mimicry.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Yue Qian Tan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Susan D. Finkbeiner
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Antónia Monteiro
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| |
Collapse
|
3
|
Huheey JE. BATESIAN AND MÜLLERIAN MIMICRY: SEMANTIC AND SUBSTANTIVE DIFFERENCES OF OPINION. Evolution 2017; 34:1212-1215. [PMID: 28568472 DOI: 10.1111/j.1558-5646.1980.tb04068.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1979] [Revised: 04/16/1980] [Indexed: 11/25/2022]
Affiliation(s)
- James E Huheey
- Department of Chemistry, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
4
|
Igic B, McLachlan J, Lehtinen I, Magrath RD. Crying wolf to a predator: deceptive vocal mimicry by a bird protecting young. Proc Biol Sci 2016; 282:20150798. [PMID: 26041353 DOI: 10.1098/rspb.2015.0798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals often mimic dangerous or toxic species to deter predators; however, mimicry of such species may not always be possible and mimicry of benign species seems unlikely to confer anti-predator benefits. We reveal a system in which a bird mimics the alarm calls of harmless species to fool a predator 40 times its size and protect its offspring against attack. Our experiments revealed that brown thornbills (Acanthiza pusilla) mimic a chorus of other species' aerial alarm calls, a cue of an Accipiter hawk in flight, when predators attack their nest. The absence of any flying predators in this context implies that these alarms convey deceptive information about the type of danger present. Experiments on the primary nest predators of thornbills, pied currawongs (Strepera graculina), revealed that the predators treat these alarms as if they themselves are threatened by flying hawks, either by scanning the sky for danger or fleeing, confirming a deceptive function. In turn, these distractions delay attack and provide thornbill nestlings with an opportunity to escape. This sophisticated defence strategy exploits the complex web of interactions among multiple species across several trophic levels, and in particular exploits a predator's ability to eavesdrop on and respond appropriately to heterospecific alarm calls. Our findings demonstrate that prey can fool predators by deceptively mimicking alarm calls of harmless species, suggesting that defensive mimicry could be more widespread because of indirect effects on predators within a web of eavesdropping.
Collapse
Affiliation(s)
- Branislav Igic
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jessica McLachlan
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia Department of Zoology, University of Cambridge, Cambridge, UK
| | - Inkeri Lehtinen
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert D Magrath
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
5
|
Lehmann KDS, Goldman BW, Dworkin I, Bryson DM, Wagner AP. From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system. PLoS One 2014; 9:e91783. [PMID: 24614755 PMCID: PMC3948874 DOI: 10.1371/journal.pone.0091783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Brian W. Goldman
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Ian Dworkin
- Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - David M. Bryson
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Aaron P. Wagner
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
6
|
Savage WK, Mullen SP. A single origin of Batesian mimicry among hybridizing populations of admiral butterflies (Limenitis arthemis) rejects an evolutionary reversion to the ancestral phenotype. Proc Biol Sci 2009; 276:2557-65. [PMID: 19369265 DOI: 10.1098/rspb.2009.0256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Batesian mimicry is a fundamental example of adaptive phenotypic evolution driven by strong natural selection. Given the potentially dramatic impacts of selection on individual fitness, it is important to understand the conditions under which mimicry is maintained versus lost. Although much empirical and theoretical work has been devoted to the maintenance of Batesian mimicry, there are no conclusive examples of its loss in natural populations. Recently, it has been proposed that non-mimetic populations of the polytypic Limenitis arthemis species complex represent an evolutionary loss of Batesian mimicry, and a reversion to the ancestral phenotype. Here, we evaluate this conclusion using segregating amplified fragment length polymorphism markers to investigate the history and fate of mimicry among forms of the L. arthemis complex and closely related Nearctic Limenitis species. In contrast to the previous finding, our results support a single origin of mimicry within the L. arthemis complex and the retention of the ancestral white-banded form in non-mimetic populations. Our finding is based on a genome-wide sampling approach to phylogeny reconstruction that highlights the challenges associated with inferring the evolutionary relationships among recently diverged species or populations (i.e. incomplete lineage sorting, introgressive hybridization and/or selection).
Collapse
Affiliation(s)
- Wesley K Savage
- Department of Biological Sciences, Lehigh University, B217 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015-4732, USA.
| | | |
Collapse
|
7
|
Honma A, Takakura KI, Nishida T. Optimal-foraging predator favors commensalistic Batesian mimicry. PLoS One 2008; 3:e3411. [PMID: 18923676 PMCID: PMC2565832 DOI: 10.1371/journal.pone.0003411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/12/2008] [Indexed: 11/29/2022] Open
Abstract
Background Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator–prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). Methodology/Principal Findings We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a “Pavlovian” predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. Conclusions/Significance Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant.
Collapse
Affiliation(s)
- Atsushi Honma
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
8
|
Hay-Roe MM, Nation J. Spectrum of cyanide toxicity and allocation in Heliconius erato and Passiflora host plants. J Chem Ecol 2007; 33:319-29. [PMID: 17200887 DOI: 10.1007/s10886-006-9234-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 11/27/2006] [Indexed: 11/28/2022]
Abstract
The larvae of three races of Heliconius erato were fed various species of Passiflora containing varying levels of cyanoglucosides. The mortality rate of larvae and pupae rose when larvae were fed species of Passiflora capable of releasing larger quantities of cyanide. When larvae were fed species of Passiflora with these properties, the resulting adult butterflies also released higher levels of cyanide. This may serve as a defense mechanism. The compounds responsible for the release of cyanide were not evenly distributed throughout the adult butterfly's body. The thorax contained the highest concentration of cyanogenic substances, followed by the head, wings, and abdomen. The younger tissues of Passiflora plants had higher levels of cyanide-releasing compounds than stems and mature leaves. Cyanogenic glycoside distribution within the plants is consistent with optimal allocation theory. The levels of cyanide-releasing substances in plants varied depending on the season.
Collapse
Affiliation(s)
- Mirian Medina Hay-Roe
- Department of Entomology and Nematology, University of Florida, P.O. Box 110650, Gainesville, FL, 32611-0650, USA.
| | | |
Collapse
|
9
|
Comparative unpalatability of mimetic viceroy butterflies (Limenitis archippus) from four south-eastern United States populations. Oecologia 1995; 103:327-336. [PMID: 28306826 DOI: 10.1007/bf00328621] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1994] [Accepted: 03/24/1995] [Indexed: 10/26/2022]
Abstract
Viceroy butterflies (Limenitis archippus), long considered palatable mimics of distasteful danaine butterflies, have been shown in studies involving laboratoryreared specimens to be moderately unpalatable to avian predators. This implies that some viceroys are Müllerian co-mimics, rather than defenseless Batesian mimics, of danaines. Here, I further test this hypothesis by assessing the palatability of wild-caught viceroys from four genetically and ecologically diverse populations in the southeastern United States. Bioassays revealed that viceroys sampled from three sites in Florida and one in South Carolina were all moderately unpalatable to captive redwinged blackbird predators, which ate fewer than half of the viceroy abdomens presented. Red-wings commonly exhibited long manipulation times and considerable distress behavior when attempting to eat a viceroy abdomen, and they taste-rejected over one-third of viceroys after a single peck. These findings, the first based on wild-caught butterflies, support the hypothesis that the viceroy-danaine relationship in some areas represents Müllerian mimicry, prompting a reassessment of selective forces shaping the interaction. Moreover, considerable variation in palatability of individual viceroys, and in behavior of individual birds, contributes to the complexity of chemical defense and mimicry in this system.
Collapse
|
10
|
Ritland DB. Unpalatability of viceroy butterflies (Limenitis archippus) and their purported mimicry models, Florida queens (Danaus gilippus). Oecologia 1991; 88:102-108. [PMID: 28312737 DOI: 10.1007/bf00328409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1991] [Accepted: 05/10/1991] [Indexed: 11/28/2022]
Abstract
Understanding the dynamics of defensive mimicry requires accurately characterizing the comparative palatability of putative models and mimics. The Florida viceroy butterfly (Limenitis archippus floridensis) is traditionally considered a palatable Batesian mimic of the purportedly distasteful Florida queen (Danaus gilippus berenice). I re-evaluated this established hypothesis by directly assessing palatability of viceroys and queens to red-winged blackbirds in a laboratory experiment. Representative Florida viceroys were surprisingly unpalatable to red-wings; only 40% of viceroy abdomens were entirely eaten (compared to 98% of control butterfly abdomens), and nearly one-third were immediately tasterejected after a single peck. In fact, the viceroys were significantly more unpalatable than representative Florida queens, of which 65% were eaten and 14% taste-rejected. Thus, viceroys and queens from the sampled populations exemplify Müllerian rather than Batesian mimicry, and the viceroy appears to be the stronger model. These findings prompt a reassessment of the ecological and evolutionary dynamics of this classic mimicry relationship.
Collapse
Affiliation(s)
- David B Ritland
- Department of Zoology, University of Florida, 32611, Gainesville, FL, USA
| |
Collapse
|
11
|
Abstract
Starting from field investigations and experiments on mimetic butterfly populations a model for two mimetic species is developed. The model comprises various features such as the growth rates and carrying capacities of the two species, their unpalatability to predators, the recruitment and the training of the predators and, most important, the similarity of the two mimetic species. The model ranges from pure Batesian to pure Müllerian mimicry over a spectrum of possible cases. The mimetic gain is introduced as the relative increase in equilibrium density in a mimetic situation as compared to a situation where mimicry is not present. The dependence of this quantity on parameters as growth rate, carrying capacity, unpalatability, and similarity is investigated using numerical methods.
Collapse
|
12
|
Huheey JE. THE QUESTION OF SYNCHRONY OR "TEMPORAL SYMPATRY" IN MIMICRY. Evolution 1980; 34:614-616. [PMID: 28568696 DOI: 10.1111/j.1558-5646.1980.tb04851.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1979] [Indexed: 11/30/2022]
Affiliation(s)
- James E Huheey
- Department of Chemistry, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
13
|
Sheppard PM, Turner JRG. THE EXISTENCE OF MÜLLERIAN MIMICRY. Evolution 1977; 31:452-453. [PMID: 28563236 DOI: 10.1111/j.1558-5646.1977.tb01030.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1976] [Revised: 09/30/1976] [Indexed: 11/30/2022]
Affiliation(s)
- P M Sheppard
- Department of Genetics, University of Liverpool, England, L69 3BX
| | - J R G Turner
- Department of Ecology and Evolution, Division of Biological Sciences, State University of New York, Stony Brook, New York, USA, 11794
| |
Collapse
|